1
|
Moore-Morris T, van Vliet PP, Andelfinger G, Puceat M. Role of Epigenetics in Cardiac Development and Congenital Diseases. Physiol Rev 2019; 98:2453-2475. [PMID: 30156497 DOI: 10.1152/physrev.00048.2017] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The heart is the first organ to be functional in the fetus. Heart formation is a complex morphogenetic process regulated by both genetic and epigenetic mechanisms. Congenital heart diseases (CHD) are the most prominent congenital diseases. Genetics is not sufficient to explain these diseases or the impact of them on patients. Epigenetics is more and more emerging as a basis for cardiac malformations. This review brings the essential knowledge on cardiac biology of development. It further provides a broad background on epigenetics with a focus on three-dimensional conformation of chromatin. Then, we summarize the current knowledge of the impact of epigenetics on cardiac cell fate decision. We further provide an update on the epigenetic anomalies in the genesis of CHD.
Collapse
Affiliation(s)
- Thomas Moore-Morris
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Patrick Piet van Vliet
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Gregor Andelfinger
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Michel Puceat
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| |
Collapse
|
2
|
Treating hemoglobinopathies using gene-correction approaches: promises and challenges. Hum Genet 2016; 135:993-1010. [PMID: 27314256 DOI: 10.1007/s00439-016-1696-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
Abstract
Hemoglobinopathies are genetic disorders caused by aberrant hemoglobin expression or structure changes, resulting in severe mortality and health disparities worldwide. Sickle cell disease (SCD) and β-thalassemia, the most common forms of hemoglobinopathies, are typically treated using transfusions and pharmacological agents. Allogeneic hematopoietic stem cell transplantation is the only curative therapy, but has limited clinical applicability. Although gene therapy approaches have been proposed based on the insertion and forced expression of wild-type or anti-sickling β-globin variants, safety concerns may impede their clinical application. A novel curative approach is nuclease-based gene correction, which involves the application of precision genome-editing tools to correct the disease-causing mutation. This review describes the development and potential application of gene therapy and precision genome-editing approaches for treating SCD and β-thalassemia. The opportunities and challenges in advancing a curative therapy for hemoglobinopathies are also discussed.
Collapse
|
3
|
Abstract
Insights into the evolution of hemoglobins and their genes are an abundant source of ideas regarding hemoglobin function and regulation of globin gene expression. This article presents the multiple genes and gene families encoding human globins, summarizes major events in the evolution of the hemoglobin gene clusters, and discusses how these studies provide insights into regulation of globin genes. Although the genes in and around the α-like globin gene complex are relatively stable, the β-like globin gene clusters are more dynamic, showing evidence of transposition to a new locus and frequent lineage-specific expansions and deletions. The cis-regulatory modules controlling levels and timing of gene expression are a mix of conserved and lineage-specific DNA, perhaps reflecting evolutionary constraint on core regulatory functions shared broadly in mammals and adaptive fine-tuning in different orders of mammals.
Collapse
Affiliation(s)
- Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Huck Institute of Genome Sciences, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
4
|
Wright S, DeBoer E, Rosenthal A, Flavell RA, Grosveld F. Notice of redundant publicationDNA sequences required for regulated expression of β-globin genes in murine erythroleukaemia cells. Philos Trans R Soc Lond B Biol Sci 2012. [DOI: 10.1098/rstb.2012.0385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
5
|
Palstra RJ, Grosveld F. Transcription factor binding at enhancers: shaping a genomic regulatory landscape in flux. Front Genet 2012; 3:195. [PMID: 23060900 PMCID: PMC3460357 DOI: 10.3389/fgene.2012.00195] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/12/2012] [Indexed: 12/26/2022] Open
Abstract
The mammalian genome is packed tightly in the nucleus of the cell. This packing is primarily facilitated by histone proteins and results in an ordered organization of the genome in chromosome territories that can be roughly divided in heterochromatic and euchromatic domains. On top of this organization several distinct gene regulatory elements on the same chromosome or other chromosomes are thought to dynamically communicate via chromatin looping. Advances in genome-wide technologies have revealed the existence of a plethora of these regulatory elements in various eukaryotic genomes. These regulatory elements are defined by particular in vitro assays as promoters, enhancers, insulators, and boundary elements. However, recent studies indicate that the in vivo distinction between these elements is often less strict. Regulatory elements are bound by a mixture of common and lineage-specific transcription factors which mediate the long-range interactions between these elements. Inappropriate modulation of the binding of these transcription factors can alter the interactions between regulatory elements, which in turn leads to aberrant gene expression with disease as an ultimate consequence. Here we discuss the bi-modal behavior of regulatory elements that act in cis (with a focus on enhancers), how their activity is modulated by transcription factor binding and the effect this has on gene regulation.
Collapse
Affiliation(s)
- Robert-Jan Palstra
- Department of Cell Biology, Erasmus MC University Medical Center Rotterdam, Netherlands
| | | |
Collapse
|
6
|
Chakalova L, Carter D, Debrand E, Goyenechea B, Horton A, Miles J, Osborne C, Fraser P. Developmental regulation of the beta-globin gene locus. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 38:183-206. [PMID: 15881896 DOI: 10.1007/3-540-27310-7_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The beta-globin genes have become a classical model for studying regulation of gene expression. Wide-ranging studies have revealed multiple levels of epigenetic regulation that coordinately ensure a highly specialised, tissue- and stage-specific gene transcription pattern. Key players include cis-acting elements involved in establishing and maintaining specific chromatin conformations and histone modification patterns, elements engaged in the transcription process through long-range regulatory interactions, transacting general and tissue-specific factors. On a larger scale, molecular events occurring at the locus level take place in the context of a highly dynamic nucleus as part of the cellular epigenetic programme.
Collapse
Affiliation(s)
- Lyubomira Chakalova
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Cambridge, CB2 4AT, UK
| | | | | | | | | | | | | | | |
Collapse
|
7
|
King DC, Taylor J, Elnitski L, Chiaromonte F, Miller W, Hardison RC. Evaluation of regulatory potential and conservation scores for detecting cis-regulatory modules in aligned mammalian genome sequences. Genome Res 2005; 15:1051-60. [PMID: 16024817 PMCID: PMC1182217 DOI: 10.1101/gr.3642605] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 06/02/2005] [Indexed: 11/24/2022]
Abstract
Techniques of comparative genomics are being used to identify candidate functional DNA sequences, and objective evaluations are needed to assess their effectiveness. Different analytical methods score distinctive features of whole-genome alignments among human, mouse, and rat to predict functional regions. We evaluated three of these methods for their ability to identify the positions of known regulatory regions in the well-studied HBB gene complex. Two methods, multispecies conserved sequences and phastCons, quantify levels of conservation to estimate a likelihood that aligned DNA sequences are under purifying selection. A third function, regulatory potential (RP), measures the similarity of patterns in the alignments to those in known regulatory regions. The methods can correctly identify 50%-60% of noncoding positions in the HBB gene complex as regulatory or nonregulatory, with RP performing better than do other methods. When evaluated by the ability to discriminate genomic intervals, RP reaches a sensitivity of 0.78 and a true discovery rate of approximately 0.6. The performance is better on other reference sets; both phastCons and RP scores can capture almost all regulatory elements in those sets along with approximately 7% of the human genome.
