1
|
Riaz N, Burugu S, Cheng AS, Leung SCY, Gao D, Nielsen TO. Prognostic Significance of CSF-1R Expression in Early Invasive Breast Cancer. Cancers (Basel) 2021; 13:5769. [PMID: 34830923 PMCID: PMC8616299 DOI: 10.3390/cancers13225769] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022] Open
Abstract
Colony-stimulating factor-1 receptor (CSF-1R) signaling promotes an immune suppressive microenvironment enriched in M2 macrophages. Given that CSF-1R inhibitors are under investigation in clinical trials, including in breast cancer, CSF-1R expression and association with immune biomarkers could identify patients who derive greater benefit from combination with immunotherapies. TIMER2.0 and bc-GenExMiner v4.7 were used to assess the correlation of CSF1R mRNA with immune infiltrates and prognosis. Following a prespecified training-validation approach, an optimized immunohistochemistry assay was applied to assess CSF-1R on carcinoma cells and macrophages on breast cancer tissue microarray series representing 2384 patients, coupled to comprehensive clinicopathological, biomarker, and outcome data. Significant positive correlations were observed between CSF1R mRNA and immune infiltrates. High carcinoma CSF-1R correlated with grade 3 tumors >2 cm, hormone receptor negativity, high Ki67, immune checkpoint biomarkers, and macrophages expressing CSF-1R and CD163. High carcinoma CSF-1R was significantly associated with poor survival in univariate and multivariate analyses. Adverse prognostic associations were retained in ER+ cases regardless of the presence of CD8+ T cells. CSF-1R+ macrophages were not prognostic. High carcinoma CSF-1R is associated with aggressive breast cancer biology and poor prognosis, particularly in ER+ cases, and identifies patients in whom biomarker-directed CSF-1R therapies may yield superior therapeutic responses.
Collapse
Affiliation(s)
- Nazia Riaz
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.R.); (S.B.); (A.S.C.); (S.C.Y.L.); (D.G.)
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi 74800, Pakistan
| | - Samantha Burugu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.R.); (S.B.); (A.S.C.); (S.C.Y.L.); (D.G.)
| | - Angela S. Cheng
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.R.); (S.B.); (A.S.C.); (S.C.Y.L.); (D.G.)
| | - Samuel C. Y. Leung
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.R.); (S.B.); (A.S.C.); (S.C.Y.L.); (D.G.)
| | - Dongxia Gao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.R.); (S.B.); (A.S.C.); (S.C.Y.L.); (D.G.)
| | - Torsten O. Nielsen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.R.); (S.B.); (A.S.C.); (S.C.Y.L.); (D.G.)
| |
Collapse
|
2
|
Shi X, Kaller M, Rokavec M, Kirchner T, Horst D, Hermeking H. Characterization of a p53/miR-34a/CSF1R/STAT3 Feedback Loop in Colorectal Cancer. Cell Mol Gastroenterol Hepatol 2020; 10:391-418. [PMID: 32304779 PMCID: PMC7423584 DOI: 10.1016/j.jcmgh.2020.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The miR-34a gene is a direct target of p53 and is commonly silenced in colorectal cancer (CRC). Here we identified the receptor tyrosine kinase CSF1R as a direct miR-34a target and characterized CSF1R as an effector of p53/miR-34a-mediated CRC suppression. METHODS Analyses of TCGA-COAD and three other CRC cohorts for association of mRNA expression and signatures with patient survival and molecular subtypes. Bioinformatics identification and experimental validation of miRNA and transcription factor targets. Functional analysis of factors/pathways in the regulation of epithelial-mesenchymal transition (EMT), invasion, migration, acquired chemo-resistance and metastasis. Analyses of protein expression and CpG methylation within primary human colon cancer samples. RESULTS In primary CRCs increased CSF1R, CSF1 and IL34 expression was associated with poor patient survival and a mesenchymal-like subtype. CSF1R displayed an inverse correlation with miR-34a expression. This was explained by direct inhibition of CSF1R by miR-34a. Furthermore, p53 repressed CSF1R via inducing miR-34a, whereas SNAIL induced CSF1R both directly and indirectly via repressing miR-34a in a coherent feed-forward loop. Activation of CSF1R induced EMT, migration, invasion and metastasis of CRC cells via STAT3-mediated down-regulation of miR-34a. 5-FU resistance of CRC cells was mediated by CpG-methylation of miR-34a and the resulting elevated expression of CSF1R. In primary CRCs elevated expression of CSF1R was detected at the tumor invasion front and was associated with CpG methylation of the miR-34a promoter as well as distant metastasis. CONCLUSIONS The reciprocal inhibition between miR-34a and CSF1R and its loss in tumor cells may be relevant for therapeutic and prognostic approaches towards CRC management.
Collapse
Affiliation(s)
- Xiaolong Shi
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Kaller
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Kirchner
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Consortium, Partner site Munich, Munich, Germany,German Cancer Research Center, Heidelberg, Germany
| | - David Horst
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Research Center, Heidelberg, Germany,Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany,German Cancer Consortium, Partner site Berlin, Berlin, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Consortium, Partner site Munich, Munich, Germany,German Cancer Research Center, Heidelberg, Germany,Correspondence Address requests for reprints to: Heiko Hermeking, Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Thalkirchner Strasse 36, D-80337 Munich, Germany; fax: +49-89-2180-73697.
| |
Collapse
|
3
|
Abstract
We propose a new model for prochirality that satisfies all known examples: the prochiral plane. This plane contains the prochiral carbon and defines two separate faces for chemical modification. We extend this to enzyme catalysis, replacing the "three point attachment" hypothesis and its variants. Once a prochiral substrate is fixed on an enzyme surface, the asymmetry of the enzyme provides reactants exclusively on one side of the prochiral plane, producing an enantiomerically pure chiral product. The aconitase reaction is detailed as an example, using molecular modeling and its known enzymatic mechanism. We show that the prochiral substrate for this enzyme is not citrate, but rather cis-aconitate. The number of interaction points of cis-aconitate is not relevant to prochirality, but rather to substrate specificity. A second detailed example is the enzyme fumarase; here the substrate fumarate has only two binding sites, but is nonetheless fixed onto the enzyme and has a defined prochiral plane. We also provide a literature survey of more prochiral substrates, all of which have sp2 hybridized carbon and contain a prochiral plane. An example of a prochiral unnatural substrate for sphingosine kinase 2, fingolimod, has an sp3 hybridized prochiral carbon and also contains a prochiral plane. Finally, we provide an intuitive example of a prochiral physical object, a coffee cup, interacting with one hand and lip.
Collapse
Affiliation(s)
- Raymond S Ochs
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| | - Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| |
Collapse
|
4
|
Takahashi S. Mutations of FLT3 receptor affect its surface glycosylation, intracellular localization, and downstream signaling. Leuk Res Rep 2019; 13:100187. [PMID: 31853441 PMCID: PMC6911968 DOI: 10.1016/j.lrr.2019.100187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/29/2019] [Accepted: 11/23/2019] [Indexed: 11/29/2022] Open
Abstract
This review describes the effects of FLT3 mutations that alter its intracellular localization and modify its glycosylation, leading to differences in downstream signaling pathways. The most common type of FLT3 mutation, internal tandem duplication (FLT3-ITD), leads to localization in the endoplasmic reticulum and constitutive strong activation of STAT5. In contrast, the ligand-activated FLT3-wild type is mainly expressed on the cell surface and activates MAP kinases. Based on these backgrounds, several reports have demonstrated that glycosylation inhibitors are effective for inhibition of FLT3-ITD expression and intracellular localization. The general subcellular localization regulatory mechanisms for receptor tyrosine kinases are also discussed.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Division of Laboratory Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| |
Collapse
|
5
|
Ip CKM, Ng PKS, Jeong KJ, Shao SH, Ju Z, Leonard PG, Hua X, Vellano CP, Woessner R, Sahni N, Scott KL, Mills GB. Neomorphic PDGFRA extracellular domain driver mutations are resistant to PDGFRA targeted therapies. Nat Commun 2018; 9:4583. [PMID: 30389923 PMCID: PMC6214970 DOI: 10.1038/s41467-018-06949-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/02/2018] [Indexed: 11/09/2022] Open
Abstract
Activation of platelet-derived growth factor receptor alpha (PDGFRA) by genomic aberrations contributes to tumor progression in several tumor types. In this study, we characterize 16 novel PDGFRA mutations identified from different tumor types and identify three previously uncharacterized activating mutations that promote cell survival and proliferation. PDGFRA Y288C, an extracellular domain mutation, is primarily high mannose glycosylated consistent with trapping in the endoplasmic reticulum (ER). Strikingly, PDGFRA Y288C is constitutively dimerized and phosphorylated in the absence of ligand suggesting that trapping in the ER or aberrant glycosylation is sufficient for receptor activation. Importantly, PDGFRA Y288C induces constitutive phosphorylation of Akt, ERK1/2, and STAT3. PDGFRA Y288C is resistant to PDGFR inhibitors but sensitive to PI3K/mTOR and MEK inhibitors consistent with pathway activation results. Our findings further highlight the importance of characterizing functional consequences of individual mutations for precision medicine.
Collapse
Affiliation(s)
- Carman K M Ip
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Patrick K S Ng
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Kang Jin Jeong
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - S H Shao
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - P G Leonard
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX, 77054, USA.,Core for Biomolecular Structure and Function, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX, 77054, USA
| | - Xu Hua
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Christopher P Vellano
- Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Richard Woessner
- Cancer Bioscience, in vivo Cancer Pharmacology, AstraZeneca Phamaceuticals, Boston, MA, 02451, USA
| | - Nidhi Sahni
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.,Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1808 Park Rd 1C, Smithville, TX, 78957, USA
| | - Kenneth L Scott
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Suite 450A, Houston, TX, 77030, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.,Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| |
Collapse
|
6
|
Pass HI, Lavilla C, Canino C, Goparaju C, Preiss J, Noreen S, Blandino G, Cioce M. Inhibition of the colony-stimulating-factor-1 receptor affects the resistance of lung cancer cells to cisplatin. Oncotarget 2018; 7:56408-56421. [PMID: 27486763 PMCID: PMC5302923 DOI: 10.18632/oncotarget.10895] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023] Open
Abstract
In the present work we show that multiple lung cancer cell lines contain cisplatin resistant cell subpopulations expressing the Colony-Stimulating-Factor-Receptor-1 (CSF-1R) and surviving chemotherapy-induced stress. By exploiting siRNA-mediated knock down in vitro and the use of an investigational CSF-1R TKI (JNJ-40346527) in vitro and in vivo, we show that expression and function of the receptor are required for the clonogenicity and chemoresistance of the cell lines. Thus, inhibition of the kinase activity of the receptor reduced the levels of EMT-associated genes, stem cell markers and chemoresistance genes. Additionally, the number of high aldehyde dehydrogenase (ALDH) expressing cells was reduced, consequent to the lack of cisplatin-induced increase of ALDH isoforms. This affected the collective chemoresistance of the treated cultures. Treatment of tumor bearing mice with JNJ-40346527, at pharmacologically relevant doses, produced strong chemo-sensitizing effects in vivo. These anticancer effects correlated with a reduced number of CSF-1Rpos cells, in tumors excised from the treated mice. Depletion of the CD45pos cells within the treated tumors did not, apparently, play a major role in mediating the therapeutic response to the TKI. Thus, lung cancer cells express a functional CSF-1 and CSF-1R duo which mediates pro-tumorigenic effects in vivo and in vitro and can be targeted in a therapeutically relevant way. These observations complement the already known role for the CSF-1R at mediating the pro-tumorigenic properties of tumor-infiltrating immune components.
Collapse
Affiliation(s)
- Harvey I Pass
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, USA
| | - Carmencita Lavilla
- New York University Langone Medical Center, New York University, New York, USA
| | - Claudia Canino
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, USA.,University Campus Biomedico, Rome, Italy
| | - Chandra Goparaju
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, USA
| | - Jordan Preiss
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, USA
| | - Samrah Noreen
- New York University Langone Medical Center, New York University, New York, USA
| | - Giovanni Blandino
- Translational Oncogenomics Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy.,Department of Oncology, Juravinski Cancer Center-McMaster University, Hamilton, Ontario, Canada
| | - Mario Cioce
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, USA.,Translational Oncogenomics Unit, Italian National Cancer Institute 'Regina Elena', Rome, Italy
| |
Collapse
|
7
|
Sapi E. The Role of CSF-1 in Normal Physiology of Mammary Gland and Breast Cancer: An Update. Exp Biol Med (Maywood) 2016; 229:1-11. [PMID: 14709771 DOI: 10.1177/153537020422900101] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Colony stimulating factor (CSF-1) and its receptor (CSF-1R, product of c-fms proto-oncogene) were initially implicated as essential for normal monocyte development as well as for trophoblastic implantation. However, studies have demonstrated that CSF-1 and CSF-1R have additional roles in mammary gland development during pregnancy and lactation. This apparent role for CSF-1/CSF-1R in normal mammary gland development is very intriguing because this receptor/ligand pair has also been found to be important in the biology of breast cancer in which abnormal expression of CSF-1 and its receptor correlates with tumor cell invasiveness and adverse clinical prognosis. Recent findings also implicate tumor-produced CSF-1 in promotion of bone metastasis in breast cancer, and a certain membrane-associated form of CSF-1 appears to induce immunity against tumors. This review aims to summarize recent findings on the role of CSF-1 and its receptor in normal and neoplastic mammary development that may elucidate potential relationships of growth factor–induced biological changes in the breast during pregnancy and tumor progression.
Collapse
Affiliation(s)
- Eva Sapi
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA.
| |
Collapse
|
8
|
Widdison WC, Ponte JF, Coccia JA, Lanieri L, Setiady Y, Dong L, Skaletskaya A, Hong EE, Wu R, Qiu Q, Singh R, Salomon P, Fishkin N, Harris L, Maloney EK, Kovtun Y, Veale K, Wilhelm SD, Audette CA, Costoplus JA, Chari RVJ. Development of Anilino-Maytansinoid ADCs that Efficiently Release Cytotoxic Metabolites in Cancer Cells and Induce High Levels of Bystander Killing. Bioconjug Chem 2015; 26:2261-78. [DOI: 10.1021/acs.bioconjchem.5b00430] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Jose F. Ponte
- ImmunoGen Inc., Waltham, Massachusetts 02451, United States
| | | | - Leanne Lanieri
- ImmunoGen Inc., Waltham, Massachusetts 02451, United States
| | - Yulius Setiady
- ImmunoGen Inc., Waltham, Massachusetts 02451, United States
| | - Ling Dong
- ImmunoGen Inc., Waltham, Massachusetts 02451, United States
| | | | - E. Erica Hong
- ImmunoGen Inc., Waltham, Massachusetts 02451, United States
| | - Rui Wu
- ImmunoGen Inc., Waltham, Massachusetts 02451, United States
| | - Qifeng Qiu
- ImmunoGen Inc., Waltham, Massachusetts 02451, United States
| | - Rajeeva Singh
- ImmunoGen Inc., Waltham, Massachusetts 02451, United States
| | - Paulin Salomon
- ImmunoGen Inc., Waltham, Massachusetts 02451, United States
| | - Nathan Fishkin
- ImmunoGen Inc., Waltham, Massachusetts 02451, United States
| | - Luke Harris
- ImmunoGen Inc., Waltham, Massachusetts 02451, United States
| | | | - Yelena Kovtun
- ImmunoGen Inc., Waltham, Massachusetts 02451, United States
| | - Karen Veale
- ImmunoGen Inc., Waltham, Massachusetts 02451, United States
| | | | | | | | | |
Collapse
|
9
|
Felix J, De Munck S, Verstraete K, Meuris L, Callewaert N, Elegheert J, Savvides SN. Structure and Assembly Mechanism of the Signaling Complex Mediated by Human CSF-1. Structure 2015; 23:1621-1631. [PMID: 26235028 DOI: 10.1016/j.str.2015.06.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/12/2015] [Accepted: 06/21/2015] [Indexed: 01/03/2023]
Abstract
Human colony-stimulating factor 1 receptor (hCSF-1R) is unique among the hematopoietic receptors because it is activated by two distinct cytokines, CSF-1 and interleukin-34 (IL-34). Despite ever-growing insights into the central role of hCSF-1R signaling in innate and adaptive immunity, inflammatory diseases, and cancer, the structural basis of the functional dichotomy of hCSF-1R has remained elusive. Here, we report crystal structures of ternary complexes between hCSF-1 and hCSF-1R, including their complete extracellular assembly, and propose a mechanism for the cooperative human CSF-1:CSF-1R complex that relies on the adoption by dimeric hCSF-1 of an active conformational state and homotypic receptor interactions. Furthermore, we trace the cytokine-binding duality of hCSF-1R to a limited set of conserved interactions mediated by functionally equivalent residues on CSF-1 and IL-34 that play into the geometric requirements of hCSF-1R activation, and map the possible mechanistic consequences of somatic mutations in hCSF-1R associated with cancer.
Collapse
Affiliation(s)
- Jan Felix
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium; Unit for Structural Biology, VIB Inflammation Research Center, 9052 Ghent, Belgium
| | - Steven De Munck
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium; Unit for Structural Biology, VIB Inflammation Research Center, 9052 Ghent, Belgium
| | - Kenneth Verstraete
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium; Unit for Structural Biology, VIB Inflammation Research Center, 9052 Ghent, Belgium
| | - Leander Meuris
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium; VIB Medical Biotechnology Center, 9052 Ghent, Belgium
| | - Nico Callewaert
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium; VIB Medical Biotechnology Center, 9052 Ghent, Belgium
| | - Jonathan Elegheert
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Savvas N Savvides
- Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium; Unit for Structural Biology, VIB Inflammation Research Center, 9052 Ghent, Belgium.
| |
Collapse
|
10
|
Constitutive activation of oncogenic PDGFRα-mutant proteins occurring in GIST patients induces receptor mislocalisation and alters PDGFRα signalling characteristics. Cell Commun Signal 2015; 13:21. [PMID: 25880691 PMCID: PMC4396151 DOI: 10.1186/s12964-015-0096-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/05/2015] [Indexed: 12/11/2022] Open
Abstract
Background Gastrointestinal stromal tumours (GIST) are mainly characterised by the presence of activating mutations in either of the two receptor tyrosine kinases c-KIT or platelet-derived growth factor receptor-α (PDGFRα). Most mechanistic studies dealing with GIST mutations have focused on c-KIT and far less is known about the signalling characteristics of the mutated PDGFRα proteins. Here, we study the signalling capacities and corresponding transcriptional responses of the different PDGFRα proteins under comparable genomic conditions. Results We demonstrate that the constitutive signalling via the oncogenic PDGFRα mutants favours a mislocalisation of the receptors and that this modifies the signalling characteristics of the mutated receptors. We show that signalling via the oncogenic PDGFRα mutants is not solely characterised by a constitutive activation of the conventional PDGFRα signalling pathways. In contrast to wild-type PDGFRα signal transduction, the activation of STAT factors (STAT1, STAT3 and STAT5) is an integral part of signalling mediated via mutated PDGF-receptors. Furthermore, this unconventional STAT activation by mutated PDGFRα is already initiated in the endoplasmic reticulum whereas the conventional signalling pathways rather require cell surface expression of the receptor. Finally, we demonstrate that the activation of STAT factors also translates into a biologic response as highlighted by the induction of STAT target genes. Conclusion We show that the overall oncogenic response is the result of different signatures emanating from different cellular compartments. Furthermore, STAT mediated responses are an integral part of mutated PDGFRα signalling. Electronic supplementary material The online version of this article (doi:10.1186/s12964-015-0096-8) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Abstract
The CSF-1 receptor (CSF-1R) is activated by the homodimeric growth factors colony-stimulating factor-1 (CSF-1) and interleukin-34 (IL-34). It plays important roles in development and in innate immunity by regulating the development of most tissue macrophages and osteoclasts, of Langerhans cells of the skin, of Paneth cells of the small intestine, and of brain microglia. It also regulates the differentiation of neural progenitor cells and controls functions of oocytes and trophoblastic cells in the female reproductive tract. Owing to this broad tissue expression pattern, it plays a central role in neoplastic, inflammatory, and neurological diseases. In this review we summarize the evolution, structure, and regulation of expression of the CSF-1R gene. We discuss the structures of CSF-1, IL-34, and the CSF-1R and the mechanism of ligand binding to and activation of the receptor. We further describe the pathways regulating macrophage survival, proliferation, differentiation, and chemotaxis downstream from the CSF-1R.
Collapse
Affiliation(s)
- E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
12
|
Cioce M, Canino C, Goparaju C, Yang H, Carbone M, Pass HI. Autocrine CSF-1R signaling drives mesothelioma chemoresistance via AKT activation. Cell Death Dis 2014; 5:e1167. [PMID: 24722292 PMCID: PMC5424113 DOI: 10.1038/cddis.2014.136] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/21/2014] [Accepted: 02/28/2014] [Indexed: 01/02/2023]
Abstract
Clinical management of malignant pleural mesothelioma (MPM) is very challenging because of the uncommon resistance of this tumor to chemotherapy. We report here increased expression of macrophage colony-stimulating-factor-1-receptor (M-CSF/CSF-1R) mRNA in mesothelioma versus normal tissue specimens and demonstrate that CSF-1R expression identifies chemoresistant cells of mesothelial nature in both primary cultures and mesothelioma cell lines. By using RNAi or ligand trapping, we demonstrate that the chemoresistance properties of those cells depend on autocrine CSF-1R signaling. At the single-cell level, the isolated CSF-1Rpos cells exhibit a complex repertoire of pluripotency, epithelial–mesenchymal transition and detoxifying factors, which define a clonogenic, chemoresistant, precursor-like cell sub-population. The simple activation of CSF-1R in untransformed mesothelial cells is sufficient to confer clonogenicity and resistance to pemetrexed, hallmarks of mesothelioma. In addition, this induced a gene expression profile highly mimicking that observed in the MPM cells endogenously expressing the receptor and the ligands, suggesting that CSF-1R expression is mainly responsible for the phenotype of the identified cell sub-populations. The survival of CSF1Rpos cells requires active AKT (v-akt murine thymoma viral oncogene homolog 1) signaling, which contributed to increased levels of nuclear, transcriptionally competent β-catenin. Inhibition of AKT reduced the transcriptional activity of β-catenin-dependent reporters and sensitized the cells to senescence-induced clonogenic death after pemetrexed treatment. This work expands what is known on the non-macrophage functions of CSF-1R and its role in solid tumors, and suggests that CSF-1R signaling may have a critical pathogenic role in a prototypical, inflammation-related cancer such as MPM and therefore may represent a promising target for therapeutic intervention.
Collapse
Affiliation(s)
- M Cioce
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, NY, USA
| | - C Canino
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, NY, USA
| | - C Goparaju
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, NY, USA
| | - H Yang
- University of Hawaii Cancer Center, John A Burns School of Medicine, University of Hawaii, Honolulu, HA, USA
| | - M Carbone
- University of Hawaii Cancer Center, John A Burns School of Medicine, University of Hawaii, Honolulu, HA, USA
| | - H I Pass
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, NY, USA
| |
Collapse
|
13
|
Dan XM, Zhong ZP, Li YW, Luo XC, Li AX. Cloning and expression analysis of grouper (Epinephelus coioides) M-CSFR gene post Cryptocaryon irritans infection and distribution of M-CSFR(+) cells. FISH & SHELLFISH IMMUNOLOGY 2013; 35:240-248. [PMID: 23643873 DOI: 10.1016/j.fsi.2013.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 03/25/2013] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
The M-CSF/M-CSFR system plays a central role in the cell survival, proliferation, differentiation and maturation of the monocyte/macrophage lineage. In present study, we cloned the sequence of the M-CSFR cDNA from the orange-spotted grouper (Epinephelus coioides). Sequence analysis reveals that ten cysteines in the extracellular immunoglobulin-like (Ig-like) domains of EcM-CSFR are conserved in fish and mammals, its nine possible N-glycosylation sites are conserved in fish but not mammals, 7 of 8 identified mammal M-CSFR intracellular autophosphorylation tyrosine sites was found in EcM-CSFR. Real-time PCR showed that the constitutive expression level of EcM-CSFR was the highest in the spleen, less in the gill, kidney, head kidney and liver, least in the blood, skin, gut and thymus. A rabbit anti-EcM-CSFR polyclonal antibody against the recombinant EcM-CSFR extracellular domain was developed and it was efficient in labeling the monocytes and macrophages isolated from the head kidney. Immunochemistry analysis showed that M-CSFR(+) cells located in all tested paraffin-embedded tissues and M-CSFR(+) cell centres with the characteristic of melano-macrophage centres(MMCs) was found in the spleen, head kidney, kidney, gut and liver. All these results indicate the widespread distribution of macrophages in grouper tissues and its importance in fish immune system. In Crytocaryon irritans infected grouper, EcM-CSFR was transient up-regulated and rapidly down-regulated in skin, gill, head kidney and spleen. The possible activation mechanism of macrophage via EcM-CSFR signal transduction in the fish anti-C. irritans infection was discussed.
Collapse
Affiliation(s)
- Xue-Ming Dan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | | | | | | | | |
Collapse
|
14
|
Verstraete K, Savvides SN. Extracellular assembly and activation principles of oncogenic class III receptor tyrosine kinases. Nat Rev Cancer 2012; 12:753-66. [PMID: 23076159 DOI: 10.1038/nrc3371] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intracellular signalling cascades initiated by class III receptor tyrosine kinases (RTK-IIIs) and their cytokine ligands contribute to haematopoiesis and mesenchymal tissue development. They are also implicated in a wide range of inflammatory disorders and cancers. Recent snapshots of RTK-III ectodomains in complex with cognate cytokines have revealed timely insights into the structural determinants of RTK-III activation, evolution and pathology. Importantly, candidate 'driver' and 'passenger' mutations that have been identified in RTK-IIIs can now be collectively mapped for the first time to structural scaffolds of the corresponding RTK-III ectodomains. Such insights will generate a renewed interest in dissecting the mechanistic effects of such mutations and their therapeutic relevance.
Collapse
Affiliation(s)
- Kenneth Verstraete
- Unit for Structural Biology, Laboratory for Protein Biochemistry and Biomolecular Engineering, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| | | |
Collapse
|
15
|
Allosteric competitive inactivation of hematopoietic CSF-1 signaling by the viral decoy receptor BARF1. Nat Struct Mol Biol 2012; 19:938-47. [PMID: 22902366 DOI: 10.1038/nsmb.2367] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/19/2012] [Indexed: 12/24/2022]
Abstract
Hematopoietic human colony-stimulating factor 1 (hCSF-1) is essential for innate and adaptive immunity against viral and microbial infections and cancer. The human pathogen Epstein-Barr virus secretes the lytic-cycle protein BARF1 that neutralizes hCSF-1 to achieve immunomodulation. Here we show that BARF1 binds the dimer interface of hCSF-1 with picomolar affinity, away from the cognate receptor-binding site, to establish a long-lived complex featuring three hCSF-1 at the periphery of the BARF1 toroid. BARF1 locks dimeric hCSF-1 into an inactive conformation, rendering it unable to signal via its cognate receptor on human monocytes. This reveals a new functional role for hCSF-1 cooperativity in signaling. We propose a new viral strategy paradigm featuring an allosteric decoy receptor of the competitive type, which couples efficient sequestration and inactivation of the host growth factor to abrogate cooperative assembly of the cognate signaling complex.
Collapse
|
16
|
Elegheert J, Desfosses A, Shkumatov AV, Wu X, Bracke N, Verstraete K, Van Craenenbroeck K, Brooks BR, Svergun DI, Vergauwen B, Gutsche I, Savvides SN. Extracellular complexes of the hematopoietic human and mouse CSF-1 receptor are driven by common assembly principles. Structure 2011; 19:1762-72. [PMID: 22153499 PMCID: PMC3260422 DOI: 10.1016/j.str.2011.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 09/13/2011] [Accepted: 10/06/2011] [Indexed: 10/14/2022]
Abstract
The hematopoietic colony stimulating factor-1 receptor (CSF-1R or FMS) is essential for the cellular repertoire of the mammalian immune system. Here, we report a structural and mechanistic consensus for the assembly of human and mouse CSF-1:CSF-1R complexes. The EM structure of the complete extracellular assembly of the human CSF-1:CSF-1R complex reveals how receptor dimerization by CSF-1 invokes a ternary complex featuring extensive homotypic receptor contacts and striking structural plasticity at the extremities of the complex. Studies by small-angle X-ray scattering of unliganded hCSF-1R point to large domain rearrangements upon CSF-1 binding, and provide structural evidence for the relevance of receptor predimerization at the cell surface. Comparative structural and binding studies aiming to dissect the assembly principles of human and mouse CSF-1R complexes, including a quantification of the CSF-1/CSF-1R species cross-reactivity, show that bivalent cytokine binding to receptor coupled to ensuing receptor-receptor interactions are common denominators in extracellular complex formation.
Collapse
Affiliation(s)
- Jonathan Elegheert
- Unit for Structural Biology, Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Ambroise Desfosses
- Unit for Virus Host-Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 6 rue Jules Horowitz, BP 181 38042, Grenoble cedex 9, France
| | | | - Xiongwu Wu
- Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nathalie Bracke
- Unit for Structural Biology, Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Kenneth Verstraete
- Unit for Structural Biology, Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Kathleen Van Craenenbroeck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Bernard R. Brooks
- Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Dmitri I. Svergun
- Biological Small Angle Scattering Group, EMBL, Notkestraβe 85, 22603 Hamburg, Germany
| | - Bjorn Vergauwen
- Unit for Structural Biology, Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Irina Gutsche
- Unit for Virus Host-Cell Interactions, UMI 3265 UJF-EMBL-CNRS, 6 rue Jules Horowitz, BP 181 38042, Grenoble cedex 9, France
| | - Savvas N. Savvides
- Unit for Structural Biology, Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE), Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
17
|
New insights into the mechanisms of hematopoietic cell transformation by activated receptor tyrosine kinases. Blood 2010; 116:2429-37. [PMID: 20581310 DOI: 10.1182/blood-2010-04-279752] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A large number of alterations in genes encoding receptor tyrosine kinase (RTK), namely FLT3, c-KIT, platelet-derived growth factor (PDGF) receptors, fibroblast growth factor (FGF) receptors, and the anaplastic large cell lymphoma kinase (ALK), have been found in hematopoietic malignancies. They have drawn much attention after the development of tyrosine kinase inhibitors. RTK gene alterations include point mutations and gene fusions that result from chromosomal rearrangements. In both cases, they activate the kinase domain in the absence of ligand, producing a permanent signal for cell proliferation. Recently, this simple model has been refined. First, by contrast to wild-type RTK, many mutated RTK do not seem to signal from the plasma membrane, but from various locations inside the cell. Second, their signal transduction properties are altered: the pathways that are crucial for cell transformation, such as signal transducer and activator of transcription (STAT) factors, do not necessarily contribute to the physiologic functions of these receptors. Finally, different mechanisms prevent the termination of the signal, which normally occurs through receptor ubiquitination and degradation. Several mutations inactivating CBL, a key RTK E3 ubiquitin ligase, have been recently described. In this review, we discuss the possible links among RTK trafficking, signaling, and degradation in leukemic cells.
Collapse
|
18
|
Abraham D, Zins K, Sioud M, Lucas T, Schäfer R, Stanley ER, Aharinejad S. Stromal cell-derived CSF-1 blockade prolongs xenograft survival of CSF-1-negative neuroblastoma. Int J Cancer 2010; 126:1339-52. [PMID: 19711348 DOI: 10.1002/ijc.24859] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The molecular mechanisms of tumor-host interactions that render neuroblastoma (NB) cells highly invasive are unclear. Cancer cells upregulate host stromal cell colony-stimulating factor-1 (CSF-1) production to recruit tumor-associated macrophages (TAMs) and accelerate tumor growth by affecting extracellular matrix remodeling and angiogenesis. By coculturing NB with stromal cells in vitro, we showed the importance of host CSF-1 expression for macrophage recruitment to NB cells. To examine this interaction in NB in vivo, mice bearing human CSF-1-expressing SK-N-AS and CSF-1-negative SK-N-DZ NB xenografts were treated with intratumoral injections of small interfering RNAs directed against mouse CSF-1. Significant suppression of both SK-N-AS and SK-N-DZ NB growth by these treatments was associated with decreased TAM infiltration, matrix metalloprotease (MMP)-12 levels and angiogenesis compared to controls, while expression of tissue inhibitors of MMPs increased following mouse CSF-1 blockade. Furthermore, Tie-2-positive and -negative TAMs recruited by host CSF-1 were identified in NB tumor tissue by confocal microscopy and flow cytometry. However, host-CSF-1 blockade prolonged survival only in CSF-1-negative SK-N-DZ NB. These studies demonstrated that increased CSF-1 production by host cells enhances TAM recruitment and NB growth and that the CSF-1 phenotype of NB tumor cells adversely affects survival.
Collapse
Affiliation(s)
- Dietmar Abraham
- Laboratory for Cardiovascular Research, Vienna Medical University, A-1090Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Acute myeloid leukemia (AML) is the most common form of leukemia in adults, and despite some recent progress in understanding the biology of the disease, AML remains the leading cause of leukemia-related deaths in adults and children. AML is a complex and heterogeneous disease, often involving multiple genetic defects that promote leukemic transformation and drug resistance. The cooperativity model suggests that an initial genetic event leads to maturational arrest in a myeloid progenitor cell, and subsequent genetic events induce proliferation and block apoptosis. Together, these genetic abnormalities lead to clonal expansion and frank leukemia. The purpose of this chapter is to review the biology of receptor tyrosine kinases (RTKs) in AML, exploring how RTKs are being used as novel prognostic factors and potential therapeutic targets.
Collapse
MESH Headings
- Adult
- Antineoplastic Agents/therapeutic use
- Drug Delivery Systems
- Forecasting
- Gene Duplication
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Models, Biological
- Mutation
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Protein Kinase Inhibitors/therapeutic use
- Proto-Oncogene Proteins c-kit/antagonists & inhibitors
- Proto-Oncogene Proteins c-kit/genetics
- Proto-Oncogene Proteins c-kit/physiology
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/physiology
Collapse
Affiliation(s)
- Derek L Stirewalt
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | | |
Collapse
|
20
|
Functional Expression of the Human Receptor for Colony-Stimulating Factor 1 (CSF-1) in Hamster Fibroblasts: CSF-1 Stimulates Na+/H+exchange and DNA-Synthesis in the Absence of Phosphoinositide Breakdown. Growth Factors 2009. [DOI: 10.3109/08977199009078017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Abella JV, Park M. Breakdown of endocytosis in the oncogenic activation of receptor tyrosine kinases. Am J Physiol Endocrinol Metab 2009; 296:E973-84. [PMID: 19240253 DOI: 10.1152/ajpendo.90857.2008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is increasing evidence to support the concept that the malignant behavior of many tumors is sustained by the deregulated activation of growth factor receptors. Activation of receptor tyrosine kinases (RTKs) by their respective ligand(s) initiates cellular signals that tightly modulate cell proliferation, survival, differentiation and migration to ensure normal tissue patterning. Therefore, uncontrolled activation of such signals can have deleterious effects, leading to oncogenesis. To date, deregulation of most RTKs has been implicated in the development of cancer, although the mechanisms that lead to their deregulation are not yet fully understood (10). RTK endocytosis, the internalization and trafficking of receptors inside the cell, has long been established as a mechanism to attenuate RTK signaling. However, RTKs have been demonstrated to continue to signal along the endocytic pathway, which contributes to the spatio-temporal regulation of signal transduction. This review will focus on recent advances linking defective endocytosis of RTKs in the development of cancer.
Collapse
Affiliation(s)
- Jasmine V Abella
- Rosalind and Morris Goodman Cancer Centre, Montreal, H3A 1A3, QC, Canada
| | | |
Collapse
|
22
|
Abstract
Uterine growth factors appear to play a role in the regulation of pregnancy. One of these, colony stimulating factor-1 (CSF-1), synthesized by the uterine epithelium under the control of female sex steroids, has been shown to have important functions both before implantation and during the formation of the placenta. In the female reproductive tract the CSF-1 receptor, the product of the c-fms proto-oncogene, is expressed in decidual cells, trophoblasts and macrophages, indicating that these cells are the primary targets for CSF-1. This article reviews the biology of CSF-1 during gestation as well as the possible involvement of CSF-1 and its receptor in the aetiology of gynaecological tumours.
Collapse
|
23
|
Douglass TG, Driggers L, Zhang JG, Hoa N, Delgado C, Williams CC, Dan Q, Sanchez R, Jeffes EWB, Wepsic HT, Myers MP, Koths K, Jadus MR. Macrophage colony stimulating factor: not just for macrophages anymore! A gateway into complex biologies. Int Immunopharmacol 2008; 8:1354-76. [PMID: 18687298 DOI: 10.1016/j.intimp.2008.04.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Accepted: 04/21/2008] [Indexed: 12/21/2022]
Abstract
Macrophage colony stimulating factor (M-CSF, also called colony stimulating factor-1) has traditionally been viewed as a growth/differentiation factor for monocytes, macrophages, and some female-specific tumors. As a result of alternative mRNA splicing and post-translational processing, several forms of M-CSF protein are produced: a secreted glycoprotein, a longer secreted form containing proteoglycan, and a short membrane-bound isoform. These different forms of M-CSF all initiate cell signaling in cells bearing the M-CSF receptor, called c-fms. Here we review the biology of M-CSF, which has important roles in bone physiology, the intestinal tract, cancer metastases to the bone, macrophage-mediated tumor cell killing and tumor immunity. Although this review concentrates mostly on the membrane form of human M-CSF (mM-CSF), the biology of the soluble forms and the M-CSF receptor will also be discussed for comparative purposes. The mechanisms of the biological effects of the membrane-bound M-CSF reveal that this cytokine is unexpectedly involved in many complex molecular events. Recent experiments suggest that a tumor vaccine based on membrane-bound M-CSF-transduced tumor cells, combined with anti-angiogenic therapy, should be evaluated further for use in clinical trials.
Collapse
Affiliation(s)
- Thomas G Douglass
- Biology Department, California State University Long Beach, 1250 Bellflower Blvd, Long Beach CA 90840, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tabone-Eglinger S, Subra F, El Sayadi H, Alberti L, Tabone E, Michot JP, Théou-Anton N, Lemoine A, Blay JY, Emile JF. KIT mutations induce intracellular retention and activation of an immature form of the KIT protein in gastrointestinal stromal tumors. Clin Cancer Res 2008; 14:2285-94. [PMID: 18413817 DOI: 10.1158/1078-0432.ccr-07-4102] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Gastrointestinal stromal tumors (GIST) are frequently associated with gain-of-function mutations of KIT, which can be inhibited by imatinib both in vitro and in vivo. The survival of patients with GIST, following imatinib therapy, has been correlated with the nature of mutations but not with KIT expression. EXPERIMENTAL DESIGN Subcellular localization, activation, and trafficking of the mature and the immature forms of KIT were investigated in GIST samples and in NIH3T3 cells infected with two different GIST-type exon 11-mutated human KIT cDNA. RESULTS Paranuclear dot expression of KIT was more frequent in GISTs with homozygous KIT mutations than in those with heterozygous (P = 0.01) or no mutations (P < 0.01). Activation of the immature 125 kDa form of KIT was detected in most GISTs with KIT mutations but not in GISTs without KIT mutations. In NIH3T3 cells, mutant KIT was mainly retained within endoplasmic reticulum and Golgi compartments in an immature constitutively phosphorylated form, whereas the wild-type KIT was expressed at the plasma membrane, in a mature nonphosphorylated form. Imatinib-induced inhibition of the phosphorylation of immature and mature mutant KIT proteins resulted in the restoration of KIT expression at the cell surface. CONCLUSIONS These results show that GIST-type KIT mutations induce an activation-dependent alteration of normal maturation and trafficking, resulting in the intracellular retention of the activated kinase within the cell. These observations likely account for the absence of correlation between response to imatinib and KIT expression using immunohistochemistry and may deserve to be investigated in other tyrosine kinase-activated tumors.
Collapse
|
25
|
Matsumura I, Mizuki M, Kanakura Y. Roles for deregulated receptor tyrosine kinases and their downstream signaling molecules in hematologic malignancies. Cancer Sci 2008; 99:479-85. [PMID: 18177485 PMCID: PMC11158847 DOI: 10.1111/j.1349-7006.2007.00717.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 11/25/2007] [Indexed: 11/30/2022] Open
Abstract
Growth, survival and differentiation of hematopoietic cells are regulated by the interactions between hematopoietic growth factors and their receptors. The defect in these interactions results in a failure of hematopoiesis, while aberrantly elevated and/or sustained activation of these signals cause hematologic malignancies. Among them, constitutively activating mutations of the receptor tyrosine kinases (RTKs), such as c-Kit, platelet-derived growth factor receptor (PDGFR) and FLT3, are often involved in the pathogenesis of various types of hematologic malignancies. Constitutive activation of RTKs is provoked by several mechanisms including chromosomal translocations and various mutations involving their regulatory regions. Chromosomal translocations commonly generate chimeric proteins consisting of the cytoplasmic domain of RTKs and the dimerization or multimerization motif of the fusion partner, resulting in the constitutive dimerization of RTKs. On the other hand, missense, insertion or deletion mutations in the regulatory regions, such as juxtamembrane domain, activation loop, and extracellular domain, also cause constitutive activation of RTKs mainly by preventing the auto-inhibitory regulation. Oncogenic RTKs activate downstream signaling molecules such as Ras/MAPK, PI3-K/Akt/mTOR, and STATs as well as ligand-activated wild type RTKs. However, their signals are quantitatively and qualitatively different from wild type RTKs. Based on these findings, several agents that target oncogenic RTKs or their downstream molecules have been developed: imatinib and FLT3 inhibitors for RTKs themselves, farnesyltransferase inhibitors, mTOR inhibitors and MEK inhibitors for the downstream signaling molecules. As promising results have been obtained in several clinical trials using these agents, the establishment of these molecular targeted agents is expected.
Collapse
Affiliation(s)
- Itaru Matsumura
- Department of Hematology/Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
26
|
Sherr CJ, Kato JY, Borzillo G, Downing JR, Roussel MF. Signal-response coupling mediated by the transduced colony-stimulating factor-1 receptor and its oncogenic fms variants in naive cells. CIBA FOUNDATION SYMPOSIUM 2007; 148:96-104; discussion 104-9. [PMID: 2156660 DOI: 10.1002/9780470513880.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Colony-stimulating factor-1 (CSF-1 or M-CSF) supports the proliferation and survival of mononuclear phagocytes by binding to a receptor (CSF-1R) encoded by the c-fms proto-oncogene. Whereas the CSF-1R kinase is normally regulated by ligand, receptors bearing 'activating mutations' act constitutively as enzymes and can transform fibroblasts and haemopoietic cells of different lineages. Introduction of human CSF-1R enables mouse NIH-3T3 cells to form colonies in agar in response to human CSF-1 and to proliferate in serum-free medium supplemented with CSF-1, albumin, transferrin and insulin. Similarly, expression of human CSF-1R in interleukin 3-dependent mouse FDC-P1 myeloid cells enables them to grow in CSF-1. High levels of CSF-1R expression in FDC-P1 cells can induce factor-independent growth which is abrogated by a 'neutralizing' monoclonal antibody to the receptor. Therefore, critical mutations in the c-fms gene or overexpression of CSF-1R in immature myeloid precursors might each contribute to leukaemia.
Collapse
Affiliation(s)
- C J Sherr
- Howard Hughes Medical Institute, Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | | | | | | | |
Collapse
|
27
|
Hiyoshi M, Suzu S, Yoshidomi Y, Hassan R, Harada H, Sakashita N, Akari H, Motoyoshi K, Okada S. Interaction between Hck and HIV-1 Nef negatively regulates cell surface expression of M-CSF receptor. Blood 2007; 111:243-50. [PMID: 17893228 DOI: 10.1182/blood-2007-04-086017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nef is a multifunctional pathogenetic protein of HIV-1, the interaction of which with Hck, a Src tyrosine kinase highly expressed in macrophages, has been shown to be responsible for the development of AIDS. However, how the Nef-Hck interaction leads to the functional aberration of macrophages is poorly understood. We recently showed that Nef markedly inhibited the activity of macrophage colony-stimulating factor (M-CSF), a primary cytokine for macrophages. Here, we show that the inhibitory effect of Nef is due to the Hck-dependent down-regulation of the cell surface expression of M-CSF receptor Fms. In the presence of Hck, Nef induced the accumulation of an immature under-N-glycosylated Fms at the Golgi, thereby down-regulating Fms. The activation of Hck by the direct interaction with Nef was indispensable for the down-regulation. Unexpectedly, the accumulation of the active Hck at the Golgi where Nef prelocalized was likely to be another critical determinant of the function of Nef, because the expression of the constitutive-active forms of Hck alone did not fully down-regulate Fms. These results suggest that Nef perturbs the intracellular maturation and the trafficking of nascent Fms, through a unique mechanism that required both the activation of Hck and the aberrant spatial regulation of the active Hck.
Collapse
MESH Headings
- Adult
- Cell Line, Tumor
- Down-Regulation/immunology
- Golgi Apparatus/metabolism
- HIV Infections/immunology
- HIV-1/immunology
- Humans
- Kidney/cytology
- Leukemia, Myeloid
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/virology
- Protein Transport/immunology
- Proto-Oncogene Proteins c-hck/genetics
- Proto-Oncogene Proteins c-hck/metabolism
- Receptor, Macrophage Colony-Stimulating Factor/genetics
- Receptor, Macrophage Colony-Stimulating Factor/immunology
- Receptor, Macrophage Colony-Stimulating Factor/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Transfection
- nef Gene Products, Human Immunodeficiency Virus/genetics
- nef Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Masateru Hiyoshi
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Honjo 2-2-1, Kumamoto-city, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ikeda O, Sekine Y, Kakisaka M, Tsuji S, Muromoto R, Ohbayashi N, Oritani K, Yoshimura A, Matsuda T. STAP-2 regulates c-Fms/M-CSF receptor signaling in murine macrophage Raw 264.7 cells. Biochem Biophys Res Commun 2007; 358:931-7. [PMID: 17512498 DOI: 10.1016/j.bbrc.2007.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 05/05/2007] [Indexed: 10/23/2022]
Abstract
Signal-transducing adaptor protein-2 (STAP-2) is a recently identified adaptor protein as a c-Fms/M-CSF receptor-interacting protein and constitutively expressed in macrophages. Our previous studies also revealed that STAP-2 binds to MyD88 and IKK-alpha/beta, and modulates NF-kappaB signaling in macrophages. In the present study, we examined physiological roles of the interaction between STAP-2 and c-Fms in Raw 264.7 macrophage cells. Our immunoprecipitation has revealed that c-Fms directly interacts with the PH domain of STAP-2 independently on M-CSF-stimulation. Ectopic expression of STAP-2 markedly suppressed M-CSF-induced tyrosine phosphorylation of c-Fms as well as activation of Akt and extracellular signal regulated kinase. In addition, Raw 264.7 cells over-expressing STAP-2 showed impaired migration in response to M-CSF and wound-healing process. Taken together, our findings demonstrate that STAP-2 directly binds to c-Fms and interferes with the PI3K signaling, which leads to macrophage motility, in Raw 264.7 cells.
Collapse
Affiliation(s)
- Osamu Ikeda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku Kita 12 Nishi 6, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Correll PH, Paulson RF, Wei X. Molecular regulation of receptor tyrosine kinases in hematopoietic malignancies. Gene 2006; 374:26-38. [PMID: 16524673 DOI: 10.1016/j.gene.2006.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 01/02/2006] [Accepted: 01/08/2006] [Indexed: 10/24/2022]
Abstract
Dysregulation of receptor tyrosine kinase (RTK) activity has been implicated in the progression of a variety of human leukemias. Most notably, mutations and chromosomal translocations affecting regulation of tyrosine kinase activity in the Kit receptor, the Flt3 receptor, and the PDGFbeta/FGF1 receptors have been demonstrated in mast cell leukemia, acute myeloid leukemia (AML), and chronic myelogenous leukemias (CML), respectively. In addition, critical but non-overlapping roles for the Ron and Kit receptor tyrosine kinases in the progression of animal models of erythroleukemia have been demonstrated [Persons, D., Paulson, R., Loyd, M., Herley, M., Bodner, S., Bernstein, A., Correll, P. and Ney, P., 1999. Fv2 encodes a truncated form of the Stk receptor tyrosine kinase. Nat. Gen. 23, 159-165.; Subramanian, A., Teal, H.E., Correll, P.H. and Paulson, R.F., 2005. Resistance to friend virus-induced erythroleukemia in W/Wv mice is caused by a spleen-specific defect which results in a severe reduction in target cells and a lack of Sf-Stk expression. J. Virol. 79 (23), 14586-14594.]. The various classes of RTKs implicated in the progression of leukemia have been recently reviewed [Reilly, J., 2003. Receptor tyrosine kinases in normal and malignant haematopoiesis. Blood Rev. 17 (4), 241-248.]. Here, we will discuss the mechanism by which alterations in these receptors result in transformation of hematopoietic cells, in the context of what is known about the molecular regulation of RTK activity, with a focus on our recent studies of the Ron receptor tyrosine kinase.
Collapse
Affiliation(s)
- Pamela H Correll
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, 115 Henning Building, University Park, PA 16802-3500, United States.
| | | | | |
Collapse
|
30
|
Steffen B, Müller-Tidow C, Schwäble J, Berdel WE, Serve H. The molecular pathogenesis of acute myeloid leukemia. Crit Rev Oncol Hematol 2005; 56:195-221. [PMID: 16236521 DOI: 10.1016/j.critrevonc.2004.10.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 09/30/2004] [Accepted: 10/28/2004] [Indexed: 10/25/2022] Open
Abstract
The description of the molecular pathogenesis of acute myeloid leukemias (AML) has seen dramatic progress over the last years. Two major types of genetic events have been described that are crucial for leukemic transformation: alterations in myeloid transcription factors governing hematopoietic differentiation and activating mutations of signal transduction intermediates. These processes are highly interdependent, since the molecular events changing the transcriptional control in hematopoietic progenitor cells modify the composition of signal transduction molecules available for growth factor receptors, while the activating mutations in signal transduction molecules induce alterations in the activity and expression of several transcription factors that are crucial for normal myeloid differentiation. The purpose of this article is to review the current literature describing these genetic events, their biological consequences and their clinical implications. As the article will show, the recent description of several critical transforming mutations in AML may soon give rise to more efficient and less toxic molecularly targeted therapies of this deadly disease.
Collapse
Affiliation(s)
- Björn Steffen
- Department of Medicine, Hematology/Oncology, University of Münster, Albert-Schweitzer-Strasse 33, 48129 Münster, Germany
| | | | | | | | | |
Collapse
|
31
|
Taylor JR, Brownlow N, Domin J, Dibb NJ. FMS receptor for M-CSF (CSF-1) is sensitive to the kinase inhibitor imatinib and mutation of Asp-802 to Val confers resistance. Oncogene 2005; 25:147-51. [PMID: 16170366 DOI: 10.1038/sj.onc.1209007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The kinase inhibitor imatinib is used in the treatment of chronic myeloid leukaemia, where it targets the intracellular Bcr-Abl tyrosine kinase, and gastrointestinal stromal tumours, where it targets either the KIT or PDGF tyrosine kinase receptors. Here, we report that imatinib is also an effective inhibitor of the closely related FMS receptor for macrophage colony stimulating factor and that mutation of Asp 802 of FMS to Val confers imatinib resistance. Imatinib readily reverted the transformed phenotype of haemopoietic and fibroblast cell lines that express the oncogene v-fms and also inhibited the growth of the Bacl.2F5 macrophage cell line. The cellular IC50 value of imatinib for FMS was similar to those for Bcr-Abl and KIT. Consequently, imatinib may also prove effective for the treatment of diseases whose progression is dependent upon macrophage-colony stimulating factor, this includes certain aspects of cancer and inflammation.
Collapse
Affiliation(s)
- J R Taylor
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, UK
| | | | | | | |
Collapse
|
32
|
Ling KS, Chen GD, Tsai HJ, Lee MS, Wang PH, Liu FS. Genetic Changes in Ovarian Cancer. Taiwan J Obstet Gynecol 2005. [DOI: 10.1016/s1028-4559(09)60144-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
33
|
Wrobel CN, Debnath J, Lin E, Beausoleil S, Roussel MF, Brugge JS. Autocrine CSF-1R activation promotes Src-dependent disruption of mammary epithelial architecture. ACTA ACUST UNITED AC 2004; 165:263-73. [PMID: 15117969 PMCID: PMC2172030 DOI: 10.1083/jcb.200309102] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Elevated coexpression of colony-stimulating factor receptor (CSF-1R) and its ligand, CSF-1, correlates with invasiveness and poor prognosis of a variety of epithelial tumors (Kacinski, B.M. 1995. Ann. Med. 27:79–85). Apart from recruitment of macrophages to the tumor site, the mechanisms by which CSF-1 may potentiate invasion are poorly understood. We show that autocrine CSF-1R activation induces hyperproliferation and a profound, progressive disruption of junctional integrity in acinar structures formed by human mammary epithelial cells in three-dimensional culture. Acini coexpressing receptor and ligand exhibit a dramatic relocalization of E-cadherin from the plasma membrane to punctate intracellular vesicles, accompanied by its loss from the Triton-insoluble fraction. Interfering with Src kinase activity, either by pharmacological inhibition or mutation of the Y561 docking site on CSF-1R, prevents E-cadherin translocation, suggesting that CSF-1R disrupts cell adhesion by uncoupling adherens junction complexes from the cytoskeleton and promoting cadherin internalization through a Src-dependent mechanism. These findings provide a mechanistic basis whereby CSF-1R could contribute to invasive progression in epithelial cancers.
Collapse
Affiliation(s)
- Carolyn N Wrobel
- Dept. of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
34
|
Zheng R, Klang K, Gorin NC, Small D. Lack of KIT or FMS internal tandem duplications but co-expression with ligands in AML. Leuk Res 2004; 28:121-6. [PMID: 14654075 DOI: 10.1016/s0145-2126(03)00184-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
KIT and FMS, members of the class III receptor tyrosine kinase family, are expressed on normal hematopoietic cells and have important roles in normal hematopoiesis. FLT3 is also a member of the class III receptor tyrosine kinase family and plays important role in hematopoietic stem/progenitor cells, NK, and dendritic cells. Recently, internal tandem duplication (ITDs) mutations have been found in the juxtamembrane (JM) region of FLT3 receptor expressed by patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). The mutations result in the constitutive dimerization and activation of the receptor, contributing to leukemic transformation. KIT and FMS are also frequently expressed in AML and are closely related to FLT3. Thus, similar ITD mutations could also occur in the KIT and/or FMS gene of patients with AML. To explore this possibility, 13 human leukemia-lymphoma cell lines and 44 AML patient samples were examined by reverse transcription-polymerase chain reaction (RT-PCR) for the presence of ITD mutations in the JM region of the KIT or FMS receptor. None of the 13 human leukemia-lymphoma cell lines or 44 AML primary bone marrow samples express ITDs in either KIT or FMS in the JM region that is involved in FLT3 mutations. The 13 cell lines and 44 AML samples were also examined for the possible co-expression of KIT and/or FMS receptors with their respective ligands, as we have seen for FLT3 and its ligand, FL. This co-expression could contribute to leukemic transformation through autocrine, paracrine, or intracrine activation mechanisms. And 6/13 cell lines and 27/44 primary AML samples exhibit co-expression of the KIT receptor and ligand (SCF) while 10/13 cell lines and 35/44 primary AML samples exhibit co-expression of the FMS receptor and ligand (CSF-1). Therefore, while ITD mutations were not found, the findings of co-expression of KIT and/or FMS with their respective ligands implies these receptors might contribute to leukemogenesis in some patients with AML through autocrine, paracrine, or intracrine interactive stimulation.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Pediatric Oncology, Johns Hopkins University School of Medicine, Room 253, Bunting-Blaustein Cancer Research Building, Baltimore, MD 21231-1000, USA
| | | | | | | |
Collapse
|
35
|
Grundler R, Thiede C, Miething C, Steudel C, Peschel C, Duyster J. Sensitivity toward tyrosine kinase inhibitors varies between different activating mutations of the FLT3 receptor. Blood 2003; 102:646-51. [PMID: 12663439 DOI: 10.1182/blood-2002-11-3441] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Activating mutations of FLT3 have been detected in patients with acute myeloid leukemia (AML). Two distinct types of FLT3 mutations are most common: internal tandem duplication (ITD) of sequences coding for the juxtamembrane domain and point mutations at codon 835 (Asp835) within the kinase domain. Both types of mutations constitutively activate the tyrosine kinase activity of FLT3 in experimental systems and result in factor-independent proliferation of Ba/F3 and 32D cells. Recently, novel mutations within the activation loop were identified in patients with AML: deletion of isoleucine 836 (Ile836del) and an exchange of isoleucine 836 to methionine plus an arginine insertion (Ile836Met+Arg). To examine whether the Ile836 mutations result in constitutive activation of the FLT3 receptor, we introduced both mutant FLT3 cDNAs transiently into HEK 293 cells. Both mutant FLT3 receptors were constitutively autophosphorylated in the absence of ligand and kinase activity led to constitutive activation of downstream signaling cascades as determined by activation of the STAT5 (signal transducer and activator of transcription 5) pathway. When stably expressed in the growth factor-dependent cell lines Ba/F3 and 32D, both deletion and insertion mutants led to factor-independent proliferation, indicating that both mutants have transforming capabilities. We then examined the sensitivity of the FLT3 ITD, FLT3 Asp835Tyr, and the novel FLT3 receptor mutants toward the kinase inhibitors AG1296, PKC412, and SU5614. We show that these FLT3 kinase inhibitors have distinct inhibitory potencies against different activating FLT3 receptor mutants. These results suggest that it may be useful to determine the exact kind of FLT3 mutation when applying receptor kinase inhibitors in clinical trials.
Collapse
Affiliation(s)
- Rebekka Grundler
- Department of Internal Medicine III, Laboratory of Leukemogenesis, Technical University of Munich, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Prasanth SG, Ali S. Expression of proto-oncogene c-kit receptor in rats (Rattus norvegicus) and identification of a mutant mRNA transcript implicated in spermatogenic failure. DNA Cell Biol 2003; 22:447-56. [PMID: 12932303 DOI: 10.1089/104454903322247325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The pleiotropic proto-oncogene c-kit receptor, implicated in hematopoiesis and melanogenesis, is also known to play an important role in germ cell proliferation and differentiation although the mechanisms for the latter remain unknown. We studied c-kit expression by RT-PCR in various tissues of both fertile and infertile Brown Norway rats. Using different sets of primers, several regions from within the extracellular domain were amplified, cloned, and sequenced. One set of primers, in addition to the expected 352-bp amplicon, revealed a 276-bp transcript, although its biological functions remain unknown. These two transcripts showed varying levels of expression in different tissues of infertile rats against nearly uniform expression in the fertile animals. Significantly, the 352 bp testis transcript showed mutational hotspots from nucleotide 84-266 in the infertile rats. Analysis of testis and brain genomic DNA from these infertile rats showed mutations only in the testis suggesting this to be a postzygotic event. In contrast, no mutation was detected in the genomic DNA of testis and brain of the fertile rats. Protein expression studies showed complete absence of the cytoplasmic kinase domain and soluble c-kit protein in one of the infertile rats. Histological examination of testis of these infertile animals showed stem cell depletion resulting in fewer germ cells. Based on these results, we infer that 352-bp mutant mRNA transcript is implicated in the spermatogenic failure.
Collapse
|
37
|
Peschard P, Park M. Escape from Cbl-mediated downregulation: a recurrent theme for oncogenic deregulation of receptor tyrosine kinases. Cancer Cell 2003; 3:519-23. [PMID: 12842080 DOI: 10.1016/s1535-6108(03)00136-3] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deregulation of growth factor receptor tyrosine kinases (RTKs) is linked to a large number of malignancies. This occurs through a variety of mechanisms that result in enhanced activity of the receptor. Considerable evidence now supports the idea that loss of negative regulation plays an important role in receptor deregulation. RTKs are removed from the cell surface via endocytosis and many are subsequently degraded in the lysosome. Lysosomal targeting has recently been linked with receptor ubiquitination. We review here molecular alterations that uncouple RTKs from ubiquitination and implicate loss of ubiquitination as a process that plays a significant role in the pathogenesis of cancer.
Collapse
Affiliation(s)
- Pascal Peschard
- Department of Biochemistry, McGill University, Molecular Oncology Group, McGill University Health Centre, Montréal, Québec, Canada, H3A 1A1
| | | |
Collapse
|
38
|
Belaus A, Merkle C, Fritsche M, Groner B. Crosstalk between the extracellular domain of the ErbB2 receptor and IGF-1 receptor signaling. J Steroid Biochem Mol Biol 2003; 85:105-15. [PMID: 12943694 DOI: 10.1016/s0960-0760(03)00208-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insulin-like growth factor 1 receptor (IGF-1R) plays an important role in cell growth and malignant transformation. To investigate IGF-1R-dependent signaling events and its effects on apoptosis induction and cellular proliferation, we generated a constitutively active, ligand-independent IGF-1R variant. We fused the cytoplasmic domain of the IGF-1R to the extracellular and transmembrane domains of the oncogenic ErbB2 receptor (ErbB2(V-->E)/IGF-1). A fusion protein in which the wild-type sequence of the ErbB2 receptor was used, served as a control (ErbB2(V)/IGF-1R). ErbB2(V)/IGF-1R, ErbB2(V-->E)/IGF-1R and IGF-1R were stably transfected into interleukin 3 (IL-3)-dependent BaF/3 cells. ErbB2(V-->E)/IGF-1R expressing cells exhibited ligand-independent, constitutive tyrosine phosphorylation of the receptor fusion protein. Constitutively, activated ErbB2(V-->E)/IGF-1R conferred IL-3 independence for growth and survival to the transfected BaF/3 cells. Constitutive activation of the IGF-1R results in cellular growth and protection against apoptosis upon IL-3 withdrawal in BaF/3 cells.
Collapse
Affiliation(s)
- Andrea Belaus
- Georg Speyer Haus, Institute for Biomedical Research, Paul Ehrlich Street 42-44, 60596 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
39
|
Mancini A, Koch A, Wilms R, Tamura T. c-Cbl associates directly with the C-terminal tail of the receptor for the macrophage colony-stimulating factor, c-Fms, and down-modulates this receptor but not the viral oncogene v-Fms. J Biol Chem 2002; 277:14635-40. [PMID: 11847211 DOI: 10.1074/jbc.m109214200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The receptor for the macrophage colony-stimulating factor (CSF-1, also termed M-CSF), the tyrosine kinase c-Fms, was originally determined to be the oncogene product of the McDonough strain of feline sarcoma virus, v-Fms. The structural difference between c-Fms and v-Fms amounts to only five point mutations in the extracellular domain, two mutations in the cytoplasmic domain, and the replacement of 50 amino acids by 14 unrelated amino acids at the C-terminal tail. Here, we have identified c-Cbl as the direct binding partner for c-Fms. c-Cbl binds to phosphotyrosine residue 977 at the C-terminal end of feline c-Fms, which is absent in v-Fms. The replacement of the C-terminal end of v-Fms by the corresponding part of c-Fms (vc-Fms) restored the binding potential. As a result, vc-Fms reduced the transforming potency of v-Fms. The overexpression of Cbl did not influence the v-Fms-transformed phenotype, although c-Cbl forms a complex with v-Fms indirectly. In contrast, the expression of Cbl drastically reduced the vc-Fms-transformed phenotype and the activation of Erk and enhanced Fms ubiquitination via phosphotyrosine residue 977. Furthermore, the replacement of tyrosine 977 into phenylalanine in feline c-Fms and vc-Fms reduced the Cbl-dependent ubiquitination. These data suggest that an indirect association of c-Cbl via multimeric complex induced a different signaling pathway from the pathway induced by c-Cbl direct interaction.
Collapse
Affiliation(s)
- Annalisa Mancini
- Institut für Biochemie, OE 4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany
| | | | | | | |
Collapse
|
40
|
Affiliation(s)
- John T Reilly
- Molecular Haematology Unit, Division of Molecular and Genetic Medicine, Royal Hallamshire Hospital, Sheffield, UK.
| |
Collapse
|
41
|
Fujikawa Y, Sabokbar A, Neale SD, Itonaga I, Torisu T, Athanasou NA. The effect of macrophage-colony stimulating factor and other humoral factors (interleukin-1, -3, -6, and -11, tumor necrosis factor-alpha, and granulocyte macrophage-colony stimulating factor) on human osteoclast formation from circulating cells. Bone 2001; 28:261-7. [PMID: 11248655 DOI: 10.1016/s8756-3282(00)00453-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macrophage-colony stimulating factor (M-CSF) is an essential requirement for human osteoclast formation, but its effect on the proliferation and differentiation of circulating osteoclast precursor cells is unknown. Other growth factors and cytokines are also known to support/stimulate osteoclast formation from mouse marrow precursors, but it is not certain whether these factors similarly influence human osteoclast formation. In this study, human monocytes were cocultured with osteoblast-like UMR-106 cells on coverslips and dentine slices for up to 21 days in the presence of 1,25 dihydroxyvitamin D(3) (10(-7) mol/L), dexamethasone (10(-8) mol/L), and various concentrations of either M-CSF or other humoral factors (interleukin [IL]-1beta, IL-3, IL-6, and IL-11; tumor necrosis factor-alpha [TNF-alpha]; and granulocyte macrophage [GM]-CSF). The effect on osteoclast formation was assessed by tartrate-resistant acid phosphatase (TRAP) and vitronectin receptor staining and lacunar bone resorption. The results of time-course and proliferation studies showed that M-CSF stimulated both the proliferative and differentiation stages of human osteoclast formation from circulating osteoclast precursors in a dose-dependent manner. A high concentration of M-CSF (100 ng/mL) did not inhibit osteoclast formation. IL-3 and GM-CSF were also capable of stimulating human osteoclast formation, although these growth factors were much less potent than M-CSF. IL-3- and GM-CSF-stimulated osteoclast formation was inhibited by an antibody specific for human M-CSF. Osteoclast formation and lacunar resorption was not seen when either TNF-alpha, IL-1beta, IL-6 (+ soluble IL-6 receptor), or IL-11 was substituted for M-CSF during coculture. These results confirm that M-CSF is essential for human osteoclast formation from circulating mononuclear precursors, and also shows that IL-3 and GM-CSF may support osteoclast differentiation via the stimulation of M-CSF production by human monocytes.
Collapse
Affiliation(s)
- Y Fujikawa
- Nuffield Department of Orthopaedic Surgery, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
42
|
Gómez A, Wellbrock C, Gutbrod H, Dimitrijevic N, Schartl M. Ligand-independent dimerization and activation of the oncogenic Xmrk receptor by two mutations in the extracellular domain. J Biol Chem 2001; 276:3333-40. [PMID: 11038352 DOI: 10.1074/jbc.m006574200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of the oncogenic receptor tyrosine kinase ONC-Xmrk is the first step in the development of hereditary malignant melanoma in the fish Xiphophorus. However, overexpression of its proto-oncogene counterpart (INV-Xmrk) is not sufficient for the oncogenic function of the receptor. Compared with INV-Xmrk, the ONC-Xmrk receptor displays 14 amino acid changes, suggesting the presence of activating mutations. To identify such activating mutations, a series of chimeric and mutant receptors were studied. None of the mutations present in the intracellular domain was found to be involved in receptor activation. In the extracellular domain, we found two mutations responsible for activation of the receptor. One is the substitution of a conserved cysteine (C578S) involved in intramolecular disulfide bonding. The other is a glycine to arginine exchange (G359R) in subdomain III. Either mutation leads to constitutive dimer formation and thereby to activation of the ONC-Xmrk receptor. Besides, the presence of these mutations slows down the processing of the Xmrk receptor in the endoplasmic reticulum, which is apparent as an incomplete glycosylation.
Collapse
Affiliation(s)
- A Gómez
- Physiological Chemistry I, Biocenter (Theodor Boveri Institute), University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | | | | | | |
Collapse
|
43
|
Abstract
The most essential kinases involved in cell membrane receptor activation, signal transduction and cell cycle control or programmed cell death and their interconnections are reviewed. In tumours, the genes of many of those kinases are mutated or amplified or the proteins are overexpressed. The use of key kinases offers the possibility to screen in vitro for synthetic small molecule kinase inhibitors. In view of the many interconnections of cellular kinases, their role in preventing or inducing programmed cell death and the possibility that a considerable number of signal transducing proteins are still unknown, cellular test systems are recommended in which the respective key kinase or one of its main partner molecules are overexpressed.
Collapse
Affiliation(s)
- H H Sedlacek
- Aventis Pharma Deutschland GmbH, Central Biotechnology, Marburg, Germany.
| |
Collapse
|
44
|
Affiliation(s)
- F P Ross
- Department of Pathology, Washington University School of Medicine, Barnes-Jewish Hospital North, Mail Stop 90-31-649, 216 South Kingshighway, St. Louis, Missouri 63110, USA.
| |
Collapse
|
45
|
Kelley TW, Graham MM, Doseff AI, Pomerantz RW, Lau SM, Ostrowski MC, Franke TF, Marsh CB. Macrophage colony-stimulating factor promotes cell survival through Akt/protein kinase B. J Biol Chem 1999; 274:26393-8. [PMID: 10473597 DOI: 10.1074/jbc.274.37.26393] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The signaling pathways activated by the macrophage colony-stimulating factor (M-CSF) to promote survival of monocyte and macrophage lineage cells are not well established. In an effort to elucidate these pathways, we have used two cell types responsive to M-CSF: NIH 3T3 fibroblasts genetically engineered to express human M-CSF receptors (3T3-FMS cells) and human monocytes. M-CSF treatment induced M-CSF receptor tyrosine phosphorylation and recruitment of the p85 subunit of phosphatidylinositol 3-kinase (PI3K) to these receptors. These M-CSF receptor events correlated with activation of the serine/threonine kinase Akt. To clarify that PI3K products activate Akt in response to M-CSF, NIH 3T3 fibroblasts expressing mutant human M-CSF receptors (3T3-FMS(Y809F)) that fail to activate Ras in response to M-CSF also exhibit increased Akt kinase activity in response to M-CSF challenge. Furthermore, Akt appears to be the primary regulator of survival in 3T3-FMS cells, as transfection of genes encoding dominant-negative Akt isoforms into these fibroblasts blocked M-CSF-induced survival. In normal human monocytes, M-CSF increased the levels of tyrosine-phosphorylated proteins and induced Akt activation in a PI3K-dependent manner. The PI3K inhibitor LY294002 blocked M-CSF-mediated monocyte survival, an effect that was partially restored by caspase-9 inhibitors. These data suggest that M-CSF may induce cell survival through Akt-induced suppression of caspase-9 activation.
Collapse
Affiliation(s)
- T W Kelley
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Neale SD, Sabokbar A, Howie DW, Murray DW, Athanasou NA. Macrophage colony-stimulating factor and interleukin-6 release by periprosthetic cells stimulates osteoclast formation and bone resorption. J Orthop Res 1999; 17:686-94. [PMID: 10569477 DOI: 10.1002/jor.1100170510] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Periprosthetic bone loss is an important contributory factor for aseptic loosening of total joint replacements. It has recently been shown that osteoclast precursor cells are present in the wear particle-associated macrophage infiltrate found in the membrane surrounding loose implants and that these cells are capable of differentiating into osteoclastic bone-resorbing cells. Long-term co-culture of arthroplasty-derived macrophages and the rat osteoblast-like cell line, UMR-106, in the presence of 1,25(OH)2D3 results in the formation of numerous multinucleated cells that are positive for tartrate-resistant acid phosphatase and vitronectin receptor and capable of extensive lacunar bone resorption. The aim of this study was to determine the effect of cytokines/growth factors, known to be present in the arthroplasty membrane, on this process of osteoclast differentiation. During osteoclast formation, increased levels of macrophage colony-stimulating factor, interleukin-6, and to a lesser extent, interleukin-1beta, but not tumour necrosis factor alpha, were detected in the co-culture supernatants. Addition of neutralising antibodies to human interleukin-1beta or tumour necrosis factor alpha to the co-culture system did not inhibit osteoclast formation. In contrast, co-cultures to which neutralising antibodies to human macrophage colony-stimulating factor or interleukin-6 were added contained fewer cells positive for tartrate-resistant acid phosphatase and vitronectin receptor and formed significantly fewer resorption pits. Time-course studies showed that macrophage colony-stimulating factor and interleukin-6 increase osteoclast formation mainly in the early stages of osteoclast differentiation. These results indicate that the release of macrophage colony-stimulating factor and interleukin-6 by activated cells in the arthroplasty membrane is likely to contribute to pathological bone resorption associated with aseptic loosening by stimulating differentiation of mononuclear phagocyte osteoclast precursors into mature bone-resorbing cells.
Collapse
Affiliation(s)
- S D Neale
- Nuffield Department of Orthopaedic Surgery, University of Oxford, Headington, England
| | | | | | | | | |
Collapse
|
47
|
Uden M, Morley GM, Dibb NJ. Evidence that downregulation of the M-CSF receptor is not dependent upon receptor kinase activity. Oncogene 1999; 18:3846-51. [PMID: 10445847 DOI: 10.1038/sj.onc.1202743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The downregulation of tyrosine kinase receptors attenuates signalling and is thought to be dependent upon intrinsic receptor kinase activity, largely because down-regulation is inhibited by a kinase-inactivating mutation of an invariant lysine residue of the receptors for EGF, insulin, M-CSF and PDGF. We confirmed that this mutation inhibited the degradation of the M-CSF receptor. However, two different kinase inactivating mutations of the invariant amino acids Gly 591 and Glu 633 did not prevent M-CSF-induced receptor degradation, so demonstrating that receptor kinase activity is not essential for this process. Three other kinase-inactivating mutations were found to cause constitutive receptor degradation in the absence of M-CSF, most probably by disrupting the structure of the activating loop of the kinase domain. It is known that extensive movement of the A-loop is necessary for kinase activation and is normally induced by ligand-binding. It is therefore suggested that some aspect or consequence of the change in structure of the A-loop caused by ligand binding also activates receptor downregulation, so ensuring that downregulation is coupled to but is not necessarily dependent upon receptor kinase activity.
Collapse
Affiliation(s)
- M Uden
- Cell Signalling Unit, Division of Paediatrics, Obstetrics and Gynaecology, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | | | |
Collapse
|
48
|
Morley GM, Uden M, Gullick WJ, Dibb NJ. Cell specific transformation by c-fms activating loop mutations is attributable to constitutive receptor degradation. Oncogene 1999; 18:3076-84. [PMID: 10340379 DOI: 10.1038/sj.onc.1202646] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Expression of a receptor for human macrophage-colony stimulating factor (M-CSF or CSF-1), containing a point mutation which changes an aspartate to a valine at position 802 of the activating loop of the kinase domain, potently transforms the haemopoietic cell line FDC-P1 yet prevents Rat-2 fibroblast transformation. In order to understand this apparent paradox, aspartate 802 was changed by cassette mutagenesis to each of the other 19 amino acids. All hydrophobic amino acid substitutions were transforming when tested in FDC-P1 cells yet inactivating when tested in Rat-2 fibroblasts. These same amino acid substitutions also activated receptor degradation, strongly suggesting a causal relationship between receptor degradation and inactivation in fibroblasts. Point mutations or small deletions of Y708 within the kinase insert region of the mutant D802V receptor partly inhibited receptor degradation. The more stable D802V receptor derivatives were able to transform both FDC-P1 cells and Rat-2 fibroblasts, so establishing that the cell specific effect of the c-fmsD802V activating loop mutation is attributable to receptor degradation which accompanies kinase activation and prevents the transformation of Rat-2 but not of FDC-P1 cells.
Collapse
Affiliation(s)
- G M Morley
- Cell Signalling Unit, Division of Paediatrics, Obstetrics and Gynaecology, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | | | | | |
Collapse
|
49
|
Lee RC, Walters JA, Reyland ME, Anderson SM. Constitutive activation of the prolactin receptor results in the induction of growth factor-independent proliferation and constitutive activation of signaling molecules. J Biol Chem 1999; 274:10024-34. [PMID: 10187780 DOI: 10.1074/jbc.274.15.10024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability to induce the oncogenic activation of the human prolactin receptor (PRLR) was examined by deleting 178 amino acids of the extracellular ligand-binding domain. Expression of this deletion mutant in the interleukin-3 (IL-3)-dependent murine myeloid cell line 32Dcl3 resulted in the induction of growth factor-independent proliferation. Parental 32Dcl3 cells proliferated only in the presence of exogenous murine IL-3 (mIL-3), while 32Dcl3 cells transfected with the long form of the human PRLR were able to proliferate in response to mIL-3, ovine prolactin, or human PRL. Cells expressing the Delta178 deletion mutant contained numerous phosphotyrosine-containing proteins in the absence of stimulation with either mIL-3 or ovine prolactin. Growth factor stimulation increased the number of proteins phosphorylated and the intensity of phosphorylation. These proteins included constitutively phosphorylated Janus kinase 2, signal transducer and activator of transcription 5, and SHC. Activated extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2) were observed in unstimulated 32Dcl3 cells expressing the Delta178 mutant. Likewise, transfection of Nb2 cells with the Delta178 deletion mutant induced growth factor-independent proliferation and constitutive activation of Janus kinase 2, ERK1, and ERK2. In addition to the induction of a growth factor-independent state, the expression of the Delta178 deletion mutant also suppressed the apoptosis that occurs when 32Dcl3 cells are cultured in the absence of growth factors such as IL-3. These data suggest that the constitutive activation of the PRLR can be achieved by deletion of the ligand binding domain and that this mutation leads to the oncogenic activation of the receptor as determined by the ability of the receptor to induce growth factor-independent proliferation of factor-dependent hematopoietic cells.
Collapse
Affiliation(s)
- R C Lee
- Department of Pathology, School of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
50
|
An Activating Mutation in the Kit Receptor Abolishes the Stroma Requirement for Growth of ELM Erythroleukemia Cells, But Does Not Prevent Their Differentiation in Response to Erythropoietin. Blood 1998. [DOI: 10.1182/blood.v92.12.4798.424k12_4798_4807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that murine ELM erythroleukemia cells can only be grown in vitro in the presence of a stromal feeder layer, or alternatively stem cell factor (SCF), without which they differentiate. When grown in the presence of SCF, ELM cells can still differentiate in response to erythropoietin (Epo), but growth on stroma prevents this. We previously isolated a stroma-independent ELM variant, ELM-I-1, that is also defective in Epo-induced differentiation. We show here that this variant has an activating mutation in the Kit receptor, converting aspartic acid 814 to histidine. Expression of the mutant receptor in stroma-dependent ELM-D cells causes growth factor-independent proliferation and also gives the cells a selective advantage, in terms of proliferation rate and clonegenicity, compared with ELM-D cells grown in optimal amounts of SCF. Expression of the mutant receptor in ELM-D cells also prevents spontaneous differentiation, but not differentiation induced by Epo. Analysis of mitogenic signaling pathways in these cells shows that the mutant receptor induces constitutive activation of p42/p44 mitogen-activated protein kinases. It also selectively inhibits the expression of p66Shc but not the p46/p52 Shc isoforms (as did treatment of ELM cells with SCF), which is of interest, because p66Shc is known to play an inhibitory role in growth factor signaling.
Collapse
|