1
|
Zhang W, Cui Y, Lu M, Xu M, Li Y, Song H, Luo Y, Song J, Yang Y, Wang X, Liao L, Wang Y, Reid L, He Z. Hormonally and chemically defined expansion conditions for organoids of biliary tree Stem Cells. Bioact Mater 2024; 41:672-695. [PMID: 39309110 PMCID: PMC11415613 DOI: 10.1016/j.bioactmat.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Wholly defined ex vivo expansion conditions for biliary tree stem cell (BTSC) organoids were established, consisting of a defined proliferative medium (DPM) used in combination with soft hyaluronan hydrogels. The DPM consisted of commercially available Kubota's Medium (KM), to which a set of small molecules, particular paracrine signals, and heparan sulfate (HS) were added. The small molecules used were DNA methyltransferase inhibitor (RG108), TGF- β Type I receptor inhibitor (A83-01), adenylate cyclase activator (Forskolin), and L-type Ca2+ channel agonist (Bay K8644). A key paracrine signal proved to be R-spondin 1 (RSPO1), a secreted protein that activates Wnts. Soluble hyaluronans, 0.05 % sodium hyaluronate, were used with DPM to expand monolayer cultures. Expansion of organoids was achieved by using DPM in combination with embedding organoids in Matrigel that was replaced with a defined thiol-hyaluronan triggered with PEGDA to form a hydrogel with a rheology [G*] of less than 100 Pa. The combination is called the BTSC-Expansion-Glycogel-System (BEX-gel system) for expanding BTSCs as a monolayer or as organoids. The BTSC organoids were expanded more than 3000-fold ex vivo in the BEX-gel system within 70 days while maintaining phenotypic traits indicative of stem/progenitors. Stem-cell-patch grafting of expanded BTSC organoids was performed on the livers of Fah-/- mice with tyrosinemia and resulted in the rescue of the mice and restoration of their normal liver functions. The BEX-gel system for BTSC organoid expansion provides a strategy to generate sufficient numbers of organoids for the therapeutic treatments of liver diseases.
Collapse
Affiliation(s)
- Wencheng Zhang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yangyang Cui
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Mengqi Lu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Mingyang Xu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yuting Li
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Haimeng Song
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yi Luo
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Jinjia Song
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yong Yang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xicheng Wang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Lijun Liao
- Department of Anesthesiology and Pain Management, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Lola Reid
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, United States
| | - Zhiying He
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, 200335, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| |
Collapse
|
2
|
Osteogenic Competence and Potency of the Bone Induction Principle: Inductive Substrates That Initiate “Bone: Formation by Autoinduction”. J Craniofac Surg 2021; 33:971-984. [DOI: 10.1097/scs.0000000000008299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
3
|
Carvalho MS, Cabral JMS, da Silva CL, Vashishth D. Bone Matrix Non-Collagenous Proteins in Tissue Engineering: Creating New Bone by Mimicking the Extracellular Matrix. Polymers (Basel) 2021; 13:polym13071095. [PMID: 33808184 PMCID: PMC8036283 DOI: 10.3390/polym13071095] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023] Open
Abstract
Engineering biomaterials that mimic the extracellular matrix (ECM) of bone is of significant importance since most of the outstanding properties of the bone are due to matrix constitution. Bone ECM is composed of a mineral part comprising hydroxyapatite and of an organic part of primarily collagen with the rest consisting on non-collagenous proteins. Collagen has already been described as critical for bone tissue regeneration; however, little is known about the potential effect of non-collagenous proteins on osteogenic differentiation, even though these proteins were identified some decades ago. Aiming to engineer new bone tissue, peptide-incorporated biomimetic materials have been developed, presenting improved biomaterial performance. These promising results led to ongoing research focused on incorporating non-collagenous proteins from bone matrix to enhance the properties of the scaffolds namely in what concerns cell migration, proliferation, and differentiation, with the ultimate goal of designing novel strategies that mimic the native bone ECM for bone tissue engineering applications. Overall, this review will provide an overview of the several non-collagenous proteins present in bone ECM, their functionality and their recent applications in the bone tissue (including dental) engineering field.
Collapse
Affiliation(s)
- Marta S. Carvalho
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (J.M.S.C.); (C.L.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Correspondence: (M.S.C.); (D.V.)
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (J.M.S.C.); (C.L.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Cláudia L. da Silva
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (J.M.S.C.); (C.L.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Deepak Vashishth
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Correspondence: (M.S.C.); (D.V.)
| |
Collapse
|
4
|
Vasculogenesis from Human Dental Pulp Stem Cells Grown in Matrigel with Fully Defined Serum-Free Culture Media. Biomedicines 2020; 8:biomedicines8110483. [PMID: 33182239 PMCID: PMC7695282 DOI: 10.3390/biomedicines8110483] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/24/2022] Open
Abstract
The generation of vasculature is one of the most important challenges in tissue engineering and regeneration. Human dental pulp stem cells (hDPSCs) are some of the most promising stem cell types to induce vasculogenesis and angiogenesis as they not only secrete vascular endothelial growth factor (VEGF) but can also differentiate in vitro into both endotheliocytes and pericytes in serum-free culture media. Moreover, hDPSCs can generate complete blood vessels containing both endothelial and mural layers in vivo, upon transplantation into the adult brain. However, many of the serum free media employed for the growth of hDPSCs contain supplements of an undisclosed composition. This generates uncertainty as to which of its precise components are necessary and which are dispensable for the vascular differentiation of hDPSCs, and also hinders the transfer of basic research findings to clinical cell therapy. In this work, we designed and tested new endothelial differentiation media with a fully defined composition using standard basal culture media supplemented with a mixture of B27, heparin and growth factors, including VEGF-A165 at different concentrations. We also optimized an in vitro Matrigel assay to characterize both the ability of hDPSCs to differentiate to vascular cells and their capacity to generate vascular tubules in 3D cultures. The description of a fully defined serum-free culture medium for the induction of vasculogenesis using human adult stem cells highlights its potential as a relevant innovation for tissue engineering applications. In conclusion, we achieved efficient vasculogenesis starting from hDPSCs using serum-free culture media with a fully defined composition, which is applicable for human cell therapy purposes.
Collapse
|
5
|
A Vitronectin-Derived Bioactive Peptide Improves Bone Healing Capacity of SLA Titanium Surfaces. MATERIALS 2019; 12:ma12203400. [PMID: 31627447 PMCID: PMC6829905 DOI: 10.3390/ma12203400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022]
Abstract
In this study, we evaluated early bone responses to a vitronectin-derived, minimal core bioactive peptide, RVYFFKGKQYWE motif (VnP-16), both in vitro and in vivo, when the peptide was treated on sandblasted, large-grit, acid-etched (SLA) titanium surfaces. Four surface types of titanium discs and of titanium screw-shaped implants were prepared: control, SLA, scrambled peptide-treated, and VnP-16-treated surfaces. Cellular responses, such as attachment, spreading, migration, and viability of human osteoblast-like HOS and MG63 cells were evaluated in vitro on the titanium discs. Using the rabbit tibia model with the split plot design, the implants were inserted into the tibiae of four New Zealand white rabbits. After two weeks of implant insertion, the rabbits were sacrificed, the undecalcified specimens were prepared for light microscopy, and the histomorphometric data were measured. Analysis of variance tests were used for the quantitative evaluations in this study. VnP-16 was non-cytotoxic and promoted attachment and spreading of the human osteoblast-like cells. The VnP-16-treated SLA implants showed no antigenic activities at the interfaces between the bones and the implants and indicated excellent bone-to-implant contact ratios, the means of which were significantly higher than those in the SP-treated implants. VnP-16 reinforces the osteogenic potential of the SLA titanium dental implant.