Collapse
Affiliation(s)
- David C King
- Center for Comparative Genomics and Bioinformatics, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | |
Collapse
|
8
|
Characterization of transcription factors binding to-120 GATA motif of rat βbminy-globin promoter. ACTA VET-BEOGRAD 2005. [DOI: 10.2298/avb0506347p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
9
|
Imren S, Fabry ME, Westerman KA, Pawliuk R, Tang P, Rosten PM, Nagel RL, Leboulch P, Eaves CJ, Humphries RK. High-level beta-globin expression and preferred intragenic integration after lentiviral transduction of human cord blood stem cells. J Clin Invest 2004; 114:953-62. [PMID: 15467834 PMCID: PMC518665 DOI: 10.1172/jci21838] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Accepted: 07/20/2004] [Indexed: 11/17/2022] Open
Abstract
Transplantation of genetically corrected autologous hematopoietic stem cells is an attractive approach for the cure of sickle-cell disease and beta-thalassemia. Here, we infected human cord blood cells with a self-inactivating lentiviral vector encoding an anti-sickling betaA-T87Q-globin transgene and analyzed the transduced progeny produced over a 6-month period after transplantation of the infected cells directly into sublethally irradiated NOD/LtSz-scid/scid mice. Approximately half of the human erythroid and myeloid progenitors regenerated in the mice containing the transgene, and erythroid cells derived in vitro from these in vivo-regenerated cells produced high levels of betaA-T87Q-globin protein. Linker-mediated PCR analysis identified multiple transgene-positive clones in all mice analyzed with 2.1 +/- 0.1 integrated proviral copies per cell. Genomic sequencing of vector-containing fragments showed that 86% of the proviral inserts had occurred within genes, including several genes implicated in human leukemia. These findings indicate effective transduction of very primitive human cord blood cells with a candidate therapeutic lentiviral vector resulting in the long-term and robust, erythroid-specific production of therapeutically relevant levels of beta-globin protein. However, the frequency of proviral integration within genes that regulate hematopoiesis points to a need for additional safety modifications.
Collapse
Affiliation(s)
- Suzan Imren
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Imren S, Fabry ME, Westerman KA, Pawliuk R, Tang P, Rosten PM, Nagel RL, Leboulch P, Eaves CJ, Humphries RK. High-level β-globin expression and preferred intragenic integration after lentiviral transduction of human cord blood stem cells. J Clin Invest 2004. [DOI: 10.1172/jci200421838] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
11
|
Kime L, Wright SC. Mad4 is regulated by a transcriptional repressor complex that contains Miz-1 and c-Myc. Biochem J 2003; 370:291-8. [PMID: 12418961 PMCID: PMC1223147 DOI: 10.1042/bj20021679] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2002] [Accepted: 11/06/2002] [Indexed: 12/22/2022]
Abstract
Myc and Mad family proteins are central regulators of cellular proliferation and differentiation. We show that various Mad family genes have distinct patterns of expression during the chemically induced differentiation of mouse erythroleukaemia (MEL) cells, suggesting that they each serve a different function. Mad4 RNA is highly induced and persists in terminally differentiated cells, in agreement with observations in other systems. Using reporter gene assays in stably transfected MEL cells, we show that induction of Mad4 is mediated by a 49 nt core promoter region. We demonstrate that the initiator element is required for Mad4 activation, and show that induction is associated with the loss from the initiator of a complex that contains Miz-1 and c-Myc. Miz-1 activates the Mad4 promoter in transient transfection assays, and this effect is antagonized by c-Myc. We therefore identify Mad4 as a novel target of transcriptional repression by c-Myc. These data suggest that the expression of Mad4 in proliferating undifferentiated cells is suppressed by the binding of a c-Myc-Miz-1 repressor complex at the initiator, and that the activation of Mad4 during differentiation results, at least in part, from a decrease in c-Myc-mediated repression.
Collapse
Affiliation(s)
- Louise Kime
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | | |
Collapse
|
12
|
Identification and characterization of rat β-DRE binding factors involved in erythroid-specific induction of transcription. ACTA VET-BEOGRAD 2003. [DOI: 10.2298/avb0303067p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
13
|
Comparison of Expression of Human Globin Genes Transferred Into Mouse Erythroleukemia Cells and in Transgenic Mice. Blood 1998. [DOI: 10.1182/blood.v92.9.3416.421k16_3416_3421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To examine whether transfer of γ globin genes into mouse erythroleukemia cells can be used for the analysis of regulatory elements of γ globin gene promoter, Aγ gene constructs carrying promoter truncations that have been previously analyzed in transgenic mice were used for production of stably transfected mouse erythroleukemia (MEL) cell clones and pools. We found that constructs, which contain a microlocus control region (μLCR) that efficiently protects globin gene expression from the effects of the position of integration in transgenic mice, display position-dependent globin gene expression in MEL cell clones. Aγ globin gene expression among MEL cell clones carrying the μLCR(−201)Aγ and μLCR(−382)Aγ gene constructs ranged 15.5-fold and 17.6-fold, respectively, and there was no correlation between theAγ mRNA levels and the copies of the transgene (r= .28, P = .18). There was significant variation in per copy Aγ globin gene expression among MEL cell pools composed of 10 clones, but not among pools composed of 50 clones, indicating that position effects are averaged in pools composed by large numbers of clones. The overall pattern of Aγ globin gene expression in MEL cell pools resembled that observed in transgenic mice indicating that MEL cell transfections can be used in the study ofcis elements controlling γ globin gene expression. MEL cell transfections, however, are not appropriate for investigation of cis elements, which either sensitize or protect the globin transgenes from position effects.
© 1998 by The American Society of Hematology.
Collapse
|
14
|
Comparison of Expression of Human Globin Genes Transferred Into Mouse Erythroleukemia Cells and in Transgenic Mice. Blood 1998. [DOI: 10.1182/blood.v92.9.3416] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
To examine whether transfer of γ globin genes into mouse erythroleukemia cells can be used for the analysis of regulatory elements of γ globin gene promoter, Aγ gene constructs carrying promoter truncations that have been previously analyzed in transgenic mice were used for production of stably transfected mouse erythroleukemia (MEL) cell clones and pools. We found that constructs, which contain a microlocus control region (μLCR) that efficiently protects globin gene expression from the effects of the position of integration in transgenic mice, display position-dependent globin gene expression in MEL cell clones. Aγ globin gene expression among MEL cell clones carrying the μLCR(−201)Aγ and μLCR(−382)Aγ gene constructs ranged 15.5-fold and 17.6-fold, respectively, and there was no correlation between theAγ mRNA levels and the copies of the transgene (r= .28, P = .18). There was significant variation in per copy Aγ globin gene expression among MEL cell pools composed of 10 clones, but not among pools composed of 50 clones, indicating that position effects are averaged in pools composed by large numbers of clones. The overall pattern of Aγ globin gene expression in MEL cell pools resembled that observed in transgenic mice indicating that MEL cell transfections can be used in the study ofcis elements controlling γ globin gene expression. MEL cell transfections, however, are not appropriate for investigation of cis elements, which either sensitize or protect the globin transgenes from position effects.
© 1998 by The American Society of Hematology.
