1
|
Bourgeois J, Camilli A. High-Throughput Mutant Screening via Transposon Sequencing. Cold Spring Harb Protoc 2023; 2023:707-9. [PMID: 36931734 PMCID: PMC10601705 DOI: 10.1101/pdb.top107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Transposon mutagenesis has been the method of choice for genetic screens and selections in bacteria by virtue of the transposon being linked to the disrupted gene, simplifying its identification. Transposon sequencing (Tn-seq) is a high-throughput version of transposon mutant screening, in which massively parallel sequencing is used to simultaneously follow the fitness of all mutants in a complex library. In a single experiment, one can use Tn-seq to interrogate the contribution of all genes of a bacterium to fitness under a condition of interest. Here, we introduce a method to construct a saturating transposon insertion library in Gram-negative bacteria, to capture the transposon junctions en masse, and to identify essential genes and conditional genes using massively parallel sequencing. The accompanying protocol was developed as part of Cold Spring Harbor's Advanced Bacterial Genetics course.
Collapse
Affiliation(s)
- Jacob Bourgeois
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, Massachusetts 02067, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, Massachusetts 02067, USA
| |
Collapse
|
2
|
Blundell-Hunter G, Tellier M, Chalmers R. Transposase subunit architecture and its relationship to genome size and the rate of transposition in prokaryotes and eukaryotes. Nucleic Acids Res 2019; 46:9637-9646. [PMID: 30184164 PMCID: PMC6182136 DOI: 10.1093/nar/gky794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/01/2018] [Indexed: 12/17/2022] Open
Abstract
Cut-and-paste transposons are important tools for mutagenesis, gene-delivery and DNA sequencing applications. At the molecular level, the most thoroughly understood are Tn5 and Tn10 in bacteria, and mariner and hAT elements in eukaryotes. All bacterial cut-and-paste transposases characterized to date are monomeric prior to interacting with the transposon end, while all eukaryotic transposases are multimers. Although there is a limited sample size, we proposed that this defines two pathways for transpososome assembly which distinguishes the mechanism of the bacterial and eukaryotic transposons. We predicted that the respective pathways would dictate how the rate of transposition is related to transposase concentration and genome size. Here, we have tested these predictions by creating a single-chain dimer version of the bacterial Tn5 transposase. We show that artificial dimerization switches the transpososome assembly pathway from the bacterial-style to the eukaryotic-style. Although this had no effect in vitro, where the transposase does not have to search far to locate the transposon ends, it increased the rate of transposition in bacterial and HeLa cell assays. However, in contrast to the mariner elements, the Tn5 single-chain dimer remained unaffected by over-production inhibition, which is an emergent property of the transposase subunit structure in the mariner elements.
Collapse
Affiliation(s)
- George Blundell-Hunter
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Michael Tellier
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ronald Chalmers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
3
|
Abstract
The Thomas Hunt Morgan Medal is awarded to an individual Genetics Society of America member for lifetime achievement in the field of genetics. It recognizes the full body of work of an exceptional geneticist. The 2016 recipient is Nancy Kleckner, who has made many significant contributions to our understanding of chromosomes and the mechanisms of inheritance. Kleckner has made seminal achievements in several different research areas, including bacterial transposition, chromosome organization, and meiosis. She has repeatedly combined traditional genetic approaches with molecular biology, microscopy, physics, and modeling-unprecedented applications of these methods at the time, but which have now become commonplace. Indeed, she is widely recognized as one of the leaders in bringing meiosis research into the modern era. Notably, her laboratory played a key role in elucidating the mechanism that initiates meiotic recombination, has helped to decipher the "strand gymnastics" of recombination, and is beginning to provide insight into the enigmatic phenomenon of crossover interference.
Collapse
|
4
|
Abstract
ABSTRACT
The study of the bacterial transposons Tn
10
and Tn
5
has provided a wealth of information regarding steps in nonreplicative DNA transposition, transpososome dynamics and structure, as well as mechanisms employed to regulate transposition. The focus of ongoing research on these transposons is mainly on host regulation and the use of the Tn
10
antisense system as a platform to develop riboregulators for applications in synthetic biology. Over the past decade two new regulators of both Tn
10
and Tn
5
transposition have been identified, namely H-NS and Hfq proteins. These are both global regulators of gene expression in enteric bacteria with functions linked to stress-response pathways and virulence and potentially could link the Tn
10
and Tn
5
systems (and thus the transfer of antibiotic resistance genes) to environmental cues. Work summarized here is consistent with the H-NS protein working directly on transposition complexes to upregulate both Tn
10
and Tn
5
transposition. In contrast, evidence is discussed that is consistent with Hfq working at the level of transposase expression to downregulate both systems. With regard to Tn
10
and synthetic biology, some recent work that incorporates the Tn
10
antisense RNA into both transcriptional and translational riboswitches is summarized.
Collapse
|
5
|
Skipper KA, Andersen PR, Sharma N, Mikkelsen JG. DNA transposon-based gene vehicles - scenes from an evolutionary drive. J Biomed Sci 2013; 20:92. [PMID: 24320156 PMCID: PMC3878927 DOI: 10.1186/1423-0127-20-92] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/27/2013] [Indexed: 12/12/2022] Open
Abstract
DNA transposons are primitive genetic elements which have colonized living organisms from plants to bacteria and mammals. Through evolution such parasitic elements have shaped their host genomes by replicating and relocating between chromosomal loci in processes catalyzed by the transposase proteins encoded by the elements themselves. DNA transposable elements are constantly adapting to life in the genome, and self-suppressive regulation as well as defensive host mechanisms may assist in buffering ‘cut-and-paste’ DNA mobilization until accumulating mutations will eventually restrict events of transposition. With the reconstructed Sleeping Beauty DNA transposon as a powerful engine, a growing list of transposable elements with activity in human cells have moved into biomedical experimentation and preclinical therapy as versatile vehicles for delivery and genomic insertion of transgenes. In this review, we aim to link the mechanisms that drive transposon evolution with the realities and potential challenges we are facing when adapting DNA transposons for gene transfer. We argue that DNA transposon-derived vectors may carry inherent, and potentially limiting, traits of their mother elements. By understanding in detail the evolutionary journey of transposons, from host colonization to element multiplication and inactivation, we may better exploit the potential of distinct transposable elements. Hence, parallel efforts to investigate and develop distinct, but potent, transposon-based vector systems will benefit the broad applications of gene transfer. Insight and clever optimization have shaped new DNA transposon vectors, which recently debuted in the first DNA transposon-based clinical trial. Learning from an evolutionary drive may help us create gene vehicles that are safer, more efficient, and less prone for suppression and inactivation.