Collapse
|
6
|
Teoh CM, Tan SSL, Langenbach SY, Wong AH, Cheong DHJ, Tam JKC, New CS, Tran T. Integrin α7 expression is increased in asthmatic patients and its inhibition reduces Kras protein abundance in airway smooth muscle cells. Sci Rep 2019; 9:9892. [PMID: 31289310 PMCID: PMC6616330 DOI: 10.1038/s41598-019-46260-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Airway smooth muscle (ASM) cells exhibit plastic phenotypic behavior marked by reversible modulation and maturation between contractile and proliferative phenotypic states. Integrins are a class of transmembrane proteins that have been implicated as novel therapeutic targets for asthma treatment. We previously showed that integrin α7 is a novel marker of the contractile ASM phenotype suggesting that targeting this protein may offer new avenues to counter the increase in ASM cell mass that underlies airways hyperresponsiveness (AHR) in asthma. We now determine whether inhibition of integrin α7 expression would revert ASM cells back to a proliferative phenotype to cause an increase in ASM cell mass. This would be detrimental to asthmatic patients who already exhibit increased ASM mass in their airways. Using immunohistochemical analysis of the Melbourne Epidemiological Study of Childhood Asthma (MESCA) cohort, we show for the first time that integrin α7 expression in patients with severe asthma is increased, supporting a clinically relevant role for this protein in asthma pathophysiology. Moreover, inhibition of the laminin-integrin α7 signaling axis results in a reduction in smooth muscle-alpha actin abundance and does not revert ASM cells back to a proliferative phenotype. We determined that integrin α7-induced Kras isoform of p21 Ras acts as a point of convergence between contractile and proliferative ASM phenotypic states. Our study provides further support for targeting integrin α7 for the development of novel anti-asthma therapies.
Collapse
Affiliation(s)
- Chun Ming Teoh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sheryl S L Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shenna Y Langenbach
- Department of Pharmacology and Therapeutics, and Lung Health Research Centre, University of Melbourne, Melbourne, Australia
| | - Amanda H Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dorothy H J Cheong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - John K C Tam
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chih Sheng New
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Jeon C, Oh KC, Park KH, Moon HS. Effects of ultraviolet treatment and alendronate immersion on osteoblast-like cells and human gingival fibroblasts cultured on titanium surfaces. Sci Rep 2019; 9:2581. [PMID: 30796313 PMCID: PMC6385364 DOI: 10.1038/s41598-019-39355-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/23/2019] [Indexed: 12/20/2022] Open
Abstract
In this study, we evaluated the effects of ultraviolet (UV) treatment and alendronate (ALN) immersion on the proliferation and differentiation of MG-63 osteoblast-like cells and human gingival fibroblasts (HGFs) cultured on titanium surfaces. MG-63 cells were used for sandblasted, large grit, and acid-etched (SLA) titanium surfaces, and HGFs were used for machined (MA) titanium surfaces. SLA and MA specimens were subdivided into four groups (n = 12) according to the combination of surface treatments (UV treatment and/or ALN immersion) applied. After culturing MG-63 cells and HGFs on titanium discs, cellular morphology, proliferation, and differentiation were evaluated. The results revealed that UV treatment of titanium surfaces did not alter the proliferation of MG-63 cells; however, HGF differentiation and adhesion were increased in response to UV treatment. In contrast, ALN immersion of titanium discs reduced MG-63 cell proliferation and changed HGFs into a more atrophic form. Simultaneous application of UV treatment and ALN immersion induced greater differentiation of MG-63 cells. Within the limitations of this cellular level study, simultaneous application of UV treatment and ALN immersion of titanium surfaces was shown to improve the osseointegration of titanium implants; in addition, UV treatment may be used to enhance mucosal sealing of titanium abutments.
Collapse
Affiliation(s)
- Changjoo Jeon
- Department of Prosthodontics, College of Dentistry, Yonsei University, Seoul, 03722, Korea
| | - Kyung Chul Oh
- Department of Prosthodontics, College of Dentistry, Yonsei University, Seoul, 03722, Korea
| | - Kyu-Hyung Park
- Department of Prosthodontics, Oral Science Research Center, BK21 Plus Project, College of Dentistry, Yonsei University, Seoul, 03722, Korea
| | - Hong Seok Moon
- Department of Prosthodontics, College of Dentistry, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
8
|
Ripamonti U. Functionalized Surface Geometries Induce: " Bone: Formation by Autoinduction". Front Physiol 2018; 8:1084. [PMID: 29467661 PMCID: PMC5808255 DOI: 10.3389/fphys.2017.01084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/08/2017] [Indexed: 12/15/2022] Open
Abstract
The induction of tissue formation, and the allied disciplines of tissue engineering and regenerative medicine, have flooded the twenty-first century tissue biology scenario and morphed into high expectations of a fulfilling regenerative dream of molecularly generated tissues and organs in assembling human tissue factories. The grand conceptualization of deploying soluble molecular signals, first defined by Turing as forms generating substances, or morphogens, stemmed from classic last century studies that hypothesized the presence of morphogens in several mineralized and non-mineralized mammalian matrices. The realization of morphogens within mammalian matrices devised dissociative extractions and chromatographic procedures to isolate, purify, and finally reconstitute the cloned morphogens, found to be members of the transforming growth factor-β (TGF-β) supergene family, with insoluble signals or substrata to induce de novo tissue induction and morphogenesis. Can we however construct macroporous bioreactors per se capable of inducing bone formation even without the exogenous applications of the osteogenic soluble molecular signals of the TGF-β supergene family? This review describes original research on coral-derived calcium phosphate-based macroporous constructs showing that the formation of bone is independent of the exogenous application of the osteogenic soluble signals of the TGF-β supergene family. Such signals are the molecular bases of the induction of bone formation. The aim of this review is to primarily describe today's hottest topic of biomaterials' science, i.e., to construct and define osteogenetic biomaterials' surfaces that per se, in its own right, do initiate the induction of bone formation. Biomaterials are often used to reconstruct osseous defects particularly in the craniofacial skeleton. Edentulism did spring titanium implants as tooth replacement strategies. No were else that titanium surfaces require functionalized geometric nanotopographic cues to set into motion osteogenesis independently of the exogenous application of the osteogenic soluble molecular signals. Inductive morphogenetic surfaces are the way ahead of biomaterials' science: the connubium of stem cells on primed functionalized surfaces precisely regulates gene expression and the induction of the osteogenic phenotype.