Collapse
|
15
|
White C, Gardiner E, Eisman J. Tissue specific and vitamin D responsive gene expression in bone. Mol Biol Rep 1998; 25:45-61. [PMID: 9540066 DOI: 10.1023/a:1006820710966] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Studies of gene expression in bone have adopted a number of molecular approaches that seek to determine those cis and trans-acting factors responsible for the development and physiological regulation of this unique tissue. The majority of studies have been performed in vitro, focussing on the expression of genes such as osteocalcin, bone sialoprotein and type I collagen which demonstrate restricted or altered expression patterns in osteoblasts. These studies have demonstrated a large number of cis and trans acting factors that modulate the tissue specific and vitamin D responsive expression of these genes. These include the response elements and regions mediating basal and vitamin D dependent transcription of these genes as well as some of the transcription factors that bind to these regions and the nucleosomal organisation of these genes within a nuclear framework. In vivo studies, including the introduction of transgenes into transgenic mice, extend these in vitro observations within a physiological context. However, in part due to limitations in each approach, these in vitro and in vivo studies are yet to accurately define all the necessary cis and trans-acting factors required for tissue specific and vitamin D responsive gene expression. Advances have been made in identifying many cis-acting regions within the flanking regions of these genes that are responsible for their restricted expression patterns, but a vector incorporating all the necessary cis-acting regions capable of directing gene expression independent of integration site has not yet been described. Similarly, trans-acting factors that determine the developmental destiny of osteoblast progenitors and the restricted expression of these genes remain elusive and, despite advances in the understanding of protein-DNA interactions at vitamin D response elements contained within these genes, further intermediary factors that interact with the transcriptional machinery to modulate vitamin D responsiveness need to be identified.
Collapse
Affiliation(s)
- C White
- Bone & Mineral Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, Australia
| | | | | |
Collapse
|
16
|
Construction of novel antibodies by use of DNA transfection: design of plasmid vectors. ACTA ACUST UNITED AC 1997. [DOI: 10.1098/rsta.1986.0052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The DNA that encodes antibodies can be manipulated
in vitro
and reintroduced into lymphoid cell lines. In this way, lymphocyte transfectants can be established which secrete milligram quantities of novel antibody molecules. Here we present data concerning the DNA sequences that are needed for efficient expression of the transfected antibody gene and give examples of the way in which this expression system for immunoglobulin gene DNA can be used for the production of useful antibody-related molecules.
Collapse
|
17
|
Ren S, Li J, Atweh GF. CACCC and GATA-1 sequences make the constitutively expressed alpha-globin gene erythroid-responsive in mouse erythroleukemia cells. Nucleic Acids Res 1996; 24:342-7. [PMID: 8628660 PMCID: PMC145638 DOI: 10.1093/nar/24.2.342] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although the human alpha-globin and beta-globin genes are co-regulated in adult life, they achieve the same end by very different mechanisms. For example, a transfected beta-globin gene is expressed in an inducible manner in mouse erythroleukemia (MEL) cells while a transfected alpha-globin gene is constitutively expressed at a high level in induced and uninduced MEL cells. Interestingly, when the alpha-globin gene is transferred into MEL cells as part of human chromosome 16, it is appropriately expressed in an inducible manner. We explored the basis for the lack of erythroid-responsiveness of the proximal regulatory elements of the human alpha-globin gene. Since the alpha-globin gene is the only functional human globin gene that lacks CACCC and GATA-1 motifs, we asked whether their addition to the alpha-globin promoter would make the gene erythroid-responsive in MEL cells. The addition of each of these binding sites to the alpha-globin promoter separately did not result in inducibility in MEL cells. However, when both sites were added together, the alpha-globin gene became inducible in MEL cells. This suggests that erythroid non-responsiveness of the alpha-globin gene results from the lack of erythroid binding sites and is not necessarily a function of the constitutively active, GC rich promoter.
Collapse
Affiliation(s)
- S Ren
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
18
|
Bowman TL, Hurt MM. The coding sequences of mouse H2A and H3 histone genes contains a conserved seven nucleotide element that interacts with nuclear factors and is necessary for normal expression. Nucleic Acids Res 1995; 23:3083-92. [PMID: 7667083 PMCID: PMC307164 DOI: 10.1093/nar/23.16.3083] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Expression of replication-dependent histone genes of all classes is up-regulated coordinately at the onset of DNA synthesis. The cellular signals involved in coordinate regulation of these genes are not known. Here we report identification of an alpha element, present within the mouse histone coding region activating sequence (CRAS). We show evidence that this element is present in histone genes from two classes, H2a and H3, in the mouse. This element has two biological functions in histone gene expression, i.e. the element interacts with nuclear proteins in regulation of gene expression, as well as encoding the amino acids of the histone proteins. We present both in vivo and in vitro evidence that interaction of nuclear proteins with this element is required for normal expression. The binding site for nuclear protein(s) has been precisely defined by means of synthetic oligonucleotides, as well as DNase I protection and methylation interference. It is interesting to note that the histone CRAS alpha element is mutated in a replication-independent H3.3 gene; 5 of 7 nt in the CRAS alpha box are changed in this gene.
Collapse
Affiliation(s)
- T L Bowman
- Department of Biological Science, Florida State University, Tallahassee 32306-3050, USA
| | | |
Collapse
|
19
|
Pietrowski D, Durante MJ, Liebstein A, Schmitt-John T, Werner T, Graw J. Alpha-crystallins are involved in specific interactions with the murine gamma D/E/F-crystallin-encoding gene. Gene 1994; 144:171-8. [PMID: 8039702 DOI: 10.1016/0378-1119(94)90375-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The promoter of the murine gamma E-crystallin (gamma E-Cry) encoding gene (gamma E-cry) was analyzed for specific interactions with lenticular proteins in a gel-retardation assay. A 21-bp fragment immediately downstream of the transcription initiation site (DOTIS) is demonstrated to be responsible for specific interactions with lens extracts. The DOTIS-binding protein(s) accept only the sense DNA strand as target; anti-sense or double-stranded DNA do not interact with these proteins. The DOTIS sequence element is highly conserved among the murine gamma D-, gamma E- and gamma F-cry and is present at comparable positions in the orthologous rat genes. Only a weak or even no protein-binding activity is observed if a few particular bases are changed, as in the rat gamma A-, gamma C- and gamma E-cry elements. DOTIS-binding proteins were found in commercially available bovine alpha-Cry preparations. The essential participation of alpha-Cry in the DNA-binding protein complex was confirmed using alpha-Cry-specific monoclonal antibody. The results reported here point to a novel function of alpha-Cry besides the structural properties in the lens.
Collapse
Affiliation(s)
- D Pietrowski
- GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Säugetiergenetik, Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Obinata M, Ohmori Y, Takada S, Shoji W. Function of c‐mycon erythroid differentiation and heme synthesis. Stem Cells 1994. [DOI: 10.1002/stem.5530120708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Identification and characterization of a beta-globin promoter-binding factor from murine erythroleukemia cells. Mol Cell Biol 1993. [PMID: 8321233 DOI: 10.1128/mcb.13.7.4311] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified a DNA-binding activity with specificity for the beta DRE, an evolutionarily conserved transcriptional regulatory element in mammalian adult beta-globin promoters. This binding activity, which we term beta DRf, for beta-globin direct repeat factor, was detected in fractionated nuclear extracts from the murine erythroleukemia cell line and has been partially purified from undifferentiated cells. beta DRf makes symmetric contacts on the two copies of its recognition sequence on both strands and introduces a bend into the DNA helix upon binding. While the factor displays a low binding affinity for the beta DRE in isolation, it binds to the intact beta-globin promoter and DNA fragments containing multiple beta DRE-binding sites with high affinity. A correlation between beta DRf binding affinity and transcriptional activity of beta DRE mutant promoters suggests that this factor stimulates transcription of the beta-globin promoter in vivo.