Collapse
Affiliation(s)
| | | | | | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Wilh, Meyers Allé 4, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
6
|
Giorgi G, Marcantonio P, Bersani F, Gavoçi E, Del Re B. Effect of extremely low frequency magnetic field exposure on DNA transposition in relation to frequency, wave shape and exposure time. Int J Radiat Biol 2011; 87:601-8. [PMID: 21504343 DOI: 10.3109/09553002.2011.570855] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To examine the effect of extremely low frequency magnetic field (ELF-MF) exposure on transposon (Tn) mobility in relation to the exposure time, the frequency and the wave shape of the field applied. MATERIALS AND METHODS Two Escherichia coli model systems were used: (1) Cells unable to express β-galactosidase (LacZ(-)), containing a mini-transposon Tn10 element able to give ability to express β-galactosidase (LacZ(+)) upon its transposition; therefore in these cells transposition activity can be evaluated by analysing LacZ(+) clones; (2) cells carrying Fertility plasmid (F(+)), and a Tn5 element located on the chromosome; therefore in these cells transposition activity can be estimated by a bacterial conjugation assay. Cells were exposed to sinusoidal (SiMF) or pulsed-square wave (PMF) magnetic fields of various frequencies (20, 50, 75 Hz) and for different exposure times (15 and 90 min). RESULTS Both mini-Tn10 and Tn5 transposition decreased under SiMF and increased under PMF, as compared to sham exposure control. No significant difference was found between frequencies and between exposure times. CONCLUSIONS ELF-MF exposure affects transposition activity and the effects critically depend on the wave shape of the field, but not on the frequency and the exposure time, at least in the range observed.
Collapse
Affiliation(s)
- Gianfranco Giorgi
- Department of Evolutionary Experimental Biology, University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
7
|
Wardle SJ, Chan A, Haniford DB. H-NS binds with high affinity to the Tn10 transpososome and promotes transpososome stabilization. Nucleic Acids Res 2009; 37:6148-60. [PMID: 19696075 PMCID: PMC2764420 DOI: 10.1093/nar/gkp672] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
H-NS is a bacterial DNA-binding protein that regulates gene expression and DNA transposition. In the case of Tn10, H-NS binds directly to the transposition machinery (i.e. the transpososome) to influence the outcome of the reaction. In the current work we evaluated the binding affinity of H-NS for two forms of the Tn10 transpososome, including the initial folded form and a pre-unfolded form. These two forms differ in that IHF is bound to the former but not the latter. IHF binding induces a bend (or fold) in the transposon end that facilitates transpososome formation. However, the continued presence of IHF in the transpososome inhibits intermolecular transposition events. We show that H-NS binds particularly strongly to the pre-unfolded transpososome with an apparent K(d) of approximately 0.3 nM. This represents the highest affinity interaction between H-NS and a binding partner documented to date. We also show that binding of H-NS to the transpososome stabilizes this structure and propose that both high-affinity binding and stabilization result from the combined interaction between H-NS and DNA and H-NS and transposase within the transpososome. Mechanistic implications for tight binding of H-NS to the transpososome and transpososome stabilization are considered.
Collapse
Affiliation(s)
- Simon J Wardle
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
8
|
Treangen TJ, Abraham AL, Touchon M, Rocha EPC. Genesis, effects and fates of repeats in prokaryotic genomes. FEMS Microbiol Rev 2009; 33:539-71. [PMID: 19396957 DOI: 10.1111/j.1574-6976.2009.00169.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA repeats are causes and consequences of genome plasticity. Repeats are created by intrachromosomal recombination or horizontal transfer. They are targeted by recombination processes leading to amplifications, deletions and rearrangements of genetic material. The identification and analysis of repeats in nearly 700 genomes of bacteria and archaea is facilitated by the existence of sequence data and adequate bioinformatic tools. These have revealed the immense diversity of repeats in genomes, from those created by selfish elements to the ones used for protection against selfish elements, from those arising from transient gene amplifications to the ones leading to stable duplications. Experimental works have shown that some repeats do not carry any adaptive value, while others allow functional diversification and increased expression. All repeats carry some potential to disorganize and destabilize genomes. Because recombination and selection for repeats vary between genomes, the number and types of repeats are also quite diverse and in line with ecological variables, such as host-dependent associations or population sizes, and with genetic variables, such as the recombination machinery. From an evolutionary point of view, repeats represent both opportunities and problems. We describe how repeats are created and how they can be found in genomes. We then focus on the functional and genomic consequences of repeats that dictate their fate.
Collapse
|
9
|
Isolation, analysis and marker utility of novel miniature inverted repeat transposable elements from the barley genome. Mol Genet Genomics 2008; 280:275-85. [DOI: 10.1007/s00438-008-0363-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 06/21/2008] [Indexed: 12/15/2022]
|
10
|
Persson O, Valadi A, Nyström T, Farewell A. Metabolic control of the Escherichia coli universal stress protein response through fructose-6-phosphate. Mol Microbiol 2007; 65:968-78. [PMID: 17640273 DOI: 10.1111/j.1365-2958.2007.05838.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The universal stress protein (Usp) superfamily encompasses a conserved group of proteins involved in stress resistance, adaptation to energy deficiency, cell motility and adhesion, and is found in all kingdoms of life. The paradigm usp gene, uspA, of Escherichia coli is transcriptionally activated by a large variety of stresses, and the alarmone ppGpp is required for this activation. Here, we show that the uspA gene is also regulated by an intermediate of the glycolytic/gluconeogenic pathways. Specifically, mutations and conditions resulting in fructose-6-phosphate (F-6-P) accumulation elicit superinduction of uspA upon carbon starvation, whereas genetic manipulations reducing the pool size of F-6-P have the opposite effect. This metabolic control of uspA does not act via ppGpp. Other, but not all, usp genes of the usp superfamily are similarly affected by alterations in F-6-P levels. We suggest that alterations in the pool size of phosphorylated sugars of the upper glycolytic pathway may ensure accumulation of required survival proteins preceding the complete depletion of the external carbon source. Indeed, we show that uspA is, in fact, induced before the carbon source is depleted from the medium.
Collapse
Affiliation(s)
- Orjan Persson
- Department of Cell and Molecular Biology-Microbiology, Göteborg University, Box 462, 405 30 Göteborg, Sweden
| | | | | | | |
Collapse
|
11
|
Abstract
Tn10 is a bacterial transposon that transposes through a non-replicative mechanism. This mode of DNA transposition is widely used in bacteria and is also used by "DNA-based" transposons in eukaryotes. Tn10 has served as a paradigm for this mode of transposition and continues to provide novel insights into how steps in transposition reactions occur and how these steps are regulated. A common feature of transposition reactions is that they require the formation of a higher order protein-DNA complex called a transpososome. A major objective in the last few years has been to better understand the dynamics of transpososome assembly and progression through the course of transposition reactions. This problem is particularly interesting in the Tn10 system because two important host proteins, IHF and H-NS, have been implicated in regulating transpososome assembly and/or function. Interestingly, H-NS is an integral part of stress response pathways in bacteria, and its function is known to be sensitive to changes in environmental conditions. Consequently, H-NS may provide a means of allowing Tn10 to responed to changing environmental conditions. The current review focuses on the roles of both IHF and H-NS on Tn10 transposition.
Collapse
Affiliation(s)
- David B Haniford
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
12
|
Bowden SD, Salmond GPC. Exploitation of a beta-lactamase reporter gene fusion in the carbapenem antibiotic production operon to study adaptive evolution in Erwinia carotovora. MICROBIOLOGY-SGM 2006; 152:1089-1097. [PMID: 16549672 DOI: 10.1099/mic.0.28575-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Erwinia carotovora subsp. carotovora strain ATTn10 produces the beta-lactam antibiotic 1-carbapen-2-em-3-carboxylic acid (carbapenem) by expressing the carABCDEFGH operon. Mutants exhibiting increased carbapenem gene transcription were positively selected using an engineered strain with a functional beta-lactamase translational fusion in carH, the last gene of the operon. However, spontaneous ampicillin-resistant mutants were isolated even when transcription of carH : : blaM was blocked by a strongly polar mutation in carE. The mechanism of resistance was shown to be due to cryptic IS10 elements transposing upstream of carH : : blaM, thereby providing new promoters enabling carH : : blaM transcription. Southern blots showed that IS10 was present in multicopy in ATTn10. In addition, a Tn10 genetic remnant was discovered. The results offer insights into the genetic archaeology of strain ATTn10 and highlight the powerful impacts of cryptic IS elements in bacterial adaptive evolution.
Collapse
MESH Headings
- Adaptation, Biological
- Ampicillin Resistance/genetics
- Anti-Bacterial Agents/biosynthesis
- Anti-Bacterial Agents/metabolism
- Anti-Bacterial Agents/pharmacology
- Artificial Gene Fusion
- Base Sequence
- Blotting, Southern
- Carbapenems/biosynthesis
- Carbapenems/metabolism
- Carbapenems/pharmacology
- Colony Count, Microbial
- DNA Transposable Elements/genetics
- DNA, Bacterial/genetics
- Evolution, Molecular
- Genes, Reporter
- Molecular Sequence Data
- Mutation
- Operon
- Pectobacterium carotovorum/genetics
- Pectobacterium carotovorum/metabolism
- Promoter Regions, Genetic
- Recombination, Genetic
- Selection, Genetic
- Transcription, Genetic
- beta-Lactamases/analysis
- beta-Lactamases/genetics
Collapse
Affiliation(s)
- Steven D Bowden
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - George P C Salmond
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
13
|
Twiss E, Coros AM, Tavakoli NP, Derbyshire KM. Transposition is modulated by a diverse set of host factors in Escherichia coli and is stimulated by nutritional stress. Mol Microbiol 2005; 57:1593-607. [PMID: 16135227 DOI: 10.1111/j.1365-2958.2005.04794.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of host factors in regulating bacterial transposition has never been comprehensively addressed, despite the potential consequences of transposition. Here, we describe a screen for host factors that influence transposition of IS903, and the effect of these mutations on two additional transposons, Tn10 and Tn552. Over 20,000 independent insertion mutants were screened in two strains of Escherichia coli; from these we isolated over 100 mutants that altered IS903 transposition. These included mutations that increased or decreased the extent of transposition and also altered the timing of transposition during colony growth. The large number of gene products affecting transposition, and their diverse functions, indicate that the overall process of transposition is modulated at many different steps and by a range of processes. Previous work has suggested that transposition is triggered by cellular stress. We describe two independent mutations that are in a gene required for fermentative metabolism during anaerobic growth, and that cause transposition to occur earlier than normal during colony development. The ability to suppress this phenotype by the addition of fumarate therefore provides direct evidence that transposition occurs in response to nutritional stress. Other mutations that altered transposition disrupted genes normally associated with DNA metabolism, intermediary metabolism, transport, cellular redox, protein folding and proteolysis and together these define a network of host proteins that could potentially allow readout of the cell's environmental and nutritional status. In summary, this work identifies a collection of proteins that allow the host to modulate transposition in response to cell stress.
Collapse
Affiliation(s)
- Erin Twiss
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, NY, USA
| | | | | | | |
Collapse
|
14
|
Humayun S, Wardle SJ, Shilton BH, Pribil PA, Liburd J, Haniford DB. Tn10 Transposase Mutants with Altered Transpososome Unfolding Properties are Defective in Hairpin Formation. J Mol Biol 2005; 346:703-16. [PMID: 15713457 DOI: 10.1016/j.jmb.2004.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 11/23/2004] [Accepted: 12/03/2004] [Indexed: 11/19/2022]
Abstract
Transposition reactions take place in the context of higher-order protein-DNA complexes called transpososomes. In the Tn10 transpososome, IHF binding to an "outside end" creates a bend in the DNA that allows the transposase protein to contact the end at two different sites, the terminal and subterminal binding sites. Presumably this helps to stabilize the transposase-end interaction. However, the DNA loop that is formed must be unfolded at a later stage in order for the transposon to integrate into other DNA molecules. It has been proposed that transpososome unfolding also plays a role in transposon excision. To investigate this possibility further, we have isolated and characterized transposase mutants with altered transpososome unfolding properties. Two such mutants were identified, R182A and R184A. Both mutants fail to carry out hairpin formation, an intermediate step in transposon excision, specifically with outside end-containing substrates. These results support the idea that transpososome unfolding and excision are linked. Also, based on the importance of residues R182 and R184 in transpososome unfolding, we propose a new model for the Tn10 transpososome, wherein both DNA ends of the transpososome make subterminal contacts with transposase.
Collapse
Affiliation(s)
- Saima Humayun
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
This article summarizes the general principles of selections and screens in Escherichia coli. The focus is on the lac operon, owing to its inherent simplicity and versatility. Examples of different strategies for mutagenesis and mutant discovery are described. In particular, the usefulness and effectiveness of simple colour-based screens are illustrated. The power of lac genetics can be applied to almost any bacterial system with gene fusions that hook any gene of interest to lacZ, which is the structural gene that encodes beta-galactosidase. The diversity of biological processes that can be studied with lac genetics is remarkable and includes DNA metabolism, gene regulation and signal transduction, protein localization and folding, and even electron transport.
Collapse
Affiliation(s)
- Howard A Shuman
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York 10032, USA
| | | |
Collapse
|
16
|
Stewart BJ, Wardle SJ, Haniford DB. IHF-independent assembly of the Tn10 strand transfer transpososome: implications for inhibition of disintegration. EMBO J 2002; 21:4380-90. [PMID: 12169640 PMCID: PMC126164 DOI: 10.1093/emboj/cdf425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The frequency of DNA transposition in transposition systems that employ a strand transfer step may be significantly affected by the occurrence of a disintegration reaction, a reaction that reverses the strand transfer event. We have asked whether disintegration occurs in the Tn10 transposition system. We show that disintegration substrates (substrates constituting one half of the strand transfer product) are assembled into a transpososome that mimics the strand transfer intermediate. This strand transfer transpososome (STT) does appear to support an intermolecular disintegration reaction, but only at a very low level. Strikingly, assembly of the STT is not dependent on IHF, a host protein that is required for de novo assembly of all previously characterized Tn10 transpososomes. We suggest that disintegration substrates are able to form both transposon end and target type contacts with transposase because of their enhanced conformational flexibility. This probably allows the conformation of DNA within the complex that prevents the destructive disintegration reaction, and is responsible for relaxing the DNA sequence requirements for STT formation relative to other Tn10 transpososomes.
Collapse
Affiliation(s)
| | | | - David B. Haniford
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
Corresponding author e-mail:
| |
Collapse
|
17
|
Pribil PA, Haniford DB. Substrate recognition and induced DNA deformation by transposase at the target-capture stage of Tn10 transposition. J Mol Biol 2000; 303:145-59. [PMID: 11023782 DOI: 10.1006/jmbi.2000.4135] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bacterial transposon Tn10 inserts preferentially into sites that conform to a 9 bp consensus sequence: 5' NGCTNAGCN 3'. However, this sequence is not on its own sufficient to confer target specificity as the base-pairs flanking this sequence also contribute significantly to target-site selection. We have performed a series of "contact-probing experiments" to define directly the protein-DNA interactions that govern target-site selection in the Tn10 system. The HisG1 hotspot for Tn10 insertion was the main focus here. We infer that there is a rather broad zone ( approximately 24 bp) of contact between transposase and target DNA in the target-capture complex. This includes base-specific contacts at all of the purine residues in the consensus positions of the target core and primarily backbone contacts out to 7-8 bp in the two flanking regions immediately adjacent to the core. Also, highly localized sites of chemical hypersensitivity are identified that reveal symmetrically disposed deformations in DNA structure in the target-capture complex. Furthermore, the level of strand transfer is shown to be reduced by phosphorothioate substitution of phosphate groups at or close to the sites of target DNA deformation. Interestingly, for one particular target DNA, a mutant form of HisG1 called MutF, the above phosphorothioate inhibition of strand transfer is suppressed by replacing Mg(2+) with Mn(2+). Based on these results a model for sequence-specific target capture is proposed which attempts to define possible relationships between transposase interactions with the target core and flanking sequences, transposase-induced DNA deformation of the target site and divalent metal ion binding to the target-capture complex.
Collapse
Affiliation(s)
- P A Pribil
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | |
Collapse
|
18
|
Kennedy AK, Haniford DB, Mizuuchi K. Single active site catalysis of the successive phosphoryl transfer steps by DNA transposases: insights from phosphorothioate stereoselectivity. Cell 2000; 101:295-305. [PMID: 10847684 DOI: 10.1016/s0092-8674(00)80839-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transposase family of proteins mediate DNA transposition or retroviral DNA integration via multistep phosphoryl transfer reactions. For Tn10 and phage Mu, a single active site of one transposase protomer catalyzes the successive transposition reaction steps. We examined phosphorothioate stereoselectivity at the scissile position for all four reaction steps catalyzed by the Tn10 transposase. The results suggest that the first three steps required for double-strand cutting at the transposon end proceed as a succession of pseudo-reverse reaction steps while the 3' end of the transposon remains bound to the same side of the active site. However, the mode of substrate binding to the active site changes for the cut transposon 3' end to target DNA strand joining. The phosphorothioate stereoselectivity of the corresponding steps of phage Mu transposition and HIV DNA integration matches that of Tn10 reaction, indicating a common mode of substrate-active site interactions for this class of DNA transposition reactions.
Collapse
Affiliation(s)
- A K Kennedy
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
19
|
Abstract
This paper describes a novel approach, based on suicide transposition, to addressing the question of whether IS231A can give rise to cointegrate molecules through replicative transposition, even at a very low frequency. Comparative analysis was carried out with IS 10, another member of the same IS4 family. The results indicate that transposition of both elements is exclusively conservative.
Collapse
Affiliation(s)
- C Léonard
- Laboratoire de Génétique Microbienne, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | |
Collapse
|
20
|
Zhang L, Sankar U, Lampe DJ, Robertson HM, Graham FL. The Himar1 mariner transposase cloned in a recombinant adenovirus vector is functional in mammalian cells. Nucleic Acids Res 1998; 26:3687-93. [PMID: 9685483 PMCID: PMC147766 DOI: 10.1093/nar/26.16.3687] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mariner transposons belong to the mariner /Tc1 superfamily of class II, DNA-mediated elements. One of these transposons, Himar1 , isolated from the horn fly, is independent of host-specific factors that would limit transfer between different species, making it an ideal candidate for gene transfer technology development. To determine the activity of Himar1 transposase in mammalian cells, we introduced the Himar1 transposase gene into an adenovirus (Ad) vector under control of the phage T7 RNA polymerase promoter. Mammalian cells infected with the Ad vector carrying the Himar1 gene efficiently expressed the Himar1 transposase in the presence of T7 polymerase. In in vitro inter-plasmid transposition reactions, Himar1 transposase expressed by the Ad vector mediated precise cut-and-paste transposition and resulted in a characteristic duplication of TA at the integration site of the target plasmid. Further studies showed that this transposase was capable of catalyzing transposition between twoplasmids co-transfected into 293T7pol cells, which express T7 RNA polymerase. Combining the integration capability of mariner transposons with the transduction efficiency of Ad vectors is expected to provide a powerful tool for introducing transgenes into the host chromosome.
Collapse
Affiliation(s)
- L Zhang
- Department of Biology and Department of Pathology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | | | | | | |
Collapse
|
21
|
Diez AA, Farewell A, Nannmark U, Nyström T. A mutation in the ftsK gene of Escherichia coli affects cell-cell separation, stationary-phase survival, stress adaptation, and expression of the gene encoding the stress protein UspA. J Bacteriol 1997; 179:5878-83. [PMID: 9294448 PMCID: PMC179480 DOI: 10.1128/jb.179.18.5878-5883.1997] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
An insertional mutation in ftsK, encoding an Escherichia coli product similar to the sporulation protein SpoIIIE of Bacillus subtilis, results in uspA overexpression in stationary phase and impairs cell division. The ftsK1::cat insertion mutant forms chains which are the result of inhibited cell-cell separation, while chromosome synthesis and partitioning appear to be normal as judged by flow cytometry and electron and light microscopy in combination with DNA staining. The cells of the chains are attached to each other by a small envelope structure, and unlike in a spoIIIE mutant of B. subtilis, there is no DNA trapped in the division plane. In addition, plasmids harboring a truncated ftsK allele lacking the last 195 bp of the gene cause chain formation in wild-type cells. While the mutant cells grow at essentially the same rate as the parent in complex and defined minimal media, they are sensitive to stresses. Specifically, the mutant failed to grow at elevated salt concentrations and survived stationary phase poorly. The phenotypes of the ftsK1::cat mutant are complemented by the 3' end (spoIIIE-like half) of the ftsK locus. In contrast, the 5' end of the ftsK locus reported to complement ftsK44(Ts) phenotypes does not complement the phenotypes of the ftsK1::cat mutant.
Collapse
Affiliation(s)
- A A Diez
- Department of Microbiology, Lund University, Sweden
| | | | | | | |
Collapse
|
22
|
Abstract
Tn10 transposes nonreplicatively. Staged in vitro reactions demonstrate that a Tn10 synaptic complex can become committed to a particular target DNA molecule via a noncovalent interaction in the absence of strand transfer. Commitment occurs only after double-strand cleavage at both transposon ends (in "double-end break" [DEB] complexes). Stable noncovalent DEB-target DNA cocomplexes can be detected, but no cocomplexes occur with synaptic complexes containing uncleaved ends. Preincubation of DEB complexes with target DNA accelerates the rate of strand transfer. Postcleavage target capture is remarkable for Tn10; Mu and Tn7 select a target site prior to cleavage. Promiscuous target selection may favor evolution of IS-based composite elements while being suicidal for other types of transposons.
Collapse
Affiliation(s)
- J Sakai
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
23
|
Abstract
Transposable elements are discrete mobile DNA segments that can insert into non-homologous target sites. Diverse patterns of target site selectivity are observed: Some elements display considerable target site selectivity and others display little obvious selectivity, although none appears to be truly "random." A variety of mechanisms for target site selection are used: Some elements use direct interactions between the recombinase and target DNA whereas other elements depend upon interactions with accessory proteins that communicate both with the target DNA and the recombinase. The study of target site selectivity is useful in probing recombination mechanisms, in studying genome structure and function, and also in providing tools for genome manipulation.
Collapse
Affiliation(s)
- N L Craig
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
24
|
Higgins NP, Yang X, Fu Q, Roth JR. Surveying a supercoil domain by using the gamma delta resolution system in Salmonella typhimurium. J Bacteriol 1996; 178:2825-35. [PMID: 8631670 PMCID: PMC178017 DOI: 10.1128/jb.178.10.2825-2835.1996] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A genetic system was developed to investigate the supercoil structure of bacterial chromosomes. New res-carrying transposons were derived from MudI1734 (MudJr1 and MudJr2) and Tn10 (Tn10dGn). The MudJr1 and MudJr2 elements each have a res site in opposite orientation so that when paired with a Tn10dGn element in the same chromosome, one MudJr res site will be ordered as a direct repeat. Deletion formation was studied in a nonessential region (approximately 100 kb) that extends from the his operon through the cob operon. Strains with a MudJr insertion in the cobT gene at the 5' end of the cob operon plus a Tn10dGn insertion positioned either clockwise or counterclockwise from cobT were exposed to a burst of RES protein. Following a pulse of resolvase expression, deletion formation was monitored by scoring the loss of the Lac+ phenotype or by loss of tetracycline resistance. In exponentially growing populations, deletion products appeared quickly in some cells (in 10 min) but also occurred more than an hour after RES induction. The frequency of deletion (y) diminished with increasing distance (x) between res sites. Results from 15 deletion intervals fit the exponential equation y = 120 . 10(-0.02x). We found that res sites can be plectonemically interwound over long distances ( > 100 kb) and that barriers to supercoil diffusion are placed stochastically within the 43- to 45-min region of the chromosome.
Collapse
Affiliation(s)
- N P Higgins
- Department of Biochemistry, University of Alabama at Birmingham, 35294-2170, USA.
| | | | | | | |
Collapse
|
25
|
Abstract
The bacterial transposon Tn7 usually moves through a cut-and-paste mechanism whereby the transposon is excised from a donor site and joined to a target site to form a simple insertion. The transposon was converted to a replicative element that generated plasmid fusions in vitro and cointegrate products in vivo. This switch was a consequence of the separation of 5'- and 3'-end processing reactions of Tn7 transposition as demonstrated by the consequences of a single amino acid alteration in an element-encoded protein essential for normal cut-and-paste transposition. The mutation specifically blocked cleavage of the 5' strand at each transposon end without disturbing the breakage and joining on the 3' strand, producing a fusion (the Shapiro Intermediate) that resulted in replicative transposition. The ability of Tn7 recombination products to serve as substrates for both the limited gap repair required to complete cut-and-paste transposition and the extensive DNA replication involved in cointegrate formation suggests a remarkable plasticity in Tn7's recruitment of host repair and replication functions.
Collapse
Affiliation(s)
- E W May
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | | |
Collapse
|
26
|
Vos JC, De Baere I, Plasterk RH. Transposase is the only nematode protein required for in vitro transposition of Tc1. Genes Dev 1996; 10:755-61. [PMID: 8598301 DOI: 10.1101/gad.10.6.755] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Tc1 element of Caenorhabditis elegans is a member of the most widespread class of DNA transposons known in nature. Here, we describe efficient and precise transposition of Tc1 in a cell-free system. Tc1 appears to jump by a cut-and-paste mechanism of transposition. The terminal 26 bp of the Tc1 terminal repeats together with the flanking TA sequence are sufficient for transposition. The target site choice in vitro is similar to that in vivo. Transposition is achieved with an extract prepared from nuclei of transgenic nematodes that overexpress Tc1 transposase but also by recombinant transposase purified from Escherichia coli. The simple reaction requirements explain why horizontal spread of Tc1/mariner transposons can occur. They also suggest that Tcl may be a good vector for transgenesis of diverse animal species.
Collapse
Affiliation(s)
- J C Vos
- The Netherlands Cancer Institute, Division of Molecular Biology, Amsterdam
| | | | | |
Collapse
|
27
|
Abstract
The end sequences of the IS50 insertion sequence are known as the outside end (OE) and inside end. These complex ends are related but nonidentical 19-bp sequences that serve as substrates for the activity of the Tn5 transposase. Besides providing the binding site of the transposase, the end sequences of a transposon contain additional types of information necessary for transposition. These additional properties include but are not limited to host protein interaction sites and sites that program synapsis and cleavage events. In order to delineate the properties of the IS50 ends,the base pairs involved in the transposase binding site have been defined. This has been approached through performing a variety of in vitro analyses: a ++hydroxyl radical missing-nucleoside interference experiment, a dimethyl sulfate interference experiment, and an examination of the relative binding affinities of single-site end substitutions. These approaches have led to the conclusion that the transposase binds to two nonsymmetrical regions of the OE, including positions 6 to 9 and 13 to 19. Proper binding occurs along one face of the helix, over two major and minor grooves, and appears to result in a significant bending of the DNA centered approximately 3 bp from the donor DNA-OE junction.
Collapse
Affiliation(s)
- R A Jilk
- Department of Biochemistry, University of Wisconsin-Madison 53706, USA
| | | | | |
Collapse
|
28
|
Bolland S, Kleckner N. The three chemical steps of Tn10/IS10 transposition involve repeated utilization of a single active site. Cell 1996; 84:223-33. [PMID: 8565068 DOI: 10.1016/s0092-8674(00)80977-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonreplicative transposition by Tn10/IS10 involves three chemical steps at each transposon end: cleavage of the two strands plus joining of one strand to target DNA. These steps occur within a synaptic complex comprising two transposon ends and monomers of IS10 transposase. We report four transposase mutations that individually abolish each of the three chemical steps without affecting the synaptic complex. We conclude that a single constellation of residues, the "active site," directly catalyzes each of the three steps. Analyses of reactions containing mixtures of wild-type and catalysis-defective transposases indicate that a single transposase monomer at each end catalyzes the cleavage of two strands and that strand transfer is carried out by the same monomers that previously catalyzed cleavage. These and other data suggest that one active site unit carries out all three reactions in succession at one transposon end.
