1
|
Oliver A, Podell S, Pinowska A, Traller JC, Smith SR, McClure R, Beliaev A, Bohutskyi P, Hill EA, Rabines A, Zheng H, Allen LZ, Kuo A, Grigoriev IV, Allen AE, Hazlebeck D, Allen EE. Diploid genomic architecture of Nitzschia inconspicua, an elite biomass production diatom. Sci Rep 2021; 11:15592. [PMID: 34341414 PMCID: PMC8329260 DOI: 10.1038/s41598-021-95106-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/14/2021] [Indexed: 01/13/2023] Open
Abstract
A near-complete diploid nuclear genome and accompanying circular mitochondrial and chloroplast genomes have been assembled from the elite commercial diatom species Nitzschia inconspicua. The 50 Mbp haploid size of the nuclear genome is nearly double that of model diatom Phaeodactylum tricornutum, but 30% smaller than closer relative Fragilariopsis cylindrus. Diploid assembly, which was facilitated by low levels of allelic heterozygosity (2.7%), included 14 candidate chromosome pairs composed of long, syntenic contigs, covering 93% of the total assembly. Telomeric ends were capped with an unusual 12-mer, G-rich, degenerate repeat sequence. Predicted proteins were highly enriched in strain-specific marker domains associated with cell-surface adhesion, biofilm formation, and raphe system gliding motility. Expanded species-specific families of carbonic anhydrases suggest potential enhancement of carbon concentration efficiency, and duplicated glycolysis and fatty acid synthesis pathways across cytosolic and organellar compartments may enhance peak metabolic output, contributing to competitive success over other organisms in mixed cultures. The N. inconspicua genome delivers a robust new reference for future functional and transcriptomic studies to illuminate the physiology of benthic pennate diatoms and harness their unique adaptations to support commercial algae biomass and bioproduct production.
Collapse
Affiliation(s)
- Aaron Oliver
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Sheila Podell
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA.
| | | | | | - Sarah R Smith
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Alex Beliaev
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Pavlo Bohutskyi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Eric A Hill
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ariel Rabines
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - Hong Zheng
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - Lisa Zeigler Allen
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Andrew E Allen
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA, USA
| | | | - Eric E Allen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA. .,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA. .,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Mason JMO, McEachern MJ. Chromosome ends as adaptive beginnings: the potential role of dysfunctional telomeres in subtelomeric evolvability. Curr Genet 2018; 64:997-1000. [PMID: 29589105 DOI: 10.1007/s00294-018-0822-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
Abstract
Telomeres serve as protective caps that help the cell differentiate between the naturally occurring ends of chromosomes and double-stranded breaks. When telomere capping function becomes compromised, chromosome ends are subjected to elevated rates of chromosome alterations. These effects can be particularly dramatic in the telomere-adjacent subtelomeric region. While the catastrophic impact of severe telomere dysfunction on genome stability has been well documented, the adaptive telomere failure hypothesis considers an alternative role telomere dysfunction may play in adaptive evolution. This hypothesis suggests that low levels of telomere failure, induced by certain environmental stresses, can lead to elevated subtelomeric recombination. Mutational loss, duplication, or modification of subtelomeric contingency genes could ultimately facilitate adaptation by generating novel mutants better able to survive environmental stress. In this perspective, we discuss recent work that examined mild telomere dysfunction and its role in altering the adaptive potential of subtelomeric genes.
Collapse
Affiliation(s)
- Jennifer M O Mason
- Department of Genetics, University of Georgia, Athens, GA, 30605, USA. .,Q2 Solutions, Morrisville, NC, 27560, USA.
| | | |
Collapse
|
3
|
Yu EY, Kojic M, Holloman WK, Lue NF. Brh2 and Rad51 promote telomere maintenance in Ustilago maydis, a new model system of DNA repair proteins at telomeres. DNA Repair (Amst) 2013; 12:472-9. [PMID: 23726221 DOI: 10.1016/j.dnarep.2013.04.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 11/28/2022]
Abstract
Recent studies implicate a number of DNA repair proteins in mammalian telomere maintenance. However, because several key repair proteins in mammals are missing from the well-studied budding and fission yeast, their roles at telomeres cannot be modeled in standard fungi. In this report, we explored the dimorphic fungus Ustilago maydis as an alternative model for telomere research. This fungus, which belongs to the phylum Basidiomycota, has a telomere repeat unit that is identical to the mammalian repeat, as well as a constellation of DNA repair proteins that more closely mimic the mammalian collection. We showed that the two core components of homology-directed repair (HDR) in U. maydis, namely Brh2 and Rad51, both promote telomere maintenance in telomerase positive cells, just like in mammals. In addition, we found that Brh2 is localized to telomeres in vivo, suggesting that it acts directly at chromosome ends. We surveyed a series of mutants with DNA repair defects, and found many of them to have short telomeres. Our results indicate that factors involved in DNA repair are probably also needed for optimal telomere maintenance in U. maydis, and that this fungus is a useful alternative model system for telomere research.
Collapse
Affiliation(s)
- Eun Young Yu
- Department of Microbiology & Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | | | | | | |
Collapse
|
4
|
Pickett HA, Reddel RR. The role of telomere trimming in normal telomere length dynamics. Cell Cycle 2012; 11:1309-15. [PMID: 22421147 DOI: 10.4161/cc.19632] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Telomeres consist of repetitive DNA and associated proteins that protect chromosome ends from illicit DNA repair. It is well known that telomeric DNA is progressively eroded during cell division, until telomeres become too short and the cell stops dividing. There is a second mode of telomere shortening, however, which is a regulated form of telomere rapid deletion (TRD) termed telomere trimming that is reviewed here. Telomere trimming appears to involve resolution of recombination intermediate structures, which shortens the telomere by release of extrachromosomal telomeric DNA. This has been detected in human and in mouse cells and occurs both in somatic and germline cells, where it sets an upper limit on telomere length and contributes to a length equilibrium set-point in cells that have a telomere elongation mechanism. Telomere trimming thus represents an additional mechanism of telomere length control that contributes to normal telomere dynamics and cell proliferative potential.
Collapse
Affiliation(s)
- Hilda A Pickett
- Children's Medical Research Institute and Sydney Medical School, University of Sydney, New South Wales, Australia
| | | |
Collapse
|
5
|
Cassidy-Hanley DM. Tetrahymena in the laboratory: strain resources, methods for culture, maintenance, and storage. Methods Cell Biol 2012; 109:237-76. [PMID: 22444147 PMCID: PMC3608402 DOI: 10.1016/b978-0-12-385967-9.00008-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The ciliated protozoan Tetrahymena thermophila has been an important model system for biological research for many years. During that time, a variety of useful strains, including highly inbred stocks, a collection of diverse mutant strains, and wild cultivars from a variety of geographical locations have been identified. In addition, thanks to the efforts of many different laboratories, optimal conditions for growth, maintenance, and storage of Tetrahymena have been worked out. To facilitate the efficient use of Tetrahymena, especially by those new to the system, this chapter presents a brief description of many available Tetrahymena strains and lists possible resources for obtaining viable cultures of T. thermophila and other Tetrahymena species. Descriptions of commonly used media, methods for cell culture and maintenance, and protocols for short- and long-term storage are also presented.