Collapse
|
22
|
Stuvé LL, Myers RM. Identification and characterization of a beta-globin promoter-binding factor from murine erythroleukemia cells. Mol Cell Biol 1993; 13:4311-22. [PMID: 8321233 PMCID: PMC359987 DOI: 10.1128/mcb.13.7.4311-4322.1993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have identified a DNA-binding activity with specificity for the beta DRE, an evolutionarily conserved transcriptional regulatory element in mammalian adult beta-globin promoters. This binding activity, which we term beta DRf, for beta-globin direct repeat factor, was detected in fractionated nuclear extracts from the murine erythroleukemia cell line and has been partially purified from undifferentiated cells. beta DRf makes symmetric contacts on the two copies of its recognition sequence on both strands and introduces a bend into the DNA helix upon binding. While the factor displays a low binding affinity for the beta DRE in isolation, it binds to the intact beta-globin promoter and DNA fragments containing multiple beta DRE-binding sites with high affinity. A correlation between beta DRf binding affinity and transcriptional activity of beta DRE mutant promoters suggests that this factor stimulates transcription of the beta-globin promoter in vivo.
Collapse
Affiliation(s)
- L L Stuvé
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0444
| | | |
Collapse
|
23
|
Erythroid differentiation of mouse erythroleukemia cells results in reorganization of protein-DNA complexes in the mouse beta maj globin promoter but not its distal enhancer. Mol Cell Biol 1993. [PMID: 8423777 DOI: 10.1128/mcb.13.2.1093] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) induction of mouse erythroleukemia (MEL) cells represents a well-defined in vitro system of terminal erythroid differentiation. We have studied the molecular mechanisms of transcriptional activation of the mouse beta maj globin gene during MEL cell differentiation by analyzing nuclear factor-DNA interactions in vivo at the gene's upstream promoter and a distal enhancer, 5'HS-2. Genomic footprinting data indicate that three motifs, CAC, NF-E2/AP1, and GATA-1, of the 5'HS-2 enhancer are bound with nuclear factors in MEL cells both prior to and after DMSO induction. No obvious conformational change of these nuclear factor-DNA complexes could be detected upon terminal differentiation of MEL cells. On the other hand, DMSO induction of MEL cells leads to the formation of specific nuclear factor-DNA complexes at several transcriptional regulatory elements of the mouse beta maj globin upstream promoter. Our genomic footprinting data have interesting implications with respect to the molecular mechanisms of transcriptional regulation and chromatin change of the mouse beta maj globin gene during erythroid differentiation.
Collapse
|
24
|
Reddy PM, Shen CK. Erythroid differentiation of mouse erythroleukemia cells results in reorganization of protein-DNA complexes in the mouse beta maj globin promoter but not its distal enhancer. Mol Cell Biol 1993; 13:1093-103. [PMID: 8423777 PMCID: PMC358994 DOI: 10.1128/mcb.13.2.1093-1103.1993] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Dimethyl sulfoxide (DMSO) induction of mouse erythroleukemia (MEL) cells represents a well-defined in vitro system of terminal erythroid differentiation. We have studied the molecular mechanisms of transcriptional activation of the mouse beta maj globin gene during MEL cell differentiation by analyzing nuclear factor-DNA interactions in vivo at the gene's upstream promoter and a distal enhancer, 5'HS-2. Genomic footprinting data indicate that three motifs, CAC, NF-E2/AP1, and GATA-1, of the 5'HS-2 enhancer are bound with nuclear factors in MEL cells both prior to and after DMSO induction. No obvious conformational change of these nuclear factor-DNA complexes could be detected upon terminal differentiation of MEL cells. On the other hand, DMSO induction of MEL cells leads to the formation of specific nuclear factor-DNA complexes at several transcriptional regulatory elements of the mouse beta maj globin upstream promoter. Our genomic footprinting data have interesting implications with respect to the molecular mechanisms of transcriptional regulation and chromatin change of the mouse beta maj globin gene during erythroid differentiation.
Collapse
Affiliation(s)
- P M Reddy
- Department of Genetics, University of California, Davis 95616
| | | |
Collapse
|
25
|
Discrimination among potential activators of the beta-globin CACCC element by correlation of binding and transcriptional properties. Mol Cell Biol 1993. [PMID: 8417342 DOI: 10.1128/mcb.13.1.44] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adult beta-globin-like promoters contain a cis-acting element, CCACACCC, that is conserved across species and is required for wild-type levels of transcription. We have studied the contribution of this element and proteins that interact with it to activate beta-globin transcription. We found that an erythroid-like cell line, MEL, contains several proteins that specifically bind the CACCC element. By comparing the DNA-binding properties of promoters with mutations in the CACCC element with the transcriptional activities of these mutant promoters, we found that two CACCC-binding proteins did not bind to mutant promoters that direct decreased levels of transcription. One of these proteins is the transcriptional activator Sp1, and the other we have designated CACD (CACCC-binding species D). We subjected CACD to a binding site selection procedure and obtained high-affinity CACD binding sites that are identical to that of the beta-globin CACCC element. This result, combined with our finding that CACD binds the CACCC element with a higher affinity than does Sp1, argues that the CACCC element is a target of CACD rather than Sp1. The strategy of correlating the results of a binding site selection experiment with those of in vivo expression and in vitro binding studies may allow evaluation of the relative potential of different proteins to activate transcription through a single cis-acting site.
Collapse
|
26
|
Chu C, Shen CK. DNA methylation: its possible functional roles in developmental regulation of human globin gene families. EXS 1993; 64:385-403. [PMID: 7678204 DOI: 10.1007/978-3-0348-9118-9_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- C Chu
- Department of Genetics, University of California, Davis 95616
| | | |
Collapse
|
27
|
|
28
|
Hartzog GA, Myers RM. Discrimination among potential activators of the beta-globin CACCC element by correlation of binding and transcriptional properties. Mol Cell Biol 1993; 13:44-56. [PMID: 8417342 PMCID: PMC358883 DOI: 10.1128/mcb.13.1.44-56.1993] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Adult beta-globin-like promoters contain a cis-acting element, CCACACCC, that is conserved across species and is required for wild-type levels of transcription. We have studied the contribution of this element and proteins that interact with it to activate beta-globin transcription. We found that an erythroid-like cell line, MEL, contains several proteins that specifically bind the CACCC element. By comparing the DNA-binding properties of promoters with mutations in the CACCC element with the transcriptional activities of these mutant promoters, we found that two CACCC-binding proteins did not bind to mutant promoters that direct decreased levels of transcription. One of these proteins is the transcriptional activator Sp1, and the other we have designated CACD (CACCC-binding species D). We subjected CACD to a binding site selection procedure and obtained high-affinity CACD binding sites that are identical to that of the beta-globin CACCC element. This result, combined with our finding that CACD binds the CACCC element with a higher affinity than does Sp1, argues that the CACCC element is a target of CACD rather than Sp1. The strategy of correlating the results of a binding site selection experiment with those of in vivo expression and in vitro binding studies may allow evaluation of the relative potential of different proteins to activate transcription through a single cis-acting site.