Collapse
Affiliation(s)
- Ugo Ripamonti
- Bone Research Laboratory, Faculty of Health Sciences, School of Oral Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
9
|
Ripamonti U, Parak R, Klar RM, Dickens C, Dix-Peek T, Duarte R. Cementogenesis and osteogenesis in periodontal tissue regeneration by recombinant human transforming growth factor-β3: a pilot studyin Papio ursinus. J Clin Periodontol 2016; 44:83-95. [DOI: 10.1111/jcpe.12642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Ugo Ripamonti
- Bone Research Laboratory; Department of Oral Medicine & Periodontology; School of Oral Health Sciences; Faculty of Health Sciences; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
| | - Ruqayya Parak
- Bone Research Laboratory; Department of Oral Medicine & Periodontology; School of Oral Health Sciences; Faculty of Health Sciences; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
- Department of Oral Biological Sciences; Faculty of Health Sciences; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
| | - Roland M. Klar
- Bone Research Laboratory; Department of Oral Medicine & Periodontology; School of Oral Health Sciences; Faculty of Health Sciences; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
- Department of Internal Medicine; Faculty of Health Sciences; School of Clinical Medicine; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
| | - Caroline Dickens
- Department of Internal Medicine; Faculty of Health Sciences; School of Clinical Medicine; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
| | - Therese Dix-Peek
- Department of Internal Medicine; Faculty of Health Sciences; School of Clinical Medicine; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
| | - Raquel Duarte
- Department of Internal Medicine; Faculty of Health Sciences; School of Clinical Medicine; University of the Witwatersrand, Johannesburg; Johannesburg South Africa
| |
Collapse
|
10
|
Kesireddy V, Kasper FK. Approaches for building bioactive elements into synthetic scaffolds for bone tissue engineering. J Mater Chem B 2016; 4:6773-6786. [PMID: 28133536 PMCID: PMC5267491 DOI: 10.1039/c6tb00783j] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bone tissue engineering (BTE) is emerging as a possible solution for regeneration of bone in a number of applications. For effective utilization, BTE scaffolds often need modifications to impart biological cues that drive diverse cellular functions such as adhesion, migration, survival, proliferation, differentiation, and biomineralization. This review provides an outline of various approaches for building bioactive elements into synthetic scaffolds for BTE and classifies them broadly under two distinct schemes; namely, the top-down approach and the bottom-up approach. Synthetic and natural routes for top-down approaches to production of bioactive constructs for BTE, such as generation of scaffold-extracellular matrix (ECM) hybrid constructs or decellularized and demineralized scaffolds, are provided. Similarly, traditional scaffold-based bottom-up approaches, including growth factor immobilization or peptide-tethered scaffolds, are provided. Finally, a brief overview of emerging bottom-up approaches for generating biologically active constructs for BTE is given. A discussion of the key areas for further investigation, challenges, and opportunities is also presented.
Collapse
Affiliation(s)
- Venu Kesireddy
- Department of Orthodontics, The University of Texas Health Science Center at Houston, School of Dentistry
| | - F. Kurtis Kasper
- Department of Orthodontics, The University of Texas Health Science Center at Houston, School of Dentistry
| |
Collapse
|
11
|
Visser R, Rico-Llanos GA, Pulkkinen H, Becerra J. Peptides for bone tissue engineering. J Control Release 2016; 244:122-135. [PMID: 27794492 DOI: 10.1016/j.jconrel.2016.10.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/21/2016] [Accepted: 10/23/2016] [Indexed: 01/07/2023]
Abstract
Molecular signals in the form of growth factors are the main modulators of cell behavior. However, the use of growth factors in tissue engineering has several drawbacks, including their costs, difficult production, immunogenicity and short half-life. Furthermore, many of them are pleiotropic and, since a single growth factor can have different active domains, their effect is not always fully controllable. A very interesting alternative that has recently emerged is the use of biomimetic peptides. Sequences derived from the active domains of soluble or extracellular matrix proteins can be used to functionalize the biomaterials used as scaffolds for new tissue growth to either direct the attachment of cells or to be released as soluble ligands. Since these short peptides can be easily designed and cost-effectively synthesized in vitro, their use has opened up a world of new opportunities to obtain cheaper and more effective implants for regenerative medicine strategies. In this extensive review we will go through many of the most important peptides with potential interest for bone tissue engineering, not limiting to those that only mediate cell adhesion or induce the osteogenic differentiation of progenitor cells, but also focusing on those that direct angiogenesis because of its close relation with bone formation.
Collapse
Affiliation(s)
- Rick Visser
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain; Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, Spain; BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain.
| | - Gustavo A Rico-Llanos
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain; Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, Spain; BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain
| | - Hertta Pulkkinen
- BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain; Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jose Becerra
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Malaga, Spain; Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, Spain; BIONAND, Andalusian Center for Nanomedicine and Biotechnology, Junta de Andalucia, University of Malaga, Spain
| |
Collapse
|
12
|
Laminin coatings on implant surfaces promote osseointegration: Fact or fiction? Arch Oral Biol 2016; 68:153-61. [DOI: 10.1016/j.archoralbio.2016.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/12/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022]
|
13
|
Yeo IS, Min SK, Kang HK, Kwon TK, Jung SY, Min BM. Identification of a bioactive core sequence from human laminin and its applicability to tissue engineering. Biomaterials 2015; 73:96-109. [PMID: 26406450 DOI: 10.1016/j.biomaterials.2015.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/28/2015] [Accepted: 09/09/2015] [Indexed: 12/30/2022]
Abstract
Finding bioactive short peptides derived from proteins is a critical step to the advancement of tissue engineering and regenerative medicine, because the former maintains the functions of the latter without immunogenicity in biological systems. Here, we discovered a bioactive core nonapeptide sequence, PPFEGCIWN (residues 2678-2686; Ln2-LG3-P2-DN3), from the human laminin α2 chain, and investigated the role of this peptide in binding to transmembrane proteins to promote intracellular events leading to cell functions. This minimum bioactive sequence had neither secondary nor tertiary structures in a computational structure prediction. Nonetheless, Ln2-LG3-P2-DN3 bound to various cell types as actively as laminin in cell adhesion assays. The in vivo healing tests using rats revealed that Ln2-LG3-P2-DN3 promoted bone formation without any recognizable antigenic activity. Ln2-LG3-P2-DN3-treated titanium (Ti) discs and Ti implant surfaces caused the enhancement of bone cell functions in vitro and induced faster osseointegration in vivo, respectively. These findings established a minimum bioactive sequence within human laminin, and its potential application value for regenerative medicine, especially for bone tissue engineering.