Collapse
Affiliation(s)
- Donna M Cassidy-Hanley
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
6
|
|
7
|
Greider CW. Telomerase discovery: the excitement of putting together pieces of the puzzle (Nobel lecture). Angew Chem Int Ed Engl 2011; 49:7422-39. [PMID: 20872384 DOI: 10.1002/anie.201002408] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Carol W Greider
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
8
|
Recombination can cause telomere elongations as well as truncations deep within telomeres in wild-type Kluyveromyces lactis cells. EUKARYOTIC CELL 2010; 10:226-36. [PMID: 21148753 DOI: 10.1128/ec.00209-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we examined the role of recombination at the telomeres of the yeast Kluyveromyces lactis. We demonstrated that an abnormally long and mutationally tagged telomere was subject to high rates of telomere rapid deletion (TRD) that preferentially truncated the telomere to near-wild-type size. Unlike the case in Saccharomyces cerevisiae, however, there was not a great increase in TRD in meiosis. About half of mitotic TRD events were associated with deep turnover of telomeric repeats, suggesting that telomeres were often cleaved to well below normal length prior to being reextended by telomerase. Despite its high rate of TRD, the long telomere showed no increase in the rate of subtelomeric gene conversion, a highly sensitive test of telomere dysfunction. We also showed that the long telomere was subject to appreciable rates of becoming elongated substantially further through a recombinational mechanism that added additional tagged repeats. Finally, we showed that the deep turnover that occurs within normal-length telomeres was diminished in the absence of RAD52. Taken together, our results suggest that homologous recombination is a significant process acting on both abnormally long and normally sized telomeres in K. lactis.
Collapse
|
9
|
Greider CW. Die Entdeckung der Telomerase: vom Vergnügen, Teile des Puzzles zusammenzufügen (Nobel-Aufsatz). Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201002408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Shampay J. How do the ends replicate? Trends Biochem Sci 2009; 35:5-7. [PMID: 20005723 DOI: 10.1016/j.tibs.2009.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 11/09/2009] [Indexed: 11/26/2022]
Affiliation(s)
- Janis Shampay
- Biology Department, Reed College, Portland, OR 97202, USA.
| |
Collapse
|
11
|
Pickett HA, Cesare AJ, Johnston RL, Neumann AA, Reddel RR. Control of telomere length by a trimming mechanism that involves generation of t-circles. EMBO J 2009; 28:799-809. [PMID: 19214183 PMCID: PMC2670870 DOI: 10.1038/emboj.2009.42] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 01/23/2009] [Indexed: 01/09/2023] Open
Abstract
Telomere lengths are maintained in many cancer cells by the ribonucleoprotein enzyme telomerase but can be further elongated by increasing telomerase activity through the overexpression of telomerase components. We report here that increased telomerase activity results in increased telomere length that eventually reaches a plateau, accompanied by the generation of telomere length heterogeneity and the accumulation of extrachromosomal telomeric repeat DNA, principally in the form of telomeric circles (t-circles). Telomeric DNA was observed in promyelocytic leukemia bodies, but no intertelomeric copying or telomere exchange events were identified, and there was no increase in telomere dysfunction-induced foci. These data indicate that human cells possess a mechanism to negatively regulate telomere length by trimming telomeric DNA from the chromosome ends, most likely by t-loop resolution to form t-circles. Additionally, these results indicate that some phenotypic characteristics attributed to alternative lengthening of telomeres (ALT) result from increased mean telomere length, rather than from the ALT mechanism itself.
Collapse
Affiliation(s)
- Hilda A Pickett
- Cancer Research Group, Children's Medical Research Institute, Westmead, NSW, Australia
| | | | | | | | | |
Collapse
|
12
|
Witkin KL, Prathapam R, Collins K. Positive and negative regulation of Tetrahymena telomerase holoenzyme. Mol Cell Biol 2007; 27:2074-83. [PMID: 17220281 PMCID: PMC1820490 DOI: 10.1128/mcb.02105-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Telomerase replenishes the telomeric repeats that cap eukaryotic chromosome ends. To perform DNA synthesis, the active site of telomerase reverse transcriptase (TERT) copies a template within the integral telomerase RNA (TER). In vivo, TERT and TER and additional subunits form a telomerase holoenzyme capable of telomere elongation. We previously purified epitope-tagged Tetrahymena thermophila TERT and characterized two of the associated proteins. Here we characterize the remaining two proteins that were enriched by TERT purification. The primary sequence of the p75 polypeptide lacks evident homology with other proteins, whereas the p20 polypeptide is the Tetrahymena ortholog of a conserved multifunctional protein, Skp1. Genetic depletion of p75 induced telomere shortening without affecting the accumulation of TER or TERT, suggesting that p75 promotes telomerase function at the telomere. Affinity purification of p75 coenriched telomerase activity and each other known telomerase holoenzyme protein. On the other hand, genetic depletion of Skp1p induced telomere elongation, suggesting that this protein plays a negative regulatory role in the maintenance of telomere length homeostasis. Affinity purification of Skp1p did not detectably enrich active telomerase but did copurify ubiquitin ligase machinery. These studies reveal additional complexity in the positive and negative regulation of Tetrahymena telomerase function.
Collapse
Affiliation(s)
- Keren L Witkin
- Department of Molecular and Cell Biology, University of California at Berkeley, CA 94720-3204, USA
| | | | | |
Collapse
|
13
|
Watson JM, Shippen DE. Telomere rapid deletion regulates telomere length in Arabidopsis thaliana. Mol Cell Biol 2006; 27:1706-15. [PMID: 17189431 PMCID: PMC1820464 DOI: 10.1128/mcb.02059-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Telomere length is maintained in species-specific equilibrium primarily through a competition between telomerase-mediated elongation and the loss of terminal DNA through the end-replication problem. Recombinational activities are also capable of both lengthening and shortening telomeres. Here we demonstrate that elongated telomeres in Arabidopsis Ku70 mutants reach a new length set point after three generations. Restoration of wild-type Ku70 in these mutants leads to discrete telomere-shortening events consistent with telomere rapid deletion (TRD). These findings imply that the longer telomere length set point is achieved through competition between overactive telomerase and TRD. Surprisingly, in the absence of telomerase, a subset of elongated telomeres was further lengthened, suggesting that in this background a mechanism of telomerase-independent lengthening of telomeres operates. Unexpectedly, we also found that plants possessing wild-type-length telomeres exhibit TRD when telomerase is inactivated. TRD is stochastic, and all chromosome ends appear to be equally susceptible. The frequency of TRD decreases as telomeres shorten; telomeres less than 2 kb in length are rarely subject to TRD. We conclude that TRD functions as a potent force to regulate telomere length in Arabidopsis.
Collapse
Affiliation(s)
- J Matthew Watson
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | | |
Collapse
|
14
|
Jacob NK, Lescasse R, Linger BR, Price CM. Tetrahymena POT1a regulates telomere length and prevents activation of a cell cycle checkpoint. Mol Cell Biol 2006; 27:1592-601. [PMID: 17158924 PMCID: PMC1820449 DOI: 10.1128/mcb.01975-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The POT1/TEBP telomere proteins are a group of single-stranded DNA (ssDNA)-binding proteins that have long been assumed to protect the G overhang on the telomeric 3' strand. We have found that the Tetrahymena thermophila genome contains two POT1 gene homologs, POT1a and POT1b. The POT1a gene is essential, but POT1b is not. We have generated a conditional POT1a cell line and shown that POT1a depletion results in a monster cell phenotype and growth arrest. However, G-overhang structure is essentially unchanged, indicating that POT1a is not required for overhang protection. In contrast, POT1a is required for telomere length regulation. After POT1a depletion, most telomeres elongate by 400 to 500 bp, but some increase by up to 10 kb. This elongation occurs in the absence of further cell division. The growth arrest caused by POT1a depletion can be reversed by reexpression of POT1a or addition of caffeine. Thus, POT1a is required to prevent a cell cycle checkpoint that is most likely mediated by ATM or ATR (ATM and ATR are protein kinases of the PI-3 protein kinase-like family). Our findings indicate that the essential function of POT1a is to prevent a catastrophic DNA damage response. This response may be activated when nontelomeric ssDNA-binding proteins bind and protect the G overhang.
Collapse
Affiliation(s)
- Naduparambil K Jacob
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, ML0524, 231 Albert Sabin Way, Cincinnati, OH 45267, USA.
| | | | | | | |
Collapse
|
15
|
Walter MF, Biessmann MR, Benitez C, Török T, Mason JM, Biessmann H. Effects of telomere length in Drosophila melanogaster on life span, fecundity, and fertility. Chromosoma 2006; 116:41-51. [PMID: 17089138 PMCID: PMC2254661 DOI: 10.1007/s00412-006-0081-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 07/29/2006] [Accepted: 08/28/2006] [Indexed: 11/28/2022]
Abstract
Chromosome length in Drosophila is maintained by targeted transposition of three non-long terminal repeat retrotransposons, HeT-A, TART, and TAHRE, to the chromosome ends. The length and composition of these retrotransposon arrays can vary significantly between chromosome tips and between fly stocks, but the significance and consequences of these length differences are not understood. A dominant genetic factor, Tel, has been described, which causes a severalfold elongation of the retrotransposon arrays at all telomeres. We used this strain to assess possible affects of extended telomeres on the organism. While we found no effect on life span of the adults, we could demonstrate a correlation between long telomeres and reduced fertility and fecundity in individual females, which is also reflected in abnormal oocyte development.
Collapse
Affiliation(s)
- Marika F. Walter
- Developmental Biology Center, University of California, Irvine, CA 92697, USA
| | - Max R. Biessmann
- Developmental Biology Center, University of California, Irvine, CA 92697, USA
| | - Cecil Benitez
- Developmental Biology Center, University of California, Irvine, CA 92697, USA
| | - Tibor Török
- Department of Genetics and Molecular Biology, University of Szeged, Szeged, Hungary
| | - James M. Mason
- Laboratory of Molecular Genetics, NIEHS, Research Triangle Park, NC 27709, USA
| | - Harald Biessmann
- Developmental Biology Center, University of California, Irvine, CA 92697, USA
| |
Collapse
|
16
|
Iyer S, Chadha AD, McEachern MJ. A mutation in the STN1 gene triggers an alternative lengthening of telomere-like runaway recombinational telomere elongation and rapid deletion in yeast. Mol Cell Biol 2005; 25:8064-73. [PMID: 16135798 PMCID: PMC1234331 DOI: 10.1128/mcb.25.18.8064-8073.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 05/13/2005] [Accepted: 07/11/2005] [Indexed: 11/20/2022] Open
Abstract
Some human cancer cells achieve immortalization by using a recombinational mechanism termed ALT (alternative lengthening of telomeres). A characteristic feature of ALT cells is the presence of extremely long and heterogeneous telomeres. The molecular mechanism triggering and maintaining this pathway is currently unknown. In Kluyveromyces lactis, we have identified a novel allele of the STN1 gene that produces a runaway ALT-like telomeric phenotype by recombination despite the presence of an active telomerase pathway. Additionally, stn1-M1 cells are synthetically lethal in combination with rad52 and display chronic growth and telomere capping defects including extensive 3' single-stranded telomere DNA and highly elevated subtelomere gene conversion. Strikingly, stn1-M1 cells undergo a very high rate of telomere rapid deletion (TRD) upon reintroduction of STN1. Our results suggest that the protein encoded by STN1, which protects the terminal 3' telomere DNA, can regulate both ALT and TRD.
Collapse
Affiliation(s)
- Shilpa Iyer
- Department of Genetics, Fred C. Davison Life Science Complex, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
17
|
Cunningham DD, Collins K. Biological and biochemical functions of RNA in the tetrahymena telomerase holoenzyme. Mol Cell Biol 2005; 25:4442-54. [PMID: 15899850 PMCID: PMC1140614 DOI: 10.1128/mcb.25.11.4442-4454.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Telomerase extends chromosome ends by the synthesis of tandem simple-sequence repeats. Studies of minimal recombinant telomerase ribonucleoprotein (RNP) reconstituted in vitro have revealed sequences within the telomerase RNA subunit (TER) that are required to establish its internal template and other unique features of enzyme activity. Here we test the significance of these motifs following TER assembly into telomerase holoenzyme in vivo. We established a method for stable expression of epitope-tagged TER and TER variants in place of wild-type Tetrahymena TER. We found that sequence substitutions in nontemplate regions of TER altered telomere length maintenance in vivo, with an increase or decrease in the set point for telomere length homeostasis. We also characterized the in vitro activity of the telomerase holoenzymes reconstituted with TER variants, following RNA-based RNP affinity purification from cell extracts. We found that nontemplate sequence substitutions imposed specific defects in the fidelity and processivity of template use. These findings demonstrate nontemplate functions of TER that are critical for the telomerase holoenzyme catalytic cycle and for proper telomere length maintenance in vivo.
Collapse
Affiliation(s)
- Doreen D Cunningham
- Department of Molecular and Cell Biology, 16 Barker Hall, University of California, Berkeley, CA 94720-3204, USA
| | | |
Collapse
|
18
|
Jacob NK, Stout AR, Price CM. Modulation of telomere length dynamics by the subtelomeric region of tetrahymena telomeres. Mol Biol Cell 2004; 15:3719-28. [PMID: 15169872 PMCID: PMC491831 DOI: 10.1091/mbc.e04-03-0237] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tetrahymena telomeres usually consist of approximately 250 base pairs of T(2)G(4) repeats, but they can grow to reach a new length set point of up to 900 base pairs when kept in log culture at 30 degrees C. We have examined the growth profile of individual macronuclear telomeres and have found that the rate and extent of telomere growth are affected by the subtelomeric region. When the sequence of the rDNA subtelomeric region was altered, we observed a decrease in telomere growth regardless of whether the GC content was increased or decreased. In both cases, the ordered structure of the subtelomeric chromatin was disrupted, but the effect on the telomeric complex was relatively minor. Examination of the telomeres from non-rDNA chromosomes showed that each telomere exhibited a unique and characteristic growth profile. The subtelomeric regions from individual chromosome ends did not share common sequence elements, and they each had a different chromatin structure. Thus, telomere growth is likely to be regulated by the organization of the subtelomeric chromatin rather than by a specific DNA element. Our findings suggest that at each telomere the telomeric complex and subtelomeric chromatin cooperate to form a unique higher order chromatin structure that controls telomere length.
Collapse
Affiliation(s)
- Naduparambil K Jacob
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA
| | | | | |
Collapse
|
19
|
Witkin KL, Collins K. Holoenzyme proteins required for the physiological assembly and activity of telomerase. Genes Dev 2004; 18:1107-18. [PMID: 15131081 PMCID: PMC415636 DOI: 10.1101/gad.1201704] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 04/05/2004] [Indexed: 11/25/2022]
Abstract
Many proteins have been implicated in the physiological function of telomerase, but specific roles of telomerase-associated proteins other than telomerase reverse transcriptase (TERT) remain ambiguous. To gain a more comprehensive understanding of catalytically active enzyme composition, we performed affinity purification of epitope-tagged, endogenously assembled Tetrahymena telomerase. We identified and cloned genes encoding four telomerase proteins in addition to TERT. We demonstrate that both of the two new proteins characterized in detail, p65 and p45, have essential roles in the maintenance of telomere length as part of a ciliate telomerase holoenzyme. The p65 subunit contains an La motif characteristic of a family of direct RNA-binding proteins. We find that p65 in cell extract is associated specifically with telomerase RNA, and that genetic depletion of p65 reduces telomerase RNA accumulation in vivo. These findings demonstrate that telomerase holoenzyme proteins other than TERT play critical roles in RNP biogenesis and function.
Collapse
Affiliation(s)
- Keren L Witkin
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3204, USA
| | | |
Collapse
|
20
|
Abstract
Arthur Kornberg "never met a dull enzyme" (For the Love of Enzymes: The Odyssey of a Biochemist, Harvard University Press, 1989) and telomerase is no exception. Telomerase is a remarkable polymerase that uses an internal RNA template to reverse-transcribe telomere DNA, one nucleotide at a time, onto telomeric, G-rich single-stranded DNA. In the 17 years since its discovery, the characterization of telomerase enzyme components has uncovered a highly conserved family of telomerase reverse transcriptases that, together with the telomerase RNA, appear to comprise the enzymatic core of telomerase. While not as comprehensively understood as yet, some telomerase-associated proteins also serve crucial roles in telomerase function in vivo, such as telomerase ribonudeoprotein (RNP) assembly, recruitment to the telomere, and the coordination of DNA replication at the telomere. A selected overview of the biochemical properties of this unique enzyme, in vitro and in vivo, will be presented.
Collapse
|
21
|
Jacob NK, Kirk KE, Price CM. Generation of Telomeric G Strand Overhangs Involves Both G and C Strand Cleavage. Mol Cell 2003; 11:1021-32. [PMID: 12718887 DOI: 10.1016/s1097-2765(03)00131-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Processing of telomeric DNA is required to generate the 3' G strand overhangs necessary for capping chromosome ends. We have investigated the steps involved in telomere processing by examining G overhang structure in Tetrahymena cells that lack telomerase or have altered telomeric sequences. We show that overhangs are generated by two precise cleavage steps involving nucleases that are robust but lack sequence specificity. Our data suggest that a G overhang binding protein delineates the boundaries for G and C strand cleavage. We also show that telomerase is not the nuclease responsible for G strand cleavage, although telomerase depletion alters the precision of processing. This change in processing indicates that telomerase affects multiple transactions at the telomere and provides a physical footprint for the continued association of telomerase with the telomere after repeat addition is complete.
Collapse
Affiliation(s)
- Naduparambil K Jacob
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Ohio 45267, USA
| | | | | |
Collapse
|
22
|
Petcherskaia M, McGuire JM, Pherson JM, Kirk KE. Loss of cap structure causes mitotic defect in Tetrahymena thermophila telomerase mutants. Chromosoma 2003; 111:429-37. [PMID: 12707780 DOI: 10.1007/s00412-003-0233-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2002] [Revised: 12/16/2002] [Accepted: 12/16/2002] [Indexed: 11/30/2022]
Abstract
Mutation of the telomeric repeat sequence has severe cellular consequences in a variety of systems. A Tetrahymena thermophila telomerase template mutant, ter1-43AA, displays an acute mitotic chromosome segregation defect. In the study described here we investigated the molecular basis for this lethality. Although cloned ter1-43AA macronuclear telomeres had long tracts of wild-type G4T2 repeats, they were capped by a mixture of G4T3 repeats, shown previously to be non-lethal, and G4T4 repeats, the telomeric sequence normally found in hypotrichous ciliates such as Oxytricha. To test further the functionality of the G4T4 repeat sequence in T. thermophila, we devised a new template mutation, ter1-44+AA, that resulted in more uniform synthesis of this sequence at telomere caps in vivo. The ter1-44+AA mutant displayed the most severe mitotic defect reported to date, with up to 85% of the population having micronuclei in anaphase, providing firm evidence that the hypotrich repeat sequence is not functional in Tetrahymena. Surprisingly, in spite of the telomeric sequence mutation, neither the ter1-43AA nor ter1-44+AA mutant displayed any significant loss of telomere length regulation. These results demonstrate that loss of telomere cap integrity, rather than length regulation, leads to the anaphase defect.
Collapse
|
23
|
Ancelin K, Brunori M, Bauwens S, Koering CE, Brun C, Ricoul M, Pommier JP, Sabatier L, Gilson E. Targeting assay to study the cis functions of human telomeric proteins: evidence for inhibition of telomerase by TRF1 and for activation of telomere degradation by TRF2. Mol Cell Biol 2002; 22:3474-87. [PMID: 11971978 PMCID: PMC133804 DOI: 10.1128/mcb.22.10.3474-3487.2002] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the control of telomere length by the human telomeric proteins TRF1 and TRF2. To this end, we established telomerase-positive cell lines in which the targeting of these telomeric proteins to specific telomeres could be induced. We demonstrate that their targeting leads to telomere shortening. This indicates that these proteins act in cis to repress telomere elongation. Inhibition of telomerase activity by a modified oligonucleotide did not further increase the pace of telomere erosion caused by TRF1 targeting, suggesting that telomerase itself is the target of TRF1 regulation. In contrast, TRF2 targeting and telomerase inhibition have additive effects. The possibility that TRF2 can activate a telomeric degradation pathway was directly tested in human primary cells that do not express telomerase. In these cells, overexpression of full-length TRF2 leads to an increased rate of telomere shortening.
Collapse
Affiliation(s)
- Katia Ancelin
- Laboratoire de Biologie Moléculaire et Cellulaire, UMR5665 CNRS/ENSL, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mergny JL, Riou JF, Mailliet P, Teulade-Fichou MP, Gilson E. Natural and pharmacological regulation of telomerase. Nucleic Acids Res 2002; 30:839-65. [PMID: 11842096 PMCID: PMC100331 DOI: 10.1093/nar/30.4.839] [Citation(s) in RCA: 273] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2001] [Revised: 11/29/2001] [Accepted: 11/29/2001] [Indexed: 01/14/2023] Open
Abstract
The extremities of eukaryotic chromosomes are called telomeres. They have a structure unlike the bulk of the chromosome, which allows the cell DNA repair machinery to distinguish them from 'broken' DNA ends. But these specialised structures present a problem when it comes to replicating the DNA. Indeed, telomeric DNA progressively erodes with each round of cell division in cells that do not express telomerase, a specialised reverse transcriptase necessary to fully duplicate the telomeric DNA. Telomerase is expressed in tumour cells but not in most somatic cells and thus telomeres and telomerase may be proposed as attractive targets for the discovery of new anticancer agents.
Collapse
Affiliation(s)
- Jean-Louis Mergny
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, INSERM U 201, CNRS UMR 8646, 43 rue Cuvier, F-75005 Paris, France.
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Bucholc M, Park Y, Lustig AJ. Intrachromatid excision of telomeric DNA as a mechanism for telomere size control in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:6559-73. [PMID: 11533244 PMCID: PMC99802 DOI: 10.1128/mcb.21.19.6559-6573.2001] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously identified a process in the yeast Saccharomyces cerevisiae that results in the contraction of elongated telomeres to wild-type length within a few generations. We have termed this process telomeric rapid deletion (TRD). In this study, we use a combination of physical and genetic assays to investigate the mechanism of TRD. First, to distinguish among several recombinational and nucleolytic pathways, we developed a novel physical assay in which HaeIII restriction sites are positioned within the telomeric tract. Specific telomeres were subsequently tested for HaeIII site movement between telomeres and for HaeIII site retention during TRD. Second, genetic analyses have demonstrated that mutations in RAD50 and MRE11 inhibit TRD. TRD, however, is independent of the Rap1p C-terminal domain, a central regulator of telomere size control. Our results provide evidence that TRD is an intrachromatid deletion process in which sequences near the extreme terminus invade end-distal sequences and excise the intervening sequences. We propose that the Mre11p-Rad50p-Xrs2p complex prepares the invading telomeric overhang for strand invasion, possibly through end processing or through alterations in chromatin structure.
Collapse
Affiliation(s)
- M Bucholc
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
27
|
Abstract
To learn more about the structure of the DNA terminus at Tetrahymena thermophila telomeres, we have devised a ligation-mediated primer extension protocol to accurately measure the length of the G-strand overhang. We show that overhang length and the identity of the 3'-terminal nucleotide are tightly regulated. The majority of overhangs terminate in the sequence 5'-TTGGGGT and >80% are either 14-15 or 20-21 nucleotides in length. No significant changes in overhang length were detected as cells traversed the cell cycle. However, changes in length distribution were observed when cells exited the cell cycle, indicating an altered balance between DNA synthesis and degradation or end protection. We also provide evidence that rDNA molecules have overhangs on both telomeres. Full-length rDNA could be cloned by a strategy that depends on overhangs being present at both ends. Moreover, analysis of leading strand telomeres revealed that a significant fraction have overhangs > or =5 nucleotides. Our results indicate that generation of the terminal telomeric DNA structure is highly regulated and requires several distinct DNA-processing events.
Collapse
Affiliation(s)
| | - Rose Skopp
- Department of Molecular Genetics, Biochemistry and Microbiology, School of Medicine, University of Cincinnati, ML0524, 231 Albert Sabin Way, Cincinnati, OH 45267 and
Department of Veterinary Science, University of Nebraska, Lincoln, NE 68588, USA Corresponding author e-mail:
| | - Carolyn M. Price
- Department of Molecular Genetics, Biochemistry and Microbiology, School of Medicine, University of Cincinnati, ML0524, 231 Albert Sabin Way, Cincinnati, OH 45267 and
Department of Veterinary Science, University of Nebraska, Lincoln, NE 68588, USA Corresponding author e-mail:
| |
Collapse
|
28
|
Tamar S, Papadopoulou B. A telomere-mediated chromosome fragmentation approach to assess mitotic stability and ploidy alterations of Leishmania chromosomes. J Biol Chem 2001; 276:11662-73. [PMID: 11152684 DOI: 10.1074/jbc.m009006200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used a telomere-associated chromosome fragmentation strategy to induce internal chromosome-specific breakage of Leishmania chromosomes. The integration of telomeric repeats from the kinetoplastid Trypanosoma brucei into defined positions of the Leishmania genome by homologous recombination can induce chromosome breakage accompanied by the deletion of the chromosomal part that is distal to the site of the break. The cloned telomeric DNA at the end of the truncated chromosomes is functional and it can seed the formation of new telomeric repeats. We found that genome ploidy is often altered upon telomere-mediated chromosome fragmentation events resulting in large chromosomal deletions. In most cases diploidy is either preserved, or partial trisomic cells are observed, but interestingly we report here the generation of partial haploid mutants in this diploid organism. Partial haploid Leishmania mutants should facilitate studies on the function of chromosome-assigned genes. We also present several lines of evidence for the presence of sequences involved in chromosome mitotic stability and segregation during cell cycle in this parasitic protozoan. Telomere-directed chromosome fragmentation studies in Leishmania may constitute a useful tool to assay for centromere function.
Collapse
Affiliation(s)
- S Tamar
- Centre de Recherche en Infectiologie, Centre de Recherche du CHUL et Département de Biologie Médicale, Faculté de Médecine, Université Laval, Québec G1V 4G2, Canada
| | | |
Collapse
|
29
|
Abstract
Telomeres are DNA and protein structures that form complexes protecting the ends of chromosomes. Understanding of the mechanisms maintaining telomeres and insights into their function have advanced considerably in recent years. This review summarizes the currently known components of the telomere/telomerase functional complex, and focuses on how they act in the control of processes occurring at telomeres. These include processes acting on the telomeric DNA and on telomeric proteins. Key among them are DNA replication and elongation of one telomeric DNA strand by telomerase. In some situations, homologous recombination of telomeric and subtelomeric DNA is induced. All these processes act to replenish or restore telomeres. Conversely, degradative processes that shorten telomeric DNA, and nonhomologous end-joining of telomeric DNA, can lead to loss of telomere function and genomic instability. Hence they too must normally be tightly controlled.
Collapse
Affiliation(s)
- M J McEachern
- University of Georgia, Department of Genetics, Athens, Georgia, 30602, USA.
| | | | | |
Collapse
|
30
|
Miller MC, Collins K. The Tetrahymena p80/p95 complex is required for proper telomere length maintenance and micronuclear genome stability. Mol Cell 2000; 6:827-37. [PMID: 11090621 DOI: 10.1016/s1097-2765(05)00078-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The telomerase enzyme adds simple sequence repeats to chromosome ends. Telomerases share two essential subunits, telomerase RNA and telomerase reverse transcriptase, that associate with species-specific proteins of predominantly unknown functions. The Tetrahymena p80/p95 complex can coimmunopurify active telomerase from cell extract, and recombinant p80/p95 can interact directly with telomerase RNA and single-stranded telomeric DNA in vitro. Here, we test the functions of p80/p95 in vivo. Surprisingly, telomerase RNA accumulation and telomerase activity in cell extract are unaffected by loss of the genes encoding p80/p95. However, in the absence of p80/p95, telomeres become elongated in both macronuclei and micronuclei. Micronuclear chromosome maintenance is also compromised. These findings suggest that p80/p95 functions to maintain appropriate telomere length and micronuclear genomic stability but does so in a manner different than previously anticipated.
Collapse
Affiliation(s)
- M C Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720, USA
| | | |
Collapse
|
31
|
Bryan TM, Goodrich KJ, Cech TR. A mutant of Tetrahymena telomerase reverse transcriptase with increased processivity. J Biol Chem 2000; 275:24199-207. [PMID: 10807925 DOI: 10.1074/jbc.m003246200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein catalytic subunit of telomerase (TERT) is a reverse transcriptase (RT) that utilizes an internal RNA molecule as a template for the extension of chromosomal DNA ends. In all retroviral RTs there is a conserved tyrosine two amino acids preceding the catalytic aspartic acids in motif C, a motif that is critical for catalysis. In TERTs, however, this position is a leucine, valine, or phenylalanine. We developed and characterized a robust in vitro reconstitution system for Tetrahymena telomerase and tested the effects of amino acid substitutions on activity. Substitution of the retroviral-like tyrosine in motif C did not change overall enzymatic activity but increased processivity. This increase in processivity correlated with an increased affinity for telomeric DNA primer. Substitution of an alanine did not increase processivity, while substitution of a phenylalanine had an intermediate effect. The data suggest that this amino acid is involved in interactions with the primer in telomerase as in other RTs, and show that mutating an amino acid to that conserved in retroviral RTs makes telomerase more closely resemble these other RTs.
Collapse
Affiliation(s)
- T M Bryan
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | | | |
Collapse
|
32
|
Lu Q, Henderson E. Two Tetrahymena G-DNA-binding proteins, TGP1 and TGP3, share novel motifs and may play a role in micronuclear division. Nucleic Acids Res 2000; 28:2993-3001. [PMID: 10908364 PMCID: PMC102678 DOI: 10.1093/nar/28.15.2993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
G-DNA is a four-stranded DNA structure with diverse putative biological roles. We have previously purified and cloned a novel G-DNA-binding protein TGP1 from the ciliate Tetrahymena thermophila. Here we report the molecular cloning of TGP3, an additional G-DNA-binding protein from the same organism. The TGP3 cDNA encodes a 365 amino acid protein that is homologous to TGP1 (34% identity and 44% similarity). The proteins share a sequence pattern that contains two novel repetitive and homologous motifs flanking an extensively hydrophilic and basic region. A nuclear fractionation experiment showed that TGP1 and TGP3 activities are localized predominantly in the nuclear fraction. To further investigate the biological roles of the proteins in vivo, we have generated separate macronuclear gene knockout (KO) strains (TGP1KO and TGP3KO) for each of the two genes. Southern blot analysis demonstrated that the macronuclear copies of each gene were completely disrupted. Mobility shift assays showed that the corresponding G-DNA-binding activity for each protein was abolished in the KO strains. Growth analysis showed that both KO strains grew at near wild-type rates, indicating that neither of the genes is essential for cell growth. Nevertheless, nuclear staining analysis revealed that both TGP1KO and TGP3KO cells have an increased occurrence (more than 2-fold) of extra micronuclei, implying faulty control of micronuclear division in the KO cells.
Collapse
Affiliation(s)
- Q Lu
- Department of Zoology and Genetics, Molecular, Cellular and Developmental Biology Program, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
33
|
Ware TL, Wang H, Blackburn EH. Three telomerases with completely non-telomeric template replacements are catalytically active. EMBO J 2000; 19:3119-31. [PMID: 10856255 PMCID: PMC203363 DOI: 10.1093/emboj/19.12.3119] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Telomerase is a reverse transcriptase minimally composed of a reverse transcriptase protein subunit and an internal RNA component that contains the templating region. Point mutations of template RNA bases can cause loss of enzymatic activity, reduced processivity and misincorporation in vitro. Here we report the first complete replacement of the nine base TETRAHYMENA: thermophila telomerase templating region in vivo with non-telomeric sequences. Rather than ablating telomerase activity, three such replaced telomerases (U9, AUN and AU4) were effective in polymerization in vitro. In vivo, the AU4 and AUN genes caused telomere shortening. We demonstrated the fidelity of the AUN and U9 telomerases in vitro and utilized AUN telomerase to demonstrate that 5' end primer recognition by telomerase is independent of template base pairing. However, the mutant AUN template telomerase catalyzed an abnormal DNA cleavage reaction. For these U-only and AU- substituted templates, we conclude that base-specific interactions between the telomerase template and protein (or distant parts of the RNA) are not absolutely required for the minimal core telomerase functions of nucleotide addition and base discrimination.
Collapse
Affiliation(s)
- T L Ware
- Department of Biochemistry and Biophysics and Department of Microbiology and Immunology, Box 0414, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
34
|
Filesi I, Cacchione S, De Santis P, Rossetti L, Savino M. The main role of the sequence-dependent DNA elasticity in determining the free energy of nucleosome formation on telomeric DNAs. Biophys Chem 2000; 83:223-37. [PMID: 10647852 DOI: 10.1016/s0301-4622(99)00143-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Using a competitive reconstitution assay, we measured the free energy spent in nucleosome formation of eight telomeric DNAs, differing in sequence and/or in length. The obtained values are in satisfactorily good agreement with those derived from a theoretical model that allows the calculation of the free energy of nucleosome formation on the basis of sequence-dependent DNA elasticity, using a statistical thermodynamic approach. Both theoretical and experimental evaluations show that telomeres are characterized by the highest free energies of nucleosome formation among all the DNA sequences so far studied. The free energy of nucleosome formation varies according to the different telomeric sequences and the length of the fragments. Theoretical analysis and experimental mapping by lambda exonuclease show that telomeric nucleosomes occupy multiple positions spaced every telomeric repeat. Sequence-dependent DNA elasticity appears as the main determinant of the stability of telomeric nucleosomes and their multiple translational positioning.
Collapse
Affiliation(s)
- I Filesi
- Dipartimento di Genetica e Biologia Molecolare, Fondazione Istituto Pasteur-Fondazione Cenci Bolognetti, Università di Roma La Sapienza, Italy
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Orias E, Hamilton EP, Orias JD. Tetrahymena as a laboratory organism: useful strains, cell culture, and cell line maintenance. Methods Cell Biol 1999; 62:189-211. [PMID: 10503191 DOI: 10.1016/s0091-679x(08)61530-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- E Orias
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara 93106, USA
| | | | | |
Collapse
|
37
|
Abstract
In yeast, the constant length of telomeric DNA results from a negative regulation of telomerase by the telomere itself. Here we follow the return to equilibrium of an abnormally shortened telomere. We observe that telomere elongation is restricted to a few base pairs per generation and that its rate decreases progressively with increasing telomere length. In contrast, in the absence of telomerase or in the presence of an over-elongated telomere, the degradation rate linked to the succession of generations appears to be constant, i.e. independent of telomere length. Together, these results indicate that telomerase is gradually inhibited at its site of action by the elongating telomere. The implications of this finding for the dynamics of telomere length regulation are discussed in this study.
Collapse
Affiliation(s)
- S Marcand
- Laboratoire de Biologie Moléculaire et Cellulaire, Ecole Normale Supérieure de Lyon, UMR8510 CNRS/ENSL, 69364 Lyon Cedex 07, France
| | | | | |
Collapse
|
38
|
Abstract
Telomere length is dynamic in many organisms. Genetic screens that identify mutants with altered telomere lengths are essential if we are to understand how telomere length is regulated in vivo. In Tetrahymena thermophila, telomeres become long at 30 degrees, and growth rate slows. A slow-growing culture with long telomeres is often overgrown by a variant cell type with short telomeres and a rapid-doubling rate. Here we show that this variant cell type with short telomeres is in fact a mutant with a genetic defect in telomere length regulation. One of these telomere growth inhibited forever (tgi) mutants was heterozygous for a telomerase RNA mutation, and this mutant telomerase RNA caused telomere shortening when overexpressed in wild-type cells. Several other tgi mutants were also likely to be heterozygous at their mutant loci, since they reverted to wild type when selective pressure for short telomeres was removed. These results illustrate that telomere length can regulate growth rate in Tetrahymena and that this phenomenon can be exploited to identify genes involved in telomere length regulation.
Collapse
Affiliation(s)
- S Ahmed
- Department of Zoology and Genetics, Signal Transduction Training Group, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Telomeres are the termini of linear eukaryotic chromosomes consisting of tandem repeats of DNA and proteins that bind to these repeat sequences. Telomeres ensure the complete replication of chromosome ends, impart protection to ends from nucleolytic degradation, end-to-end fusion, and guide the localization of chromosomes within the nucleus. In addition, a combination of genetic, biochemical, and molecular biological approaches have implicated key roles for telomeres in diverse cellular processes such as regulation of gene expression, cell division, cell senescence, and cancer. This review focuses on recent advances in our understanding of the organization of telomeres, telomere replication, proteins that bind telomeric DNA, and the establishment of telomere length equilibrium.
Collapse
Affiliation(s)
- K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore
| | | |
Collapse
|
40
|
Abstract
The telomeric d(GGGGTT).d(AACCCC) repeat tracts (G4T2 repeats) in Tetrahymena thermophila macronuclei were shown previously to be packaged in a non-nucleosomal DNA-protein complex. Here, we demonstrate that these telomeric repeats, together with a short region of the immediately adjacent non-telomeric sequence, exist in two distinct types of chromatin. The non-nucleosomal complex (type I complex) comprises approximately 90 to 97% of telomeric DNA, has no apparent underlying periodic nucleosomal substructure, and includes the whole telomeric tract as well as the immediately adjacent sequence. Type II chromatin, comprising the remaining approximately 3 to 10% of the total telomeric DNA, consists of tightly packed nucleosomes clustered at the inner border of the telomeric tracts, with a periodicity of 154(+/-3) bp. This packing is similar to that of telomeric nucleosomes in vertebrates. However, in contrast to the unstability of vertebrate telomeric mononucleosomes, the T. thermophila mononucleosomes were stable to micrococcal nuclease digestion. During the natural lengthening of the T. thermophila telomeric DNA tracts that occurs in vegetatively dividing cells, the overall ratio of type I and type II chromatin did not change. However, type I complex expanded with the length of the telomeric DNA repeat tract, and the number of telomeric nucleosomes increased from an average of one, up to three to four, per telomeric tract. This finding of telomeric nucleosomes in T. thermophila suggests that the difference between vertebrates and lower eukaryotes in telomeric chromatin structure is quantitative rather than qualitative. We propose that deposition of nucleosomes competes with non-nucleosomal complex formation on telomeric DNA, resulting in a sub-population of chimeric telomeres containing inner nucleosomes abutting a distal, variable length of type I complex.
Collapse
Affiliation(s)
- P Cohen
- Department of Microbiology and Immunology and Department of Biochemistry and Biophysics, University of California San Francisco, 513 Parnassus, San Francisco, Box 0414, USA
| | | |
Collapse
|
41
|
Abstract
The sequence organisation of the telomeric regions is extremely similar for all eukaryotes examined to date. Subtelomeric areas may contain large sequence arrays of middle repetitive, complex elements that sometimes have similarities to retrotransposons. In between and within these complex sequences are short, satellite-like repeats. These areas contain very few genes and are thought to be organised into a heterochromatin-like domain. The terminal regions almost invariably consist of short, direct repeats. These repeats usually contain clusters of 2-4 G residues and the strand that contains these clusters (the G strand) always forms the extreme 3'-end of the chromosome. Thus, most telomeric repeats are clearly related to each other which in turn suggests a common evolutionary origin. A number of different structures can be formed by single-stranded telomeric G strand repeats and, as has been suggested recently, by the G strand. Since the main mechanism for the maintenance of telomeric repeats predicts the occurrence of single-stranded extensions of the G strand, the propensity of G-rich DNA to fold into alternative DNA structures may have implications for telomere biology.
Collapse
Affiliation(s)
- R J Wellinger
- Faculté de Médecine, Department de Microbiologie et Infectiologie, Université de Sherbrooke, QC, Canada
| | | |
Collapse
|
42
|
Abstract
Telomeres cap and protect the ends of chromosomes from degradation and illegitimate recombination. The termini of a linear template cannot, however, be completely replicated by conventional DNA-dependent DNA polymerases, and thus in the absence of a mechanisms to counter this effect, telomeres of eukaryotic cells shorten every round of DNA replication. In humans and possibly other higher eukaryotes, telomere shortening may have been adopted to limit the life span of somatic cells. Human somatic cells have a finite proliferative capacity and enter a viable growth arrested state called senescence. Life span appears to be governed by cell division, not time. The regular loss of telomeric DNA could therefore serve as a mitotic clock in the senescence programme, counting cell divisions. In most eukaryotic organisms, however, telomere shortening can be countered by the de novo addition of telomeric repeats by the enzyme telomerase. Cells which are "immortal' such as the human germ line or tumour cell lines, established mouse cells, yeast and ciliates, all maintain a stable telomere length through the action of telomerase. Abolition of telomerase activity in such cells nevertheless results in telomere shortening, a process that eventually destabilizes the ends of chromosomes, leading to genomic instability and cell growth arrest or death. Therefore, loss of terminal DNA sequences may limit cell life span by two mechanisms: by acting as a mitotic clock and by denuding chromosomes of protective telomeric DNA necessary for cell viability.
Collapse
Affiliation(s)
- C M Counter
- Whitehead Institute for Biomedical Research (Weinberg Lab), Nine Cambridge Center, MA 02142-1479, USA.
| |
Collapse
|
43
|
Gardiner JM, Coe EH, Chao S. Cloning maize telomeres by complementation in Saccharomyces cerevisiae. Genome 1996; 39:736-48. [PMID: 8776865 DOI: 10.1139/g96-093] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Maize telomeric restriction fragments were cloned by virtue of their ability to function as telomeres on a linear plasmid in Saccharomyces cerevisiae. Nine maize telomeric YAC transformants (MTYs) were selected by hybridization to the Arabidopsis telomere repeat (CCCTAAA) from a pool of 1537 primary transformants. Bal31 digestion of MTY3 and MTY9 DNA indicated that the telomere hybridizing tracts are located at the terminus of the linear chromosome and therefore function as telomeres in yeast. Subclones generated for pMTY7 (pMTY7SC1) and pMTY9 (pMTY9ER) hybridized to Bal31 sensitive restriction fragments in maize DNA, indicating that maize telomeric restriction fragments had been cloned. Both pMTY7SC and pMTY9ER detected telomeric RFLPs, allowing the endpoints of seven chromosome arms to be determined. Additionally, pMTY7ER mapped to the centromeric regions of chromosomes 2 and 3, suggesting a relationship between centromeric and telomeric sequences. DNA sequencing of pMTY7SC and pMTY9ER revealed that both subclones contained CA-rich regions with sporadic occurrences of the telomere repeat and its degenerate repeats.
Collapse
Affiliation(s)
- J M Gardiner
- Department of Agronomy, University of Missouri-Columbia 65211, USA
| | | | | |
Collapse
|
44
|
Abstract
One of the central requirements for eukaryotic chromosome stability is the maintenance of the simple sequence tracts at telomeres. In this study, we use genetic and physical assays to reveal the nature of a novel mechanism by which telomere length is controlled. This mechanism, telomeric rapid deletion (TRD), is capable of reducing elongated telomeres to wild-type tract length in an apparently single-division process. The deletion of telomeres to wild-type lengths is stimulated by the hpr1 mutation, suggesting that TRD in these cells is the consequence of an intrachromatid pathway. Paradoxically, TRD is also dependent on the lengths of the majority of nonhomologous telomeres in the cell. Defects in the chromatin-organizing protein Sir3p increase the rate of hpr1-induced rapid deletion and specifically change the spectrum of rapid deletion events. We propose a model in which interactions among telosomes of nonhomologous chromosomes form higher order complexes that restrict the access of the intrachromatid recombination machinery to telomeres. This mechanism of size control is distinct from that mediated through telomerase and is likely to maintain telomere length within a narrow distribution.
Collapse
Affiliation(s)
- B Li
- Graduate Program in Molecular Biology, Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | |
Collapse
|
45
|
Runge KW, Zakian VA. TEL2, an essential gene required for telomere length regulation and telomere position effect in Saccharomyces cerevisiae. Mol Cell Biol 1996; 16:3094-105. [PMID: 8649421 PMCID: PMC231304 DOI: 10.1128/mcb.16.6.3094] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The DNA-protein complexes at the ends of linear eukaryotic chromosomes are called the telomeres. In Saccharomyces cerevisiae, telomeric DNA consists of a variable length of the short repeated sequence C1-3A. The length of yeast telomeres can be altered by mutation, by changing the levels of telomere binding proteins, or by increasing the amount of C1-3A DNA sequences. Cells bearing the tel1-1 or tel2-1 mutations, known previously to have short telomeres, did not respond to perturbations that caused telomere lengthening in wild-type cells. The transcription of genes placed near yeast telomeres is reversibly repressed, a phenomenon called the telomere position effect. The tel2-1 mutation reduced the position effect but did not affect transcriptional repression at the silent mating type cassettes, HMRa and HML alpha. The TEL2 gene was cloned, sequenced, and disrupted. Cells lacking TEL2 function died, with some cells arresting as large cells with three or four small protrusions or "blebs."
Collapse
Affiliation(s)
- K W Runge
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA.
| | | |
Collapse
|
46
|
|
47
|
Strahl C, Blackburn EH. Effects of reverse transcriptase inhibitors on telomere length and telomerase activity in two immortalized human cell lines. Mol Cell Biol 1996; 16:53-65. [PMID: 8524329 PMCID: PMC230978 DOI: 10.1128/mcb.16.1.53] [Citation(s) in RCA: 258] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The ribonucleoprotein telomerase, a specialized cellular reverse transcriptase, synthesizes one strand of the telomeric DNA of eukaryotes. We analyzed telomere maintenance in two immortalized human cell lines: the B-cell line JY616 and the T-cell line Jurkat E6-1, and determined whether known inhibitors of retroviral reverse transcriptases could perturb telomere lengths and growth rates of these cells in culture. Dideoxyguanosine (ddG) caused reproducible, progressive telomere shortening over several weeks of passaging, after which the telomeres stabilized and remained short. However, the prolonged passaging in ddG caused no observable effects on cell population doubling rates or morphology. Azidothymidine (AZT) caused progressive telomere shortening in some but not all T- and B-cell cultures. Telomerase activity was present in both cell lines and was inhibited in vitro by ddGTP and AZT triphosphate. Prolonged passaging in arabinofuranyl-guanosine, dideoxyinosine (ddI), dideoxyadenosine (ddA), didehydrothymidine (d4T), or phosphonoformic acid (foscarnet) did not cause reproducible telomere shortening or decreased cell growth rates or viabilities. Combining AZT, foscarnet, and/or arabinofuranyl-guanosine with ddG did not significantly augment the effects of ddG alone. Strikingly, with or without inhibitors, telomere lengths were often highly unstable in both cell lines and varied between parallel cell cultures. We propose that telomere lengths in these T- and B-cell lines are determined by both telomerase and telomerase-independent mechanisms.
Collapse
Affiliation(s)
- C Strahl
- Department of Microbiology and Immunology, University of California, San Francisco 94143-0414, USA
| | | |
Collapse
|
48
|
Abstract
Telomeres are the protein-DNA structures at the ends of eukaryotic chromosomes. In yeast, and probably most other eukaryotes, telomeres are essential. They allow the cell to distinguish intact from broken chromosomes, protect chromosomes from degradation, and are substrates for novel replication mechanisms. Telomeres are usually replicated by telomerase, a telomere-specific reverse transcriptase, although telomerase-independent mechanisms of telomere maintenance exist. Telomere replication is both cell cycle- and developmentally regulated, and its control is likely to be complex. Because telomere loss causes the kinds of chromosomal changes associated with cancer and aging, an understanding of telomere biology has medical relevance.
Collapse
Affiliation(s)
- V A Zakian
- Department of Molecular Biology, Princeton University, NJ 08544, USA
| |
Collapse
|
49
|
Yamada O, Oshimi K, Motoji T, Mizoguchi H. Telomeric DNA in normal and leukemic blood cells. J Clin Invest 1995; 95:1117-23. [PMID: 7883960 PMCID: PMC441448 DOI: 10.1172/jci117759] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We studied telomeric DNA in leukemic cells as well as in normal T cells, B cells, monocytes, polymorphonuclear leukocytes, and bone marrow hematopoietic progenitor cells. No marked differences were observed in the sizes of the telomeric repeats in the various populations of normal blood cells obtained from donors in their twenties to sixties, and the telomere length ranged between 8.5 and 9.0 kb. The leukemic cells of 12 patients with acute leukemia (seven with myeloid and five with lymphoid leukemia) showed a variable reduction in the length of telomeric DNA, ranging from 2.7 to 6.4 kb. The average telomere length was 4.8 and 4.7 kb in myeloid and lymphoid leukemia, respectively, while the telomere length in peripheral blood mononuclear cells obtained from the same patients during complete remission was 8.5 and 7.9 kb, respectively. When the same Southern blots were hybridized with Alu or alphoid sequences, no marked changes in the sizes of the repetitive DNA sequences were observed, indicating that the DNA abnormality in the leukemic cells was specific to the telomere region. Investigation of telomeric DNA changes may be helpful in determining the biological properties of leukemic cells.
Collapse
Affiliation(s)
- O Yamada
- Department of Hematology, Tokyo Women's Medical College, Japan
| | | | | | | |
Collapse
|
50
|
Kirk KE, Blackburn EH. An unusual sequence arrangement in the telomeres of the germ-line micronucleus in Tetrahymena thermophila. Genes Dev 1995; 9:59-71. [PMID: 7828852 DOI: 10.1101/gad.9.1.59] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The ciliated protozoan Tetrahymena thermophila contains two nuclei that differ dramatically in function, chromosome size and number, chromatin structure, and mode of division. It is possible that the telomeres of the two nuclei have different functions. Although macronuclear telomeric DNA has been well characterized and consists of tandem G4T2/C4A2 repeats that are synthesized by the enzyme telomerase, micronuclear telomeres have not been isolated previously. Here, we report the identification and cloning of micronuclear telomeres and demonstrate that although they contain the same terminal tandem G4T2 repeats as macronuclear telomeres, they are strikingly different in three respects. First, the tracts of G/C-rich telomeric repeats are approximately seven times longer in the micronucleus than in the macronucleus (approximately 2.0-3.4 vs. approximately 0.3-0.5 kb, respectively) from the same cell population. Second, the immediate telomere-associated sequences (TASs) from six different micronuclear chromosome ends have an unusually high G/C content and degree of homology to one another, unlike macronuclear TASs. The TAS from at least one micronuclear chromosome is unique to micronuclear telomeres and is not present in the macronucleus. Finally, and unexpectedly, all micronuclear telomere clones contain an inner homogeneous tract of a variant G4T3 repeat adjacent to the distal tract of G4T2 repeats. The native micronuclear telomeric DNA is composed of approximately 30% G4T3 repeats, corresponding to 0.6-1.0 kb per average telomere, positioned centromere-proximally to most or all of the G4T2 repeats. Neither the G4T3 sequence nor any other variant repeat is found in macronuclear telomeres. Furthermore, such a homogeneous tract of a variant repeat has not been found in the telomeres of any eukaryote.
Collapse
Affiliation(s)
- K E Kirk
- Department of Microbiology, University of California at San Francisco 94122
| | | |
Collapse
|