Collapse
Affiliation(s)
- S Bolland
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
29
|
Kleckner N, Chalmers RM, Kwon D, Sakai J, Bolland S. Tn10 and IS10 transposition and chromosome rearrangements: mechanism and regulation in vivo and in vitro. Curr Top Microbiol Immunol 1996; 204:49-82. [PMID: 8556869 DOI: 10.1007/978-3-642-79795-8_3] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- N Kleckner
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
30
|
Vert�s AA, Asai Y, Inui M, Kobayashi M, Yukawa H. The corynebacterial insertion sequence IS31831 promotes the formation of an excised transposon fragment. Biotechnol Lett 1995. [DOI: 10.1007/bf00128375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Germond JE, Lapierre L, Delley M, Mollet B. A new mobile genetic element in Lactobacillus delbrueckii subsp. bulgaricus. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:407-16. [PMID: 7565604 DOI: 10.1007/bf02191640] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A new IS element (ISL3) was discovered in Lactobacillus delbrueckii subsp. bulgaricus during the characterization of the linkage relationships between the two genes important for milk fermentation, beta-galactosidase (lacZ) and the cell-wall associated protease (prtP). ISL3 is a 1494 bp element, flanked by 38 bp imperfect inverted repeats, and generates an 8 bp target duplication upon insertion. It contains one open reading frame, encoding a potential polypeptide of 434 amino acids, which shows significant homology (34% identity) to the transposase of the Leuconostoc mesenteroides element IS1165. Molecular analysis of spontaneous lacZ mutants revealed some strains that had sustained deletions of 7 to 30 kb in size, centered on and eliminating the copy of ISL3 next to lacZ. Other deletion endpoints were identified as located immediately adjacent to ISL3. Furthermore, genetic translocations that had occurred via transposition of ISL3 were observed fortuitously in cultures screened for deletion mutants. ISL3 can be found in one to several copies in various strains of L. delbrueckii. However, it was not present in other dairy lactic acid bacteria tested.
Collapse
Affiliation(s)
- J E Germond
- Nestlé Research Center, Nestec Ltd, Lausanne, Switzerland
| | | | | | | |
Collapse
|
32
|
Kwon D, Chalmers RM, Kleckner N. Structural domains of IS10 transposase and reconstitution of transposition activity from proteolytic fragments lacking an interdomain linker. Proc Natl Acad Sci U S A 1995; 92:8234-8. [PMID: 7667274 PMCID: PMC41131 DOI: 10.1073/pnas.92.18.8234] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
All of the DNA cleavage and strand transfer events required for transposition of insertion sequence IS10 are carried out by a 46-kDa IS10-encoded transposase protein. Limited proteolysis demonstrates that transposase has two principal structural domains, a 28-kDa N-terminal domain (N alpha beta; aa 1-246) and a 17-kDa C-terminal domain (C; aa 256-402). The two domains are connected by a 1-kDa proteolytic-sensitive linker region (aa 247-255). The N-terminal domain N alpha beta can be further subdivided into domains N alpha and N beta by a weaker protease-sensitive site located 6 kDa (53 aa) from the N terminus. The N beta and N alpha beta fragments are capable of nonspecific DNA binding as determined by Southwestern blot analysis. None of the fragments alone is capable of carrying out the first step of transposition, assembly of a synaptic complex containing a pair of transposon ends. Remarkably, complete transposition activity can be reconstituted by mixing fragment N alpha beta and fragment C, with or without the intervening linker region. We infer that the structural integrity of transposase during the transitions involved in the chemical steps of the transposition reaction is maintained independent of the linker, presumably by direct contacts between and among the principal domains. Reconstitution of activity in the absence of the linker region is puzzling, however, because mutations that block strand transfer or affect insertion specificity alter linker region residues. Additional reconstitution experiments demonstrate that the N alpha region is dispensable for formation of a synaptic complex but is required for complexes to undergo cleavage.
Collapse
Affiliation(s)
- D Kwon
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
33
|
Bolland S, Kleckner N. The two single-strand cleavages at each end of Tn10 occur in a specific order during transposition. Proc Natl Acad Sci U S A 1995; 92:7814-8. [PMID: 7644497 PMCID: PMC41236 DOI: 10.1073/pnas.92.17.7814] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
During Tn10 transposition, the element is excised from the donor site by double-strand cleavages at the two transposon ends. Double-strand cleavage is a central step in the nonreplicative transposition reaction of many transposons in both prokaryotes and eukaryotes. Evidence is presented to show that the Tn10 double-strand cut is made by an ordered, sequential cleavage of the two strands. The transferred strand is cut first, and then the nontransferred strand is cleaved. The single-strand nicked intermediate is seen to accumulate when Mn2+ is substituted for Mg2+ in the reaction or when certain mutant transposases are used. The fact that the transferred strand is cleaved before the non-transferred strand implies that the order of strand cleavages is not the determining factor that precludes a replicative mechanism of transposition.
Collapse
Affiliation(s)
- S Bolland
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
34
|
Signon L, Kleckner N. Negative and positive regulation of Tn10/IS10-promoted recombination by IHF: two distinguishable processes inhibit transposition off of multicopy plasmid replicons and activate chromosomal events that favor evolution of new transposons. Genes Dev 1995; 9:1123-36. [PMID: 7744253 DOI: 10.1101/gad.9.9.1123] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tn10 is a composite transposon; inverted repeats of insertion sequence IS10 flank a tetracycline-resistance determinant. Previous work has identified several regulatory processes that modulate the interaction between Tn10 and its host. Among these, host-specified DNA adenine methylation, an IS10-encoded antisense RNA and preferential cis action of transposase are particularly important. We now find that the accessory host protein IHF and the sequences that encode the IHF-binding site in IS10 are also important regulators of the Tn10 transposition reaction in vivo and that these determinants are involved in two distinguishable regulatory processes. First, IHF and the IHF-binding site of IS10, together with other host components (e.g., HU), negatively regulate the normal intermolecular transposition process. Such negative regulation is prominent only for elements present on multicopy plasmid replicons. This multicopy plasmid-specific regulation involves effects both on the transposition reaction per se and on transposase gene expression. Second, specific interaction of IHF with its binding site stimulates transposon-promoted chromosome rearrangements but not transposition of a short Tn10-length chromosomal element. However, additional considerations predict that IHF action should favor chromosomal transposition for very long composite elements. On the basis of these and other observations we propose that, for chromosomal events, the major role of IHF is to promote the evolution of new IS10-based composite transposons.
Collapse
Affiliation(s)
- L Signon
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
35
|
KARCHER SUSANJ. TRANSPOSON MUTAGENESIS OF Escherichia coli. Mol Biol 1995. [DOI: 10.1016/b978-012397720-5.50035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Kil YV, Reznikoff WS. DNA length, bending, and twisting constraints on IS50 transposition. Proc Natl Acad Sci U S A 1994; 91:10834-8. [PMID: 7971970 PMCID: PMC45120 DOI: 10.1073/pnas.91.23.10834] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Transposition is a multistep process in which a transposable element DNA sequence moves from its original genetic location to a new site. Early steps in this process include the formation of a transposition complex in which the end sequences of the transposable element are brought together in a structurally precise fashion through the action of the element-encoded transposase protein and the cleavage of the element free from the adjoining DNA. If transposition complex formation must precede DNA cleavage (or nicking), then changing the length of the donor DNA between closely spaced ends should have dramatic effects on the frequency of the transposition. This question has been examined by studying the effects of altering donor DNA length on IS50 transposition. Donor DNA < or = 64 bp severely impaired transposition. Donor DNA > or = 200 bp demonstrated high transposition frequencies with only modest length dependencies. Constructs with donor DNA lengths between 66 and 174 bp demonstrated a dramatic periodic effect on transposition (periodicity approximately 10.5 bp).
Collapse
|
37
|
Miesel L, Roth JR. Salmonella recD mutations increase recombination in a short sequence transduction assay. J Bacteriol 1994; 176:4092-103. [PMID: 8021190 PMCID: PMC205608 DOI: 10.1128/jb.176.13.4092-4103.1994] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have identified recD mutants of Salmonella typhimurium by their ability to support growth of phage P22 abc (anti-RecBCD) mutants, whose growth is prevented by normal host RecBCD function. As in Escherichia coli, the recD gene of S. typhimurium lies between the recB and argA genes at min 61 of the genetic map. Plasmids carrying the Salmonella recBCD+ genes restore ATP-dependent exonuclease V activity to an E. coli recBCD deletion mutant. The new Salmonella recD mutations (placed on this plasmid) eliminate the exonuclease activity and enable the plasmid-bearing E. coli deletion mutant to support growth of phage T4 gene 2 mutants. The Salmonella recD mutations caused a 3- to 61-fold increase in the ability of a recipient strain to inherit (by transduction) a large inserted element (MudA prophage; 38 kb). In this cross, recombination events must occur in the short (3-kb) sequences that flank the element in the 44-kb transduced fragment. The effect of the recD mutation depends on the nature of the flanking sequences and is likely to be greatest when those sequences lack a Chi site. The recD mutation appears to minimize fragment degradation and/or cause RecBC-dependent recombination events to occur closer to the ends of the transduced fragment. The effect of a recipient recD mutation was eliminated if the donor P22 phage expressed its Abc (anti-RecBC) function. We hypothesize that in standard (high multiplicity of infection) P22-mediated transduction crosses, recombination is stimulated both by Chi sequences (when present in the transduced fragment) and by the phage-encoded Abc protein which inhibits the host RecBCD exonuclease.
Collapse
Affiliation(s)
- L Miesel
- Department of Biology, University of Utah, Salt Lake City 84112
| | | |
Collapse
|
38
|
Chalmers R, Kleckner N. Tn10/IS10 transposase purification, activation, and in vitro reaction. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37155-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Macphee DG. Agents that enhance or reduce movement of mobile genetic elements: Detection in microbial assays and implications for toxicological assessment. ACTA ACUST UNITED AC 1993. [DOI: 10.1002/tox.2530080105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Benada O, Navrátil O. Electron microscopic analysis of two nonconjugative derivatives of plasmid R1drd-19Km- from Escherichia coli. Folia Microbiol (Praha) 1992; 37:347-52. [PMID: 1337331 DOI: 10.1007/bf02815660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The plasmids pON5300 and pON5304, nonconjugative variants of the plasmid R1drd-19Km, were analyzed by electron microscopy. It was found by heteroduplex mapping that a 1.4 kb DNA segment was inserted into EcoRI E fragment of both plasmids, where some tra-genes and oriT are localized. Although this DNA segment was mapped to the same region its orientation was different in each of the two plasmids. The inserted DNA segment was identified as an IS10R sequence on the basis of analysis of self-annealed molecules of pON5304 and their cleavage with EcoRV restriction enzyme. These methods enable us not only to map IS10R sequences on 87 kb pON5300 and 65 kb pON5304 molecules, respectively, but also to define their orientation.
Collapse
Affiliation(s)
- O Benada
- Institute of Microbiology, Czechoslovak Academy of Sciences, Prague
| | | |
Collapse
|
41
|
Benjamin HW, Kleckner N. Excision of Tn10 from the donor site during transposition occurs by flush double-strand cleavages at the transposon termini. Proc Natl Acad Sci U S A 1992; 89:4648-52. [PMID: 1316613 PMCID: PMC49140 DOI: 10.1073/pnas.89.10.4648] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tn10 transposition is accomplished without extensive replication of the transposon sequences. Replicative cointegrate formation is precluded by efficient separation of transposon sequences from flanking donor DNA at an early stage in the transposition reaction. We report here that excision of Tn10 from its donor site occurs by a pair of flush double-strand breaks. Breaks occur at each end of the element precisely between the terminal base pair of the element and the first base pair of flanking DNA. This observation provides definitive evidence that cleavage of both strands of the element occurs under the direct control of Tn10 transposase protein. It is highly likely that transposase itself is directly responsible for these cleavages. The implications of this possibility are discussed.
Collapse
Affiliation(s)
- H W Benjamin
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
42
|
Liu SL, Sanderson KE. A physical map of the Salmonella typhimurium LT2 genome made by using XbaI analysis. J Bacteriol 1992; 174:1662-72. [PMID: 1311300 PMCID: PMC206564 DOI: 10.1128/jb.174.5.1662-1672.1992] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
XbaI digestion and pulsed-field gel electrophoresis of the genome of Salmonella typhimurium LT2 yields 24 fragments: 23 fragments (total size, 4,807 kb) are from the chromosome, and one fragment (90 kb) is from the virulence plasmid pSLT. Some of the 23 fragments from the chromosome were located on the linkage map by the use of cloned genes as probes and by analysis of strains which gain an XbaI site from the insertion of Tn10. Twenty-one of the fragments were arranged as a circular physical map by the use of linking probes from a set of 41 lysogens in which Mud-P22 was stably inserted at different sites of the chromosome; fragment W (6.6 kb) and fragment X (6.4 kb) were not located on the physical map. XbaI digestion of strains with Tn10 insertions allowed the physical locations of specific genes along the chromosome to be determined on the basis of analysis of new-fragment sizes. There is good agreement between the order of genes on the linkage map, which is based primarily on P22 joint transduction and F-mediated conjugation, and the physical map, but there are frequently differences in the length of the interval from the two methods. These analyses allowed the measurement of the amount of DNA packaged in phage P22 heads by Mud-P22 lysogens following induction; this varies from ca. 100 kb (2 min) to 240 kb (5 min) in different parts of the chromosome.
Collapse
Affiliation(s)
- S L Liu
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | |
Collapse
|
43
|
Abstract
Repetitive sequences were isolated and characterized as double-stranded DNA fragments by treatment with S1 nuclease after denaturation and renaturation of the total DNA of Enterobacter cloacae MD36. One repetitive sequence was identical to the nucleotide sequence of IS10-right (IS10R), which is the active element in the plasmid-associated transposon Tn10. Unexpectedly, 15 copies of IS10R were found in the chromosomal DNA of E. cloacae MD36. One copy of the central region of Tn10 was found in the total DNA of E. cloacae MD36. IS10Rs in restriction fragments isolated from the E. cloacae MD36 total DNA showed 9-bp duplications adjacent to the terminal sequences that are characteristic of Tn10 transposition. This result suggests that many copies of IS10R in E. cloacae MD36 are due to transposition of IS10R alone, not due to transposition of Tn10 or to DNA rearrangement. I also found nine copies of IS10 in Shigella sonnei HH109, two and four copies in two different natural isolates of Escherichia coli, and two copies in E. coli K-12 strain JM109 from the 60 bacterial strains that were examined. All dam sites in the IS10s in E. cloacae MD36 and S. sonnei HH109 were methylated. Tn10 and IS10 transpose by a mechanism in which the element is excised from the donor site and inserted into the new target site without significant replication of the transposing segment; thus, the copy numbers of the elements in the cell are thought to be unchanged in most circumstances. Accumulation of IS10 copies in E. cloacae MD36 has interesting evolutionary implications.
Collapse
Affiliation(s)
- S Matsutani
- National Institute of Hygienic Sciences, Tokyo, Japan
| |
Collapse
|
44
|
Abstract
The bacterial transposon Tn7 is an unusual mobile DNA segment. Most transposable elements move at low-frequency and display little target site-selectivity. By contrast, Tn7 inserts at high-frequency into a single specific site in the chromosomes of many bacteria. In the absence of this specific site, called attTn7 in Escherichia coli where Tn7 has been most extensively studied, Tn7 transposes at low-frequency and inserts into many different sites. Much has recently been learned about Tn7 transposition from both genetic and biochemical studies. The Tn7 recombination machinery is elaborate and includes a large number of Tn7-encoded proteins, probably host-encoded proteins and also rather large cis-acting transposition sequences at the transposon termini and at the target site. Dissection of the Tn7 transposition mechanism has revealed that the DNA strand breakage and joining reactions that underlie the translocation of Tn7 have several unusual features.
Collapse
Affiliation(s)
- N L Craig
- Department of Microbiology and Immunology, George W. Hooper Foundation, University of California, San Francisco 94143
| |
Collapse
|
45
|
MacPhee DG. The significance of deletions in spontaneous and induced mutations associated with movement of transposable DNA elements: possible implications for evolution and cancer. Mutat Res 1991; 250:35-47. [PMID: 1658640 DOI: 10.1016/0027-5107(91)90160-p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- D G MacPhee
- Department of Microbiology, La Trobe University, Bundoora, Vic., Australia
| |
Collapse
|
46
|
Bainton R, Gamas P, Craig NL. Tn7 transposition in vitro proceeds through an excised transposon intermediate generated by staggered breaks in DNA. Cell 1991; 65:805-16. [PMID: 1645619 DOI: 10.1016/0092-8674(91)90388-f] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have developed a cell-free system in which the bacterial transposon Tn7 inserts at high frequency into its preferred target site in the Escherichia coli chromosome, attTn7; Tn7 transposition in vitro requires ATP and Tn7-encoded proteins. Tn7 transposes via a cut and paste mechanism in which the element is excised from the donor DNA by staggered double-strand breaks and then inserted into attTn7 by the joining of 3' transposon ends to 5' target ends. Neither recombination intermediates nor products are observed in the absence of any protein component or DNA substrate. Thus, we suggest that Tn7 transposition occurs in a nucleoprotein complex containing several proteins and the substrate DNAs and that recognition of attTn7 within this complex provokes strand cleavages at the Tn7 ends.
Collapse
Affiliation(s)
- R Bainton
- Department of Biochemistry and Biophysics, George W. Hooper Foundation, University of California, San Francisco, California 94143
| | | | | |
Collapse
|
47
|
Ahmed A. A comparison of intramolecular rearrangements promoted by transposons Tn5 and Tn10. Proc Biol Sci 1991; 244:1-9. [PMID: 1677191 DOI: 10.1098/rspb.1991.0043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The bacterial transposon Tn10 has previously been shown to move to other genomic sites by a conservative mechanism, whereby the transposon is excised by double-strand breaks and inserted between a pair of staggered nicks at the target. Other transposons, like Tn3, have been shown to transpose by a replicative mechanism that involves symmetrical nicking of the element and formation of the 'Shapiro intermediate', which can mature into either a cointegrate or a simple insert. The situation with respect to Tn5 is unclear; it was originally reported to use a conservative mechanism, but other evidence suggests that the mechanism might be replicative. In this paper, rearrangements of adjacent DNA promoted by Tn10 and Tn5 have been compared using positive selection for galactose-resistance to detect such rearrangements. Tn10 promoted the formation of adjacent deletions (that started from an inside end of Tn10), deletion/inversions and simple IS10 insertions, but no cointegrates. This behaviour is fully consistent with a conservative mechanism. In contrast, Tn5 was found to promote formation of adjacent deletions (that started mainly from an outside end of Tn5), IS50 insertions (that were frequently accompanied by inversions of adjacent DNA) and cointegrates. These characteristics seem compatible with a replicative, rather than a conservative, mode of transposition. Clearly, Tn5 and Tn10 exhibit some significant differences in their transposition. These results, and results of some previous experiments, have been interpreted to mean that Tn5 could use a replicative mechanism for its transposition.
Collapse
Affiliation(s)
- A Ahmed
- Department of Genetics, University of Alberta, Edmonton, Canada
| |
Collapse
|
48
|
Haniford DB, Benjamin HW, Kleckner N. Kinetic and structural analysis of a cleaved donor intermediate and a strand transfer intermediate in Tn10 transposition. Cell 1991; 64:171-9. [PMID: 1846088 DOI: 10.1016/0092-8674(91)90218-n] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tn10 transposes by a nonreplicative "cut and paste" mechanism. We describe here two protein-DNA complexes that are reaction intermediates in the Tn10 transposition process: a cleaved donor complex whose DNA component consists of transposon sequences cleanly excised from flanking donor DNA, and a strand transfer complex whose DNA component contains transposon termini specifically joined to a target site. The kinetic behavior of the first species suggests that it is an early intermediate in the transposition reaction. These two Tn10 complexes are closely analogous to complexes identified in the pathway for replicative "cointegrate" formation by bacteriophage Mu and thus represent intermediates that may be common to both nonreplicative and replicative transposition. These and other results suggest that the Tn10 and Mu reactions are fundamentally very similar despite their very different biological outcomes. The critical difference between the two reactions is the fate of the DNA strand that is not joined to target DNA.
Collapse
Affiliation(s)
- D B Haniford
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | | |
Collapse
|
49
|
|
50
|
Sarkari JF, Mahajan SK. Detection of free cytoplasmic circles of transposon Tn9 multimers in Escherichia coli. Mol Biol Rep 1990; 14:223-9. [PMID: 1965601 DOI: 10.1007/bf00429889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Extrachromosomal circular DNA molecules consisting of IS1-cat repeats, (IS1-cat)n, were isolated from an E. coli strain harboring nearly 30 copies of tandemly amplified transposon Tn9 located on the chromosome. The DNA 'circles' were characterized by restriction analysis followed by Southern blotting and electron microscopic examination. Their size varied from approximately 5.5 kb to 53 kb.
Collapse
Affiliation(s)
- J F Sarkari
- Molecular Biology & Agriculture Division, Bhabha Atomic Research Centre, Bombay, India
| | | |
Collapse
|