Collapse
Affiliation(s)
- In-Sung Yeo
- Department of Prosthodontics, Seoul National University School of Dentistry, 101 Daehak-Ro, Jongno-Gu, Seoul 110-744, Republic of Korea.
| | - Seung-Ki Min
- Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, 101 Daehak-Ro, Jongno-Gu, Seoul 110-744, Republic of Korea.
| | - Hyun Ki Kang
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology and Dental Research Institute, Seoul National University School of Dentistry, 101 Daehak-Ro, Jongno-Gu, Seoul 110-744, Republic of Korea.
| | - Taek-Ka Kwon
- Department of Dentistry, St. Vincent Hospital, Catholic University of Korea, Ji-Dong, Paldal-Ku, Suwon 442-723, Republic of Korea.
| | - Sung Youn Jung
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology and Dental Research Institute, Seoul National University School of Dentistry, 101 Daehak-Ro, Jongno-Gu, Seoul 110-744, Republic of Korea.
| | - Byung-Moo Min
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology and Dental Research Institute, Seoul National University School of Dentistry, 101 Daehak-Ro, Jongno-Gu, Seoul 110-744, Republic of Korea.
| |
Collapse
|
14
|
Yao W, Lane NE. Targeted delivery of mesenchymal stem cells to the bone. Bone 2015; 70:62-5. [PMID: 25173607 PMCID: PMC4268265 DOI: 10.1016/j.bone.2014.07.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/26/2014] [Accepted: 07/22/2014] [Indexed: 12/14/2022]
Abstract
Osteoporosis is a disease of excess skeletal fragility that results from estrogen loss and aging. Age related bone loss has been attributed to both elevated bone resorption and insufficient bone formation. We developed a hybrid compound, LLP2A-Ale in which LLP2A has high affinity for the α4β1 integrin on mesenchymal stem cells (MSCs) and alendronate has high affinity for bone. When LLP2A-Ale was injected into mice, the compound directed MSCs to both trabecular and cortical bone surfaces and increased bone mass and bone strength. Additional studies are underway to further characterize this hybrid compound, LLP2A-Ale, and how it can be utilized for the treatment of bone loss resulting from hormone deficiency, aging, and inflammation and to augment bone fracture healing. This article is part of a Special Issue entitled "Stem Cells and Bone".
Collapse
Affiliation(s)
- Wei Yao
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, Sacramento, CA 95817, USA
| | - Nancy E Lane
- Center for Musculoskeletal Health, University of California at Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
15
|
Benton G, Arnaoutova I, George J, Kleinman HK, Koblinski J. Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev 2014; 79-80:3-18. [PMID: 24997339 DOI: 10.1016/j.addr.2014.06.005] [Citation(s) in RCA: 280] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 01/06/2023]
Abstract
The basement membrane is an important extracellular matrix that is found in all epithelial and endothelial tissues. It maintains tissue integrity, serves as a barrier to cells and to molecules, separates different tissue types, transduces mechanical signals, and has many biological functions that help to maintain tissue specificity. A well-defined soluble basement membrane extract, termed BME/Matrigel, prepared from an epithelial tumor is similar in content to authentic basement membrane, and forms a hydrogel at 24-37°C. It is used in vitro as a substrate for 3D cell culture, in suspension for spheroid culture, and for various assays, such as angiogenesis, invasion, and dormancy. In vivo, BME/Matrigel is used for angiogenesis assays and to promote xenograft and patient-derived biopsy take and growth. Studies have shown that both the stiffness of the BME/Matrigel and its components (i.e. chemical signals) are responsible for its activity with so many different cell types. BME/Matrigel has widespread use in assays and in models that improve our understanding of tumor biology and help define therapeutic approaches.
Collapse
|
16
|
Coleman SJ, Watt J, Arumugam P, Solaini L, Carapuca E, Ghallab M, Grose RP, Kocher HM. Pancreatic cancer organotypics: High throughput, preclinical models for pharmacological agent evaluation. World J Gastroenterol 2014; 20:8471-8481. [PMID: 25024603 PMCID: PMC4093698 DOI: 10.3748/wjg.v20.i26.8471] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/15/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer carries a terrible prognosis, as the fourth most common cause of cancer death in the Western world. There is clearly a need for new therapies to treat this disease. One of the reasons no effective treatment has been developed in the past decade may in part, be explained by the diverse influences exerted by the tumour microenvironment. The tumour stroma cross-talk in pancreatic cancer can influence chemotherapy delivery and response rate. Thus, appropriate preclinical in vitro models which can bridge simple 2D in vitro cell based assays and complex in vivo models are required to understand the biology of pancreatic cancer. Here we discuss the evolution of 3D organotypic models, which recapitulare the morphological and functional features of pancreatic ductal adenocarcinoma (PDAC). Organotypic cultures are a valid high throughput preclinical in vitro model that maybe a useful tool to help establish new therapies for PDAC. A huge advantage of the organotypic model system is that any component of the model can be easily modulated in a short time-frame. This allows new therapies that can target the cancer, the stromal compartment or both to be tested in a model that mirrors the in vivo situation. A major challenge for the future is to expand the cellular composition of the organotypic model to further develop a system that mimics the PDAC environment more precisely. We discuss how this challenge is being met to increase our understanding of this terrible disease and develop novel therapies that can improve the prognosis for patients.
Collapse
|
17
|
The clinical use of bone morphogenetic proteins revisited: a novel biocompatible carrier device OSTEOGROW for bone healing. INTERNATIONAL ORTHOPAEDICS 2013; 38:635-47. [PMID: 24352822 DOI: 10.1007/s00264-013-2201-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/12/2013] [Indexed: 01/01/2023]
Abstract
PURPOSE The purpose of this study was to revise the clinical use of commercial BMP2 (Infuse) and BMP7 (Osigraft) based bone devices and explore the mechanism of action and efficacy of low BMP6 doses in a novel whole blood biocompatible device OSTEOGROW. METHODS Complications from the clinical use of BMP2 and BMP7 have been systemically reviewed in light of their role in bone remodeling. BMP6 function has been assessed in Bmp6-/- mice by μCT and skeletal histology, and has also been examined in mesenchymal stem cells (MSC), hematopoietic stem cells (HSC) and osteoclasts. Safety and efficacy of OSTEOGROW have been assessed in rats and rabbits. RESULTS Clinical use issues of BMP2 and BMP7 have been ascribed to the limited understanding of their role in bone remodeling at the time of device development for clinical trials. BMP2 and BMP7 in bone devices significantly promote bone resorption leading to osteolysis at the endosteal surfaces, while in parallel stimulating exuberant bone formation in surrounding tissues. Unbound BMP2 and BMP7 in bone devices precipitate on the bovine collagen and cause inflammation and swelling. OSTEOGROW required small amounts of BMP6, applied in a biocompatible blood coagulum carrier, for stimulating differentiation of MSCs and accelerated healing of critical size bone defects in animals, without bone resorption and inflammation. BMP6 decreased the number of osteoclasts derived from HSC, while BMP2 and BMP7 increased their number. CONCLUSIONS Current issues and challenges with commercial bone devices may be resolved by using novel BMP6 biocompatible device OSTEOGROW, which will be clinically tested in metaphyseal bone fractures, compartments where BMP2 and BMP7 have not been effective.