Collapse
Affiliation(s)
- G A Hartzog
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0444
| | | |
Collapse
|
29
|
Fantino E, Marguet D, Lauquin GJ. Downstream activating sequence within the coding region of a yeast gene: specific binding in vitro of RAP1 protein. MOLECULAR & GENERAL GENETICS : MGG 1992; 236:65-75. [PMID: 1494352 DOI: 10.1007/bf00279644] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Using a gel retardation assay, a protein factor that specifically interacts with a 33 bp intragenic sequence of the highly expressed and glucose-inducible SRP1 gene of Saccharomyces cerevisiae has been detected. This binding site is located in a transcribed region and within the open reading frame (positions +710 to +743 relative to the first base of the initiation codon). A mutant strain carrying a deletion of this binding site showed a dramatic decrease in steady-state levels of SRP1 transcripts. This decline is not the result of a decrease in mRNA stability, since expression of hybrid genes in which the SRP1 promoter was replaced by the heterologous CYC1 promoter was not affected by the binding site deletion. These findings suggest that the 33 bp sequence contains a cis-acting downstream activating element which is involved in the transcriptional activation of the SRP1 promoter. Sequence comparisons showed similarities between a site located within the 33 bp sequence and the high-affinity consensus binding site of the RAP1/GRF1 (also named TUF) factor and methylation interference experiments confirmed that this site was involved in the protein-DNA interaction. Both the results of competition experiments with upstream activating sequences of ribosomal protein genes (UASrpg), which are targets for RAP1 binding, and determination of the apparent molecular weight of the affinity-purified DNA-binding protein indicated that RAP1 factor recognized the SRP1 33 bp element. The 33 bp sequence was found to be unable to provide UAS activity when placed upstream of the TATA box and transcription start site.
Collapse
|
30
|
Sowden J, Edwards M, Morrison K, Butterworth PH, Edwards YH. Erythroid expression and DNAaseI-hypersensitive sites of the carbonic anhydrase 1 gene. Biochem J 1992; 288 ( Pt 2):545-51. [PMID: 1463458 PMCID: PMC1132045 DOI: 10.1042/bj2880545] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The carbonic anhydrase 1 gene is expressed in adult human and mouse erythroid cells and colon epithelia from two distinct promoters. We have explored the erythroid promoter for cis-acting sequences involved in transcription using DNAaseI as a probe. Two DNAaseI-hypersensitive sites (DHS-1 and DHS-2) have been identified in the distal erythroid promoter in CA1-expressing erythroleukaemic cells. These sites are present at low levels in K562 cells, which have a foetal/embryonic phenotype and do not express CA1. DHS-1 and DHS-2 are not present in non-erythroid cells, including colon cells, which express CA1 from the proximal colon promoter. DHS-1 and DHS-2 were also generated in an heterologous CA1 gene containing 5 kb of erythroid promoter sequence after transfection into erythroid cells, including K562 cells. These transfection studies showed that both this fragment, and an abbreviated 817 bp promoter fragment which contains only DHS-1, were sufficient to confer erythroid-specific expression to a reporter gene. These promoters were active in cell lines expressing CA1 and in K562 cells. This latter observation implies that a developmental repressor factor is both present in K562 cells and binds to a cis-acting sequence that is absent from the sequence 5 kb upstream of the erythroid transcription start site.
Collapse
Affiliation(s)
- J Sowden
- MRC Human Biochemical Genetics Unit, Galton Laboratory (UCL), London, U.K
| | | | | | | | | |
Collapse
|
31
|
Tagle DA, Stanhope MJ, Siemieniak DR, Benson P, Goodman M, Slightom JL. The beta globin gene cluster of the prosimian primate Galago crassicaudatus: nucleotide sequence determination of the 41-kb cluster and comparative sequence analyses. Genomics 1992; 13:741-60. [PMID: 1639402 DOI: 10.1016/0888-7543(92)90150-q] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nucleotide sequence of the beta globin gene cluster of the prosimian Galago crassicaudatus has been determined. A total sequence spanning 41,101 bp contains and links together previously published sequences of the five galago beta-like globin genes (5'-epsilon-gamma-psi eta-delta-beta-3'). A computer-aided search for middle interspersed repetitive sequences identified 10 LINE (L1) elements, including a 5' truncated repeat that is orthologous to the full-length L1 element found in the human epsilon-gamma intergenic region. SINE elements that were identified included one Alu type I repeat, four Alu type II repeats, and two methionine tRNA-derived Monomer (type III) elements. Alu type II and Monomer sequences are unique to the galago genome. Structural analyses of the cluster sequence reveals that it is relatively A+T rich (about 62%) and regions with high G+C content are associated primarily with globin coding regions. Comparative analyses with the beta globin cluster sequences of human, rabbit, and mouse reveal extensive sequence homologies in their genic regions, but only human, galago, and rabbit sequences share extensive intergenic sequence homologies. Divergence analyses of aligned intergenic and flanking sequences from orthologous human, galago, and rabbit sequences show a gradation in the rate of nucleotide sequence evolution along the cluster where sequences 5' of the epsilon globin gene region show the least sequence divergence and sequences just 5' of the beta globin gene region show the greatest sequence divergence.
Collapse
Affiliation(s)
- D A Tagle
- Department of Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | | | | | | | | | |
Collapse
|
32
|
Berg PE, Schechter AN. The impact of molecular biology on the diagnosis and treatment of hemoglobin disorders. MOLECULAR GENETIC MEDICINE 1992; 2:1-38. [PMID: 1458221 DOI: 10.1016/b978-0-12-462002-5.50006-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- P E Berg
- Laboratory of Chemical Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
33
|
Hardison R, Krane D, Vandenbergh D, Cheng JF, Mansberger J, Taddie J, Schwartz S, Huang XQ, Miller W. Sequence and comparative analysis of the rabbit alpha-like globin gene cluster reveals a rapid mode of evolution in a G + C-rich region of mammalian genomes. J Mol Biol 1991; 222:233-49. [PMID: 1960725 DOI: 10.1016/0022-2836(91)90209-o] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A sequence of 10,621 base-pairs from the alpha-like globin gene cluster of rabbit has been determined. It includes the sequence of gene zeta 1 (a pseudogene for the rabbit embryonic zeta-globin), the functional rabbit alpha-globin gene, and the theta 1 pseudogene, along with the sequences of eight C repeats (short interspersed repeats in rabbit) and a J sequence implicated in recombination. The region is quite G + C-rich (62%) and contains two CpG islands. As expected for a very G + C-rich region, it has an abundance of open reading frames, but few of the long open reading frames are associated with the coding regions of genes. Alignments between the sequences of the rabbit and human alpha-like globin gene clusters reveal matches primarily in the immediate vicinity of genes and CpG islands, while the intergenic regions of these gene clusters have many fewer matches than are seen between the beta-like globin gene clusters of these two species. Furthermore, the non-coding sequences in this portion of the rabbit alpha-like globin gene cluster are shorter than in human, indicating a strong tendency either for sequence contraction in the rabbit gene cluster or for expansion in the human gene cluster. Thus, the intergenic regions of the alpha-like globin gene clusters have evolved in a relatively fast mode since the mammalian radiation, but not exclusively by nucleotide substitution. Despite this rapid mode of evolution, some strong matches are found 5' to the start sites of the human and rabbit alpha genes, perhaps indicating conservation of a regulatory element. The rabbit J sequence is over 1000 base-pairs long; it contains a C repeat at its 5' end and an internal region of homology to the 3'-untranslated region of the alpha-globin gene. Part of the rabbit J sequence matches with sequences within the X homology block in human. Both of these regions have been implicated as hot-spots for recombination, hence the matching sequences are good candidates for such a function. All the interspersed repeats within both gene clusters are retroposon SINEs that appear to have inserted independently in the rabbit and human lineages.
Collapse
Affiliation(s)
- R Hardison
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Enver T, Brice M, Karlinsey J, Stamatoyannopoulos G, Papayannopoulou T. Developmental regulation of fetal to adult globin gene switching in human fetal erythroid x mouse erythroleukemia cell hybrids. Dev Biol 1991; 148:129-37. [PMID: 1936553 DOI: 10.1016/0012-1606(91)90323-u] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human fetal erythroid x murine erythroleukemia cell hybrids undergo human fetal (gamma) to adult (beta) globin gene switching in vitro under the control of a mechanism located on human chromosome 11. We investigated whether this mechanism acts in cis or in trans by preparing hybrid cells containing marked fragments of the gamma and beta genes known to switch in transgenic mice. In these cells the chromosomally introduced human globin locus undergoes the fetal to adult globin gene switch. In contrast, the marked globin gene fragments were expressed at all stages of hybrid development. These results suggest that either the mechanism of switching acts in cis or that sequences present in the chromosomal globin locus but missing from the transfected globin gene fragments mediate its action.
Collapse
Affiliation(s)
- T Enver
- Division of Medical Genetics, University of Washington, Seattle 98195
| | | | | | | | | |
Collapse
|
35
|
Lewis W, Lee JD, Dodgson JB. Adult chicken alpha-globin gene expression in transfected QT6 quail cells: evidence for a negative regulatory element in the alpha D gene region. Nucleic Acids Res 1991; 19:5321-9. [PMID: 1656392 PMCID: PMC328894 DOI: 10.1093/nar/19.19.5321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The chicken adult alpha-globin genes, alpha A and alpha D, are closely linked in chromosomal DNA and are coordinately expressed in vivo in an approximate 3:1 ratio, respectively. When subcloned DNAs containing one or the other gene are stably transfected into QT6 quail fibroblasts, the alpha A-globin gene is expressed at measurable RNA levels, but the alpha D gene is not. The alpha A gene expression can be considerably increased by the presence of a linked Rous sarcoma virus long terminal repeat enhancer, but that of the alpha D gene remains undetectable. Transfection with subclones containing both genes, either in cis or in trans, leads to considerably reduced alpha A RNA levels and still no observable alpha D gene expression. Transfection with deleted subclones suggests that maximal expression levels in this system require the alpha A-globin gene promoter, as opposed to that of the alpha D gene, but that such expression is greatly reduced by one or more DNA sequences which lie approximately 2,000 base pairs upstream of the alpha A gene, within the body of the alpha D gene.
Collapse
Affiliation(s)
- W Lewis
- Department of Microbiology, Michigan State University, East Lansing 48824
| | | | | |
Collapse
|
36
|
Ma XJ, Fraser P, Curtis PJ. A differentiation stage-specific factor interacts with mouse carbonic anhydrase form I gene and a conserved sequence in mammalian beta-globin genes. Differentiation 1991; 47:135-41. [PMID: 1959712 DOI: 10.1111/j.1432-0436.1991.tb00231.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have identified in mouse erythroleukemic (MEL) cells a novel factor which binds to the 3' flanking region of beta-globin genes. Upon induction, this DNA binding factor disappears as beta-globin gene transcription increases. The factor protects 20-30 base pairs (bp) of a sequence which is tightly conserved in beta-globin genes including chicken, human, mouse and rabbit. A very similar sequence binds the factor in the mouse carbonic anhydrase form I gene, whose transcription diminishes upon induction of MEL cells. The factor, or a closely related form, is detected in nonerythroid cells and binding sites have been detected in other genes, including c-myb and immunoglobulin heavy chain-enhancer. We suggest that this factor could play a role in determining the timing of gene expression in several differentiating cell types.
Collapse
Affiliation(s)
- X J Ma
- Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104
| | | | | |
Collapse
|
37
|
A common transcriptional activator is located in the coding region of two replication-dependent mouse histone genes. Mol Cell Biol 1991. [PMID: 2038312 DOI: 10.1128/mcb.11.6.2929] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is a region in the mouse histone H3 gene protein-encoding sequence required for high expression. The 110-nucleotide coding region activating sequence (CRAS) from codons 58 to 93 of the H3.2 gene restored expression when placed 520 nucleotides 5' of the start of transcription in the correct orientation. Since identical mRNA molecules are produced by transcription of the original deletion gene and the deletion gene with the CRAS at -520, effects of the deletions on mRNA stability or other posttranscriptional events are completely ruled out. Inversion of the CRAS sequence in its proper position in the H3 gene resulted in only a threefold increase in expression, and placing the CRAS sequence 5' of the deleted gene in the wrong orientation had no effect on expression. In-frame deletions in the coding region of an H2a.2 gene led to identification of a 105-nucleotide sequence in the coding region between amino acids 50 and 85 necessary for high expression of the gene. Additionally, insertion of the H3 CRAS into the deleted region of the H2a.2 gene restored expression of the H2a gene. Thus, the CRAS element has an orientation-dependent, position-independent effect. Gel mobility shift competition studies indicate that the same proteins interact with both the H3 and H2a CRAS elements, suggesting that a common factor is involved in expression of histone genes.
Collapse
|
38
|
|
39
|
Hurt MM, Bowman TL, Marzluff WF. A common transcriptional activator is located in the coding region of two replication-dependent mouse histone genes. Mol Cell Biol 1991; 11:2929-36. [PMID: 2038312 PMCID: PMC360118 DOI: 10.1128/mcb.11.6.2929-2936.1991] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
There is a region in the mouse histone H3 gene protein-encoding sequence required for high expression. The 110-nucleotide coding region activating sequence (CRAS) from codons 58 to 93 of the H3.2 gene restored expression when placed 520 nucleotides 5' of the start of transcription in the correct orientation. Since identical mRNA molecules are produced by transcription of the original deletion gene and the deletion gene with the CRAS at -520, effects of the deletions on mRNA stability or other posttranscriptional events are completely ruled out. Inversion of the CRAS sequence in its proper position in the H3 gene resulted in only a threefold increase in expression, and placing the CRAS sequence 5' of the deleted gene in the wrong orientation had no effect on expression. In-frame deletions in the coding region of an H2a.2 gene led to identification of a 105-nucleotide sequence in the coding region between amino acids 50 and 85 necessary for high expression of the gene. Additionally, insertion of the H3 CRAS into the deleted region of the H2a.2 gene restored expression of the H2a gene. Thus, the CRAS element has an orientation-dependent, position-independent effect. Gel mobility shift competition studies indicate that the same proteins interact with both the H3 and H2a CRAS elements, suggesting that a common factor is involved in expression of histone genes.
Collapse
Affiliation(s)
- M M Hurt
- Program in Medical Sciences, Florida State University, Tallahassee 32306
| | | | | |
Collapse
|
40
|
Kulozik AE, Bail S, Bellan-Koch A, Bartram CR, Kohne E, Kleihauer E. The proximal element of the beta globin locus control region is not functionally required in vivo. J Clin Invest 1991; 87:2142-6. [PMID: 2040696 PMCID: PMC296972 DOI: 10.1172/jci115246] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In addition to local sequence elements the regulation of the high-level, development- and tissue-specific expression of the human beta globin gene cluster appears to require distant regulatory sequences which have been termed locus control region. In the chromatin of erythroid cells the locus control region is characterized by four DNaseI hypersensitive sites that are located 6-18 kb 5' of the epsilon globin gene. The definition of the sequences minimally required for locus control region activity is likely to further the understanding of its physiology and will be of interest for the development of somatic gene therapy strategies of the hemoglobinopathies. We present here the analysis of a family with a 3,030-bp deletion of sequences upstream of the epsilon globin gene including the most 3' locus control region element and cosegregating beta(0) thalassemia. The deletion is linked in cis to a structurally and functionally normal beta globin gene. The proximal element of the locus control region does not therefore appear to be necessary for beta globin gene activity in vivo.
Collapse
Affiliation(s)
- A E Kulozik
- Department of Pediatrics II, University of Ulm, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Takada S, Obinata M. Overexpression of c-Myc inhibits the appearance of a specific DNase I hypersensitive site in the beta-globin chromatin in murine erythroleukemia cells. Jpn J Cancer Res 1991; 82:376-9. [PMID: 1904416 PMCID: PMC5918440 DOI: 10.1111/j.1349-7006.1991.tb01858.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To investigate the molecular mechanism of regulation of differentiation by c-Myc, we examined the acquisition of DNase I hypersensitivity by beta-globin chromatin in an MEL cell transformant (38-2) in which the c-myc gene was placed under the control of a metallothionein gene promoter. Of the three DNase I hypersensitive sites around the beta-globin gene which were detected in MEL cells after DMSO treatment, the appearance of a specific DNase I hypersensitive site near the promoter was greatly reduced by the overexpression of c-Myc. This result suggests that c-Myc regulates beta-globin expression by interfering with the establishment of an active chromatin conformation around the beta-globin gene.
Collapse
Affiliation(s)
- S Takada
- Department of Cell Biology, Research Institute for Tuberculosis and Cancer, Tohoku University, Sendai
| | | |
Collapse
|
42
|
Donovan-Peluso M, Acuto S, O'Neill D, Kaysen J, Hom A, Maggio A, Bank A. The regulation of gamma-globin gene expression. Ann N Y Acad Sci 1990; 612:160-6. [PMID: 2291545 DOI: 10.1111/j.1749-6632.1990.tb24302.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In summary, our analysis indicates that important sequences for the proper initiation of fetal gene transcription in fetal cells are located in the gamma-globin [sequence: see text] promoter. These sequences are sufficient for tissue-specific expression but not induction in K562 cells. Sequences in the gamma-globin IVS-2 and the beta-globin 3' enhancer increase gamma beta and gamma-Neo transcripts when cells containing these genes undergo erythroid maturation as measured by induction with hemin. The mechanism by which these sequences exert their effect remains to be elucidated. [see text] Multiple protein factors bind to both the gamma promoter and the beta 3' enhancer. Both of these regions contain binding sites for the erythroid-specific factor NFE-1 and the octamer binding factor OTF-1. In the gamma upstream region, there may be a competition between OTF-1 binding and NFE-1 binding that affects gamma gene regulation. Our results indicate that the beta 3' enhancer interacts with the gamma gene promoter to permit increased gamma gene expression. We have developed a model for globin gene switching that takes into consideration the effect of cis-acting sequences on globin gene transcription. A similar model of hemoglobin switching in chickens has been proposed by Choi and Engel. In our model, competition for the beta-globin 3' enhancer is involved in stage-specific transcriptional activation of gamma-globin genes in fetal cells and beta-globin genes in adult cells. In adult cells the protein-protein interactions between adult cell-specific factors interacting with the beta-globin promoter and erythroid-specific factors interacting with the beta 3' enhancer would activate transcription of the beta-globin gene. In fetal cells protein-protein interactions between fetal cell-specific factors interacting with the gamma-globin promoter and erythroid-specific factors interacting with the beta 3' enhancer would activate the transcription of the gamma-globin genes.
Collapse
Affiliation(s)
- M Donovan-Peluso
- Department of Pathology, University of Pittsburgh, Pennsylvania 15261
| | | | | | | | | | | | | |
Collapse
|
43
|
Forrester WC, Epner E, Driscoll MC, Enver T, Brice M, Papayannopoulou T, Groudine M. A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus. Genes Dev 1990; 4:1637-49. [PMID: 2249769 DOI: 10.1101/gad.4.10.1637] [Citation(s) in RCA: 402] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Naturally occurring deletions that remove sequences located approximately 60 kb upstream of the human adult beta-globin gene result in the failure to transcriptionally activate the cis-linked globin genes in erythroid cells. In addition, transfection, transgenic, and somatic cell hybrid studies have revealed that sequences within this region are essential for the developmentally regulated high-level expression of cis-linked globin genes. This regulatory region located at the 5' end of the beta-globin locus has been termed the locus activation region (LAR). Using somatic cell hybrids, we have studied the chromatin structure and timing of DNA replication of the normal human beta-globin locus and a locus containing a de novo 25-kb deletion that removes elements of the LAR. As a result of this deletion, the entire beta-globin locus and sequences approximately 100 kb 5' and 3' of the adult beta-globin gene are DNase I-resistant and do not form characteristic distant hypersensitive sites. These sequences also replicate late in S phase in an erythroid cell background. In contrast, the sequences of the normal locus are DNase I sensitive and early replicating. These results suggest that the LAR is required for both the erythroid-specific chromatin structure and timing of DNA replication over a large physical distance.
Collapse
Affiliation(s)
- W C Forrester
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The IW32, NN10, and IW201 cell lines are erythroleukemic cell lines isolated from the spleens of mice infected with the Friend virus. IW32 and NN10 cells can be induced toward erythroid differentiation and hemoglobin synthesis by hemin or butyrate. Both cell lines contain some mature alpha- and beta-globin mRNA before induction, and addition of the inducers greatly increases the amount of globin message. Unlike IW32 and NN10 cells, IW201 cells are only partially inducible. Uninduced 201 cells contain a small amount of alpha-globin mRNA but no detectable beta-globin message. After induction, the cells contain markedly increased amounts of alpha-globin mRNA but still do not express the beta-globin gene. Southern blot analysis with 10 restriction enzymes shows that the restriction map of the beta-globin gene in IW201 cells is indistinguishable from that in IW32 and NN10 cells.
Collapse
|
45
|
Diarra-Mehrpour M, Bourguignon J, Sesboüé R, Salier JP, Léveillard T, Martin JP. Structural analysis of the human inter-alpha-trypsin inhibitor light-chain gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 191:131-9. [PMID: 1696200 DOI: 10.1111/j.1432-1033.1990.tb19102.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The human inter-alpha-trypsin inhibitor (ITI) light-chain gene, which codes for the two proteins alpha 1-microglobulin (protein HC) and ITI-derived human inhibitor of 30 kDa (HI-30), was isolated from a human genomic library. This gene, present as a single copy in the human genome, is composed of 10 exons and 9 introns distributed over 20 kbp. A single transcriptional initiation site was identified in the 5'-flanking region which contained promoter elements, but no typical TATA box. However a sequence equivalent to the TATA box is present on both sense and anti-sense strands in the 5'-flanking region of the first exon coding for HI-30. The exon-intron organization suggests that the regions coding for protein HC and other members of the lipocalin superfamily evolved from a common ancestral gene that is probably different from that coding for HI-30. These data suggest that two distinct ancestral genes could have existed and fused during evolution. Several direct and one inverted repeats are also found within this gene, as well as potential glucocorticoid-receptor binding sites.
Collapse
Affiliation(s)
- M Diarra-Mehrpour
- Laboratoire de Physiopathologie et Génétique Rénale et Pulmonaire, Institut National de la Santé et de la Recherche Médicale, INSERM Unité 295, Faculté de Médecine de Rouen, St Etienne du Rouvray, France
| | | | | | | | | | | |
Collapse
|
46
|
A downstream-element-binding factor facilitates assembly of a functional preinitiation complex at the simian virus 40 major late promoter. Mol Cell Biol 1990. [PMID: 2162478 DOI: 10.1128/mcb.10.7.3635] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent work has shown that many promoters recognized by eucaryotic RNA polymerase II contain essential sequences located downstream of the transcriptional initiation site. We show here that the activity of a promoter element centered 28 base pairs downstream of the simian virus 40 major late initiation site appears to be mediated by a DNA-binding protein, which was isolated by affinity chromatography from HeLa cell nuclear extracts. In the absence of the other components of the transcriptional machinery, the protein bound specifically but weakly to its recognition sequence, with a Kd of approximately 10(-8) M. Analysis of kinetic data showed that mutation of the downstream element decreased the number of functional preinitiation complexes assembled at the promoter without significantly altering the time required for half the complexes to assemble. This suggests that in the absence of the downstream activating protein, preinitiation complexes are at least partially assembled but are not transcriptionally competent.
Collapse
|
47
|
Beru N, Maples PB, Hermine O, Goldwasser E. Differential expression of alpha- and beta-globin genes in erythroleukemic cell lines. Mol Cell Biol 1990; 10:3591-5. [PMID: 2355917 PMCID: PMC360795 DOI: 10.1128/mcb.10.7.3591-3595.1990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The IW32, NN10, and IW201 cell lines are erythroleukemic cell lines isolated from the spleens of mice infected with the Friend virus. IW32 and NN10 cells can be induced toward erythroid differentiation and hemoglobin synthesis by hemin or butyrate. Both cell lines contain some mature alpha- and beta-globin mRNA before induction, and addition of the inducers greatly increases the amount of globin message. Unlike IW32 and NN10 cells, IW201 cells are only partially inducible. Uninduced 201 cells contain a small amount of alpha-globin mRNA but no detectable beta-globin message. After induction, the cells contain markedly increased amounts of alpha-globin mRNA but still do not express the beta-globin gene. Southern blot analysis with 10 restriction enzymes shows that the restriction map of the beta-globin gene in IW201 cells is indistinguishable from that in IW32 and NN10 cells.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Southern
- Cell Line
- DNA, Neoplasm/genetics
- DNA, Neoplasm/isolation & purification
- Gene Expression Regulation, Neoplastic
- Genes
- Globins/biosynthesis
- Globins/genetics
- Hemoglobins/biosynthesis
- Hemoglobins/isolation & purification
- Iron/metabolism
- Isoelectric Focusing
- Leucine/metabolism
- Leukemia, Erythroblastic, Acute
- Leukemia, Experimental
- Mice
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/isolation & purification
- Tumor Cells, Cultured/metabolism
Collapse
Affiliation(s)
- N Beru
- Department of Biochemistry and Molecular Biology, University of Chicago, Illinois 60637
| | | | | | | |
Collapse
|
48
|
Ayer DE, Dynan WS. A downstream-element-binding factor facilitates assembly of a functional preinitiation complex at the simian virus 40 major late promoter. Mol Cell Biol 1990; 10:3635-45. [PMID: 2162478 PMCID: PMC360800 DOI: 10.1128/mcb.10.7.3635-3645.1990] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recent work has shown that many promoters recognized by eucaryotic RNA polymerase II contain essential sequences located downstream of the transcriptional initiation site. We show here that the activity of a promoter element centered 28 base pairs downstream of the simian virus 40 major late initiation site appears to be mediated by a DNA-binding protein, which was isolated by affinity chromatography from HeLa cell nuclear extracts. In the absence of the other components of the transcriptional machinery, the protein bound specifically but weakly to its recognition sequence, with a Kd of approximately 10(-8) M. Analysis of kinetic data showed that mutation of the downstream element decreased the number of functional preinitiation complexes assembled at the promoter without significantly altering the time required for half the complexes to assemble. This suggests that in the absence of the downstream activating protein, preinitiation complexes are at least partially assembled but are not transcriptionally competent.
Collapse
Affiliation(s)
- D E Ayer
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215
| | | |
Collapse
|
49
|
Rungger D, Muster L, Boeck R, Nichols A. Tissue-specific trans-activation of the rabbit beta-globin promoter in Xenopus oocytes. Differentiation 1990; 44:8-17. [PMID: 2253841 DOI: 10.1111/j.1432-0436.1990.tb00531.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Identification of transcription factors regulating tissue-specific gene expression implies functional tests in transcription systems. In spite of its practical advantages, the Xenopus oocyte has only rarely been used for trans-activation studies, because some critical parameters inherent to the system may cause artefacts. Depending on the amount of DNA injected, even tissue-specific genes may be spontaneously transcribed. To develop a reliable trans-activation assay, we used the erythroid-specific rabbit beta-globin gene and, for comparison, the constitutively transcribed viral thymidine kinase gene. The viral gene is active over a wide range of injected DNA (0.2-10 ng), and addition of nuclear proteins from various cell types does not stimulate but often inhibits this activity. When large amounts of DNA are injected (greater than 10 ng), transcription is inhibited by self competition. Addition of nuclear proteins now re-establishes activity probably through increasing the pool of general transcription factors. By contrast, spontaneous activity of the beta-globin promoter occurs only within a narrow range of injected DNA (0.2-1 ng). At higher DNA concentrations (greater than 5 ng) spontaneous transcription becomes negligible. The addition of nuclear proteins from nonerythroid cells extracts has no or only a weak stimulatory effect on the beta-globin promoter. Only nuclear proteins isolated from erythroid tissues, bone marrow and spleen, bring about a strong transcriptional activation. Co-injection with either the polyoma virus, or the oviduct-specific chicken lysozyme gene shows that the beta-globin promoter is selectively activated by factors present in erythroid cell extracts.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D Rungger
- Station de Zoologie expérimentale, University of Geneva, Chêne-Bougeries, Switzerland
| | | | | | | |
Collapse
|
50
|
Campbell PL, Kulozik AE, Woodham JP, Jones RW. Induction by HMBA and DMSO of genes introduced into mouse erythroleukemia and other cell lines by transient transfection. Genes Dev 1990; 4:1252-66. [PMID: 2210377 DOI: 10.1101/gad.4.7.1252] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have found rapid induction of various genes, including human globin genes, in response to hexamethylene bisacetamide (HMBA) and dimethyl sulfoxide (DMSO) in transiently transfected cells. In mouse erythroleukemia cells (MELCs), this effect is detected within 1 hr of exposure of the cells to inducer before the endogenous mouse globin genes are induced. It does not require protein synthesis and is reversed if the inducer is removed. This and other evidence suggest that the mechanism involves a change in activity of a factor intimately involved with transcription, probably as a result of post-translational modification. As such, it may represent an early triggering event in terminal differentiation, and its relevance to the expression of human globin genes in stable transfectants and to induction of the mouse globin genes is discussed. Other cell lines (K562 and NSO) also show this response, which may therefore involve a ubiquitous mechanism. We also found that HMBA depresses the expression of endogenous globin genes in K562, the opposite of this differentiation inducer's effect on MELC.
Collapse
Affiliation(s)
- P L Campbell
- Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | |
Collapse
|