Collapse
|
18
|
Klar RM, Duarte R, Dix-Peek T, Dickens C, Ferretti C, Ripamonti U. Calcium ions and osteoclastogenesis initiate the induction of bone formation by coral-derived macroporous constructs. J Cell Mol Med 2013; 17:1444-57. [PMID: 24106923 PMCID: PMC4117557 DOI: 10.1111/jcmm.12125] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 08/12/2013] [Indexed: 01/06/2023] Open
Abstract
Coral-derived calcium carbonate/hydroxyapatite macroporous constructs of the genus Goniopora with limited hydrothermal conversion to hydroxyapatite (7% HA/CC) initiate the induction of bone formation. Which are the molecular signals that initiate pattern formation and the induction of bone formation? To evaluate the role of released calcium ions and osteoclastogenesis, 7% HA/CC was pre-loaded with either 500 μg of the calcium channel blocker, verapamil hydrochloride, or 240 μg of the osteoclast inhibitor, biphosphonate zoledronate, and implanted in the rectus abdominis muscle of six adult Chacma baboons Papio ursinus. Generated tissues on days 15, 60 and 90 were analysed by histomorphometry and qRT-PCR. On day 15, up-regulation of type IV collagen characterized all the implanted constructs correlating with vascular invasion. Zoledronate-treated specimens showed an important delay in tissue patterning and morphogenesis with limited bone formation. Osteoclastic inhibition yielded minimal, if any, bone formation by induction. 7% HA/CC pre-loaded with the Ca++ channel blocker verapamil hydrochloride strongly inhibited the induction of bone formation. Down-regulation of bone morphogenetic protein-2 (BMP-2) together with up-regulation of Noggin genes correlated with limited bone formation in 7% HA/CC pre-loaded with either verapamil or zoledronate, indicating that the induction of bone formation by coral-derived macroporous constructs is via the BMPs pathway. The spontaneous induction of bone formation is initiated by a local peak of Ca++ activating stem cell differentiation and the induction of bone formation.
Collapse
Affiliation(s)
- Roland M Klar
- Bone Research Laboratory, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | | | | |
Collapse
|
19
|
Tocce E, Liliensiek S, Broderick A, Jiang Y, Murphy K, Murphy C, Lynn D, Nealey P. The influence of biomimetic topographical features and the extracellular matrix peptide RGD on human corneal epithelial contact guidance. Acta Biomater 2013; 9:5040-51. [PMID: 23069317 DOI: 10.1016/j.actbio.2012.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/18/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
Abstract
A major focus in the field of tissue engineering is the regulation of essential cell behaviors through biophysical and biochemical cues from the local extracellular environment. The impact of nanotopographical cues on human corneal epithelial cell (HCEC) contact guidance, proliferation, migration and adhesion have previously been demonstrated. In the current report we have expanded our study of HCEC responses to include both biophysical and controlled biochemical extracellular cues. By exploiting methods for the layer-by-layer coating of substrates with reactive poly(ethylene imine)/poly(2-vinyl-4,4-dimethylazlactone)-based multilayer thin films we have incorporated a single adhesion peptide motif, Arg-Gly-Asp (RGD), on topographically patterned substrates. This strategy eliminates protein adsorption onto the surface, thus decoupling the effects of the HCEC response to topographical cues from adsorbed proteins and soluble media proteins. The direction of cell alignment was dependent on the scale of the topographical cues and, to less of an extent, the culture medium. In EpiLife® medium cell alignment to unmodified-NOA81 topographical features, which allowed protein adsorption, differed significantly from cell alignment on RGD-modified features. These results demonstrate that the surface chemical composition significantly affects how HCECs respond to topographical cues. In summary, we have demonstrated modulation of the HCEC response to environmental cues through critical substrate and soluble parameters.
Collapse
|
20
|
Bougas K, Jimbo R, Vandeweghe S, Tovar N, Baldassarri M, Alenezi A, Janal M, Coelho PG, Wennerberg A. In vivo evaluation of a novel implant coating agent: laminin-1. Clin Implant Dent Relat Res 2013; 16:728-35. [PMID: 23311639 DOI: 10.1111/cid.12037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of this study was to assess the effect of implant coating with laminin-1 on the early stages of osseointegration in vivo. MATERIALS AND METHODS Turned titanium implants were coated with the osteoprogenitor-stimulating protein, laminin-1 (TL). Their osteogenic performance was assessed with removal torque, histomorphometry, and nanoindentation in a rabbit model after 2 and 4 weeks. The performance of the test implants was compared with turned control implants (T), alkali- and heat-treated implants (AH), and AH implants coated with laminin-1. RESULTS After 2 weeks, TL demonstrated significantly higher removal torque as compared with T and equivalent to AH. Bone area was significantly higher for the test surface after 4 weeks, while no significant changes were detected on the micromechanical properties of the surrounding bone. CONCLUSIONS Within the limitations of this study, our results suggest a great potential for laminin-1 as a coating agent. A turned implant surface coated with laminin-1 could enhance osseointegration comparable with a bioactive implant surface while keeping the surface smooth.
Collapse
Affiliation(s)
- Kostas Bougas
- Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Novel Implant Coating Agent Promotes Gene Expression of Osteogenic Markers in Rats during Early Osseointegration. Int J Biomater 2012. [PMID: 23193408 PMCID: PMC3501934 DOI: 10.1155/2012/579274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to evaluate the early bone response around laminin-1-coated titanium implants. Forty-five rats distributed in three equally sized groups were provided with one control (turned) and one test (laminin-1-coated) implant and were sacrificed after 3, 7, and 21 days. Real-time reverse-transcriptase polymerase chain reaction was performed for osteoblast markers (alkaline phosphatase, runt-related transcription factor 2, osteocalcin, type I collagen, and bone morphogenic protein 2), osteoclast markers (cathepsin K and tartrate-resistant acid phosphatase), inflammation markers (tumor necrosis factor α, interleukin 1β and interleukin 10), and integrin β1. Bone implant contact (BIC) and bone area (BA) were assessed and compared to the gene expression. After 3 days, the expression of bone markers was higher for the control group. After 7 days, the expression of integrin β1 and osteogenic markers was enhanced for the test group, while cathepsin K and inflammation markers were down-regulated. No significant differences in BIC or BA were detected between test and control at any time point. As a conclusion, implant coating with laminin-1 altered gene expression in the bone-implant interface. However, traditional evaluation methods, as histomorphometry, were not adequately sensitive to detect such changes due to the short follow-up time.
Collapse
|
22
|
Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med 2012; 18:456-62. [PMID: 22306732 PMCID: PMC3755884 DOI: 10.1038/nm.2665] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 08/04/2011] [Indexed: 12/13/2022]
Abstract
Aging reduces the number of mesenchymal stem cells (MSCs) in the bone marrow which leads to impairment of osteogenesis. However, if MSCs could be directed toward osteogenic differentiation, they could be a viable therapeutic option for bone regeneration. We have developed a method to direct the MSCs to the bone surface by attaching a synthetic high affinity and specific peptidomimetic ligand (LLP2A) against integrin α4β1 on the MSC surface, to a bisphosphonate (alendronate, Ale) that has high affinity for bone. LLP2A-Ale increased MSCs migration and osteogenic differentiation in vitro. A single intravenous injection of LLP2A-Ale increased trabecular bone formation and bone mass in both xenotransplantation and immune competent mice. Additionally, LLP2A-Ale prevented trabecular bone loss after peak bone acquisition was achieved or following estrogen deficiency. These results provide a proof of principle that LLP2A-Ale can direct MSCs to the bone to form new bone and increase bone strength.
Collapse
|
23
|
Bougas K, Stenport VF, Currie F, Wennerberg A. Laminin Coating Promotes Calcium Phosphate Precipitation on Titanium Discs in vitro. EJOURNAL OF ORAL MAXILLOFACIAL RESEARCH 2012; 2:e5. [PMID: 24422002 PMCID: PMC3886082 DOI: 10.5037/jomr.2011.2405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 09/16/2011] [Indexed: 01/01/2023]
Abstract
Objectives The objective of this study was to investigate the effect of a laminin
coating on calcium phosphate precipitation on three potentially bioactive
titanium surfaces in simulated body fluid. Material and Methods Blasted titanium discs were prepared by alkali and heat treatment (AH),
anodic oxidation (AO) or hydroxyapatite coating (HA) and subsequently coated
with laminin. A laminin coated blasted surface (B) served as a positive
control while a blasted non coated (B-) served as a negative control.
Surface morphology was examined by Scanning Electron Microscopy (SEM). The
analysis of the precipitated calcium and phosphorous was performed by Energy
Dispersive X-ray Spectroscopy (EDX). Results The thickness of the laminin coating was estimated at 26 Å by ellipsometry.
Interferometry revealed that the coating process did not affect any of the
tested topographical parameters on µm level when comparing B to B-. After 2
weeks of incubation in SBF, the alkali-heat treated discs displayed the
highest calcium phosphate deposition and the B group showed higher levels of
calcium phosphate than the B- group. Conclusions Our results suggest that laminin may have the potential to be used as a
coating agent in order to enhance the osseoinductive performance of
biomaterial surfaces, with the protein molecules possibly functioning as
nucleation centres for apatite formation. Nevertheless, in vivo studies are
required in order to clarify the longevity of the coating and its
performance in the complex biological environment.
Collapse
Affiliation(s)
- Kostas Bougas
- Department of Prosthodontics, Faculty of Odontology, Malmö University Malmö Sweden. ; Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
| | - Victoria Franke Stenport
- Department of Prosthodontics, Faculty of Odontology, Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden. ; Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
| | | | - Ann Wennerberg
- Department of Prosthodontics, Faculty of Odontology, Malmö University Malmö Sweden. ; Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden
| |
Collapse
|
24
|
Boggs ME, Thompson WR, Farach-Carson MC, Duncan RL, Beebe TP. Co-culture of osteocytes and neurons on a unique patterned surface. Biointerphases 2011; 6:200-9. [PMID: 22239813 PMCID: PMC4082992 DOI: 10.1116/1.3664050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 10/31/2011] [Indexed: 11/17/2022] Open
Abstract
Neural and skeletal communication is essential for the maintenance of bone mass and transmission of pain, yet the mechanism(s) of signal transduction between these tissues is unknown. The authors established a novel system to co-culture murine long bone osteocyte-like cells (MLO-Y4) and primary murine dorsal root ganglia (DRG) neurons. Assessment of morphology and maturation marker expression on perlecan domain IV peptide (PlnDIV) and collagen type-1 (Col1) demonstrated that PlnDIV was an optimal matrix for MLO-Y4 culture. A novel matrix-specificity competition assay was developed to expose these cells to several extracellular matrix proteins such as PlnDIV, Col1, and laminin (Ln). The competition assay showed that approximately 70% of MLO-Y4 cells preferred either PlnDIV or Col1 to Ln. To co-culture MLO-Y4 and DRG, we developed patterned surfaces using micro-contact printing to create 40 μm × 1 cm alternating stripes of PlnDIV and Ln or PlnDIV and Col1. Co-culture on PlnDIV/Ln surfaces demonstrated that these matrix molecules provided unique cues for each cell type, with MLO-Y4 preferentially attaching to the PlnDIV lanes and DRG neurons to the Ln lanes. Approximately 80% of DRG were localized to Ln. Cellular processes from MLO-Y4 were closely associated with axonal extensions of DRG neurons. Approximately 57% of neuronal processes were in close proximity to nearby MLO-Y4 cells at the PlnDIV-Ln interface. The surfaces in this new assay provided a unique model system with which to study the communication between osteocyte-like cells and neurons in an in vitro environment.
Collapse
Affiliation(s)
- Mary E Boggs
- University of Delaware, Department of Biological Science, Newark, 19716, USA
| | | | | | | | | |
Collapse
|
25
|
Chiono V, Descrovi E, Sartori S, Gentile P, Ballarini M, Giorgis F, Ciardelli G. Biomimetic Tailoring of the Surface Properties of Polymers at the Nanoscale: Medical Applications. SCANNING PROBE MICROSCOPY IN NANOSCIENCE AND NANOTECHNOLOGY 2 2011. [DOI: 10.1007/978-3-642-10497-8_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
26
|
Application of Bioimaging to Osteocyte Biology. Clin Rev Bone Miner Metab 2010. [DOI: 10.1007/s12018-010-9077-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Choi BH, Choi YS, Kang DG, Kim BJ, Song YH, Cha HJ. Cell behavior on extracellular matrix mimic materials based on mussel adhesive protein fused with functional peptides. Biomaterials 2010; 31:8980-8. [DOI: 10.1016/j.biomaterials.2010.08.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 08/16/2010] [Indexed: 12/16/2022]
|
28
|
Abstract
The new strategy to initiate the induction of bone formation is to carve smart, self-inducing geometric cues assembled within biomimetic medical devices. These are endowed with the striking prerogative of differentiating myoblastic and/or pericytic stem cells into osteoblastic-like cells attached to the morphogenetic concavities; osteoblastic-like cells secrete osteogenic gene products of the TGF-beta supergene family, further differentiating invading stem cells into osteoblastic-like cells, and initiating bone formation by induction as a secondary response.
Collapse
Affiliation(s)
- Ugo Ripamonti
- Medical Research Council/University of the Witwatersrand, Johannesburg, 2193 Parktown, South Africa.
| | | |
Collapse
|
29
|
Ripamonti U. Soluble and insoluble signals sculpt osteogenesis in angiogenesis. World J Biol Chem 2010; 1:109-32. [PMID: 21540997 PMCID: PMC3083961 DOI: 10.4331/wjbc.v1.i5.109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 05/17/2010] [Accepted: 05/24/2010] [Indexed: 02/05/2023] Open
Abstract
The basic tissue engineering paradigm is tissue induction and morphogenesis by combinatorial molecular protocols whereby soluble molecular signals are combined with insoluble signals or substrata. The insoluble signal acts as a three-dimensional scaffold for the initiation of de novo tissue induction and morphogenesis. The osteogenic soluble molecular signals of the transforming growth factor-β (TGF-β) supergene family, the bone morphogenetic/osteogenic proteins (BMPs/OPs) and, uniquely in the non-human primate Papio ursinus (P. ursinus), the three mammalian TGF-β isoforms induce bone formation as a recapitulation of embryonic development. In this paper, I discuss the pleiotropic activity of the BMPs/OPs in the non-human primate P. ursinus, the induction of bone by transitional uroepithelium, and the apparent redundancy of molecular signals initiating bone formation by induction including the three mammalian TGF-β isoforms. Amongst all mammals tested so far, the three mammalian TGF-β isoforms induce endochondral bone formation in the non-human primate P. ursinus only. Bone tissue engineering starts by erecting scaffolds of biomimetic biomaterial matrices that mimic the supramolecular assembly of the extracellular matrix of bone. The molecular scaffolding lies at the hearth of all tissue engineering strategies including the induction of bone formation. The novel concept of tissue engineering is the generation of newly formed bone by the implantation of "smart" intelligent biomimetic matrices that per se initiate the ripple-like cascade of bone differentiation by induction without exogenously applied BMPs/OPs of the TGF-β supergene family. A comprehensive digital iconographic material presents the modified tissue engineering paradigm whereby the induction of bone formation is initiated by intelligent smart biomimetic matrices that per se initiate the induction of bone formation without the exogenous application of the soluble osteogenic molecular signals. The driving force of the intrinsic induction of bone formation by bioactive biomimetic matrices is the shape of the implanted substratum. The language of shape is the language of geometry; the language of geometry is the language of a sequence of repetitive concavities, which biomimetizes the remodelling cycle of the primate osteonic bone.
Collapse
Affiliation(s)
- Ugo Ripamonti
- Ugo Ripamonti, Bone Research Unit, Medical Research Council/University of the Witwatersrand, Johannesburg, Medical School, 7 York Road, 2193 Parktown, South Africa
| |
Collapse
|
30
|
Abstract
Bone morphogenetic protein-6 (BMP-6) is produced by bone marrow-mesenchymal (BMSC) and hematopoietic stem cells, which can differentiate into bone, cartilage, adipose, muscle, hematopoietic, synovial and other tissues. Bmp6-/- null mice have low hepcidin serum levels and an iron overload, resembling hereditary hemochromatosis, which may cause a reduced number of pancreatic beta-cells, increased serum glucose and diabetes. BMP-6 circulates in the normal human plasma and is produced by BMSC prior to differentiation into osteoblasts. Moreover, it is also released by osteoclasts as a key bone coupling factor recruiting osteoblasts to the resorption site. Due to unique structural, receptor binding and signaling characteristics much smaller amounts of BMP-6 than BMP-7 are needed in vivo to induce regeneration of bone defects in animals.
Collapse
Affiliation(s)
- Slobodan Vukicevic
- Laboratory of Mineralized Tissues, Center for Translational Research, School of Medicine, University of Zagreb, Salata 5, 10000 Zagreb, Croatia.
| | | |
Collapse
|
31
|
Benton G, George J, Kleinman H, Arnaoutova I. Advancing science and technology via 3D culture on basement membrane matrix. J Cell Physiol 2009; 221:18-25. [DOI: 10.1002/jcp.21832] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
32
|
Gao Y, Zhu S, Luo E, Li J, Feng G, Hu J. Basic fibroblast growth factor suspended in Matrigel improves titanium implant fixation in ovariectomized rats. J Control Release 2009; 139:15-21. [PMID: 19482052 DOI: 10.1016/j.jconrel.2009.05.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 05/17/2009] [Accepted: 05/25/2009] [Indexed: 10/20/2022]
Abstract
Basic fibroblast growth factor (bFGF) has high potential for tissue regeneration; however, its in vivo effects are unpredictable due to the short-term survival. This study sought to evaluate the effects of bFGF suspended in Matrigel on the implant fixation in ovariectomized (OVX) rats. In vitro, the release kinetics of bFGF was tested using an immuno-ligand-assay. In vivo, eighty titanium implants were randomly divided into 4 groups and inserted in the tibiae of forty OVX rats: no treatment group, bFGF alone group, Matrigel alone group and bFGF+Matrigel group. At 3 months after implantation, tibiae were examined by histology, micro-CT and push-out test. We found that Matrigel could prolong the life span of bFGF in vitro with a sustained release during the 21 days. In vivo, bFGF or Matrigel alone had little effect on the fixation of implant in OVX rats, but bFGF suspended in Matrigel induced nearly 2-fold of peri-implant new bone formation and 4-fold of implant mechanical stability when compared to other 3 groups. The results of this study suggest that Matrigel could be used as a carrier of bFGF and prolonged its release around implant, which may improve implant fixation, especially in site of post-menopausal osteoporosis.
Collapse
Affiliation(s)
- Ying Gao
- The State Key Laboratory of Oral Diseases, Sichuan University West China College of Stomatology, Chendgu, 610041, China
| | | | | | | | | | | |
Collapse
|
33
|
Meloty-Kapella CV, Degen M, Chiquet-Ehrismann R, Tucker RP. Effects of tenascin-W on osteoblasts in vitro. Cell Tissue Res 2008; 334:445-55. [PMID: 18985388 DOI: 10.1007/s00441-008-0715-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 09/29/2008] [Indexed: 11/25/2022]
Abstract
Tenascin-W is a glycoprotein secreted into the extracellular matrix of developing bones. Here, we have examined possible roles for tenascin-W in osteogenesis. Purified recombinant tenascin-W, like tenascin-C, increases the number of mineralized foci in primary cultures of avian osteoblasts and increases alkaline phosphatase activity in vitro. In addition, tenascin-W in solution promotes the migration of primary osteoblasts across fibronectin-coated filters. The sixth fibronectin type III domain of chicken tenascin-W contains a phylogenetically conserved KGD motif that is predicted to be available to integrin binding. To determine whether this motif is potentially functional, we have cultured osteoblasts on KGD-containing peptides and control peptides. Osteoblasts cultured on peptides with the KGD motif acquire a multipolar phenotype with pseudopods tipped with actin-rich ruffles, which is similar to the morphology of osteoblasts cultured on recombinant tenascin-W. Moreover, the KGD peptides, but not the control peptides, promote proliferation in cultured osteoblasts but not alkaline phosphatase activity or migration. Finally, explanted embryonic frontal bones are significantly thicker when cultured in the presence of tenascin-W, suggesting that tenascin-W can accelerate the formation of new bone in a complex multicellular environment.
Collapse
Affiliation(s)
- Caroline V Meloty-Kapella
- Department of Cell Biology and Human Anatomy, University of California at Davis, 1 Shields Avenue, Davis, CA 95616-8643, USA
| | | | | | | |
Collapse
|
34
|
Integrin-mediated expression of bone formation-related genes in osteoblast-like cells in response to fluid shear stress: roles of extracellular matrix, Shc, and mitogen-activated protein kinase. J Bone Miner Res 2008; 23:1140-9. [PMID: 18333755 DOI: 10.1359/jbmr.080302] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Integrins play significant roles in mechanical responses of cells on extracellular matrix (ECM). We studied the roles of integrins and ECM proteins (fibronectin [FN], type I collagen [COL1], and laminin [LM]) in shear-mediated signaling and the expression of bone formation-related genes (early growth response-1 [Egr-1], c-fos, cyclooxygenase-2 [Cox-2], and osteopontin [OPN]) in human osteosarcoma MG63 cells. MG63 cells on FN, COL1, and LM were kept as controls or subjected to shear stress (12 dynes/cm(2)), and the association of alpha(v)beta(3) and beta(1) integrins with Shc, phosphorylation of mitogen-activated protein kinases (MAPKs, i.e., extracellular signal-regulated kinase [ERK], c-jun-NH(2)-terminal kinase [JNK], and p38), and expressions of Egr-1, c-fos, Cox-2, and OPN were determined. In MG63 cells, shear stress induces sustained associations of alpha(v)beta(3) and beta(1) with Shc when seeded on FN, but sustained associations of only beta(1) with Shc when seeded on COL1/LM. Shear inductions of MAPKs and bone formation-related genes were sustained (24 h) in cells on FN, but some of these responses were transient in cells on COL1/LM. The shear activations of ERK, JNK, and p38 were mediated by integrins and Shc, and these pathways differentially modulated the downstream bone formation-related gene expression. Our findings showed that beta(1) integrin plays predominant roles for shear-induced signaling and gene expression in osteoblast-like MG63 cells on FN, COL1, and LM and that alpha(v)beta(3) also plays significant roles for such responses in cells on FN. The beta(1)/Shc association leads to the activation of ERK, which is critical for shear induction of bone formation-related genes in osteoblast-like cells.
Collapse
|
35
|
Abstract
Gelled substrates can be used for a variety of in vitro and in vivo experiments. A type I collagen gelled substrate will promote cell growth and differentiation. Gelled Matrigel substrate promotes the survival of explanted cells and tissues and the differentiation of a variety of epithelial and endothelial cell types in vitro and to assess angiogenesis and increase tumor growth in vivo. Preparation of the matrices and their use are described in this unit.
Collapse
Affiliation(s)
- H K Kleinman
- National Institute of Dental Research/NIH, Bethesda, Maryland, USA
| |
Collapse
|
36
|
Fedorovich NE, Alblas J, de Wijn JR, Hennink WE, Verbout AJ, Dhert WJA. Hydrogels as Extracellular Matrices for Skeletal Tissue Engineering: State-of-the-Art and Novel Application in Organ Printing. ACTA ACUST UNITED AC 2007; 13:1905-25. [PMID: 17518748 DOI: 10.1089/ten.2006.0175] [Citation(s) in RCA: 366] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organ printing, a novel approach in tissue engineering, applies layered computer-driven deposition of cells and gels to create complex 3-dimensional cell-laden structures. It shows great promise in regenerative medicine, because it may help to solve the problem of limited donor grafts for tissue and organ repair. The technique enables anatomical cell arrangement using incorporation of cells and growth factors at predefined locations in the printed hydrogel scaffolds. This way, 3-dimensional biological structures, such as blood vessels, are already constructed. Organ printing is developing fast, and there are exciting new possibilities in this area. Hydrogels are highly hydrated polymer networks used as scaffolding materials in organ printing. These hydrogel matrices are natural or synthetic polymers that provide a supportive environment for cells to attach to and proliferate and differentiate in. Successful cell embedding requires hydrogels that are complemented with biomimetic and extracellular matrix components, to provide biological cues to elicit specific cellular responses and direct new tissue formation. This review surveys the use of hydrogels in organ printing and provides an evaluation of the recent advances in the development of hydrogels that are promising for use in skeletal regenerative medicine. Special emphasis is put on survival, proliferation and differentiation of skeletal connective tissue cells inside various hydrogel matrices.
Collapse
Affiliation(s)
- Natalja E Fedorovich
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
37
|
Yoshikawa M, Tsuji N, Shimomura Y, Hayashi H, Ohgushi H. Effects of Laminin For Osteogenesis in Porous Hydroxyapatite. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/masy.200750724] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Ripamonti U, Ferretti C, Heliotis M. Soluble and insoluble signals and the induction of bone formation: molecular therapeutics recapitulating development. J Anat 2007; 209:447-68. [PMID: 17005018 PMCID: PMC2100361 DOI: 10.1111/j.1469-7580.2006.00635.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The osteogenic molecular signals of the transforming growth factor-beta (TGF-beta) superfamily, the bone morphogenetic/osteogenic proteins (BMPs/OPs) and uniquely in primates the TGF-beta isoforms per se, pleiotropic members of the TGF-beta supergene family, induce de novo endochondral bone formation as a recapitulation of embryonic development. Naturally derived BMPs/OPs and gamma-irradiated human recombinant osteogenic protein-1 (hOP-1) delivered by allogeneic and xenogeneic insoluble collagenous matrices initiate de novo bone induction in heterotopic and orthotopic sites of the primate Papio ursinus, culminating in complete calvarial regeneration by day 90 and maintaining the regenerated structures by day 365. The induction of bone by hOP-1 in P. ursinus develops as a mosaic structure with distinct spatial and temporal patterns of gene expression of members of the TGF-beta superfamily that singly, synergistically and synchronously initiate and maintain tissue induction and morphogenesis. The temporal and spatial expressions of TGF-beta1 mRNA indicate a specific temporal transcriptional window during which expression of TGF-beta1 is mandatory for successful and optimal osteogenesis. Highly purified naturally derived bovine BMPs/OPs and hOP-1 delivered by human collagenous bone matrices and porous hydroxyapatite, respectively, induce bone formation in mandibular defects of human patients. By using healthy body sites as bioreactors it is possible to recapitulate embryonic developments by inducing selected biomaterials combined with recombinant proteins to transform into custom-made prefabricated bone grafts for human reconstruction. The osteogenic proteins of the TGF-beta superfamily, BMPs/OPs and TGF-betas, the last endowed with the striking prerogative of inducing endochondral bone formation in primates only, are helping to engineer skeletal reconstruction in molecular terms.
Collapse
Affiliation(s)
- Ugo Ripamonti
- Bone Research Unit, Medical Research Council/University of the Witwatersrand, Johannesburg, South Africa.
| | | | | |
Collapse
|
39
|
Ripamonti U. Recapitulating Development: A Template for Periodontal Tissue Engineering. ACTA ACUST UNITED AC 2007; 13:51-71. [PMID: 17518581 DOI: 10.1089/ten.2006.0167] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The induction of bone formation by the soluble osteogenic molecular signals of the transforming growth factor-beta (TGF-beta) superfamily is a critical issue to periodontologists, molecular biologists, and tissue engineers alike, because preclinical studies in primates and clinical trials have demonstrated the bone induction capacity of bone morphogenetic and osteogenic proteins (BMPs/OPs) in clinical context. BMPs/OPs, pleiotropic members of the TGF-beta superfamily, induce de novo endochondral bone formation as a recapitulation of embryonic development and act as soluble signals for tissue morphogenesis sculpting the multicellular mineralized structures of the periodontal tissues with functionally oriented periodontal ligament fibers inserting into newly formed cementum. This paper reviews the induction of the complex tissue morphologies of the periodontal tissues in the nonhuman primate Papio ursinus with furcation defects treated with doses of naturally derived and recombinantly produced human BMPs/OPs. Periodontal tissue regeneration develops as a mosaic structure in which the OPs of the TGF-beta superfamily singly, synergistically, and synchronously initiate and maintain tissue induction and morphogenesis.
Collapse
Affiliation(s)
- U Ripamonti
- Bone Research Unit, Medical Research Council/University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
40
|
Murshid SA, Kamioka H, Ishihara Y, Ando R, Sugawara Y, Takano-Yamamoto T. Actin and microtubule cytoskeletons of the processes of 3D-cultured MC3T3-E1 cells and osteocytes. J Bone Miner Metab 2007; 25:151-8. [PMID: 17447112 DOI: 10.1007/s00774-006-0745-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
Cell shape is the most critical determinant of cell function and is potentially influenced by the organization of a cell's cytoskeletal components. It has been reported that three-dimensionally cultured osteoblasts have a morphology that closely resembles that of osteocytes, most notably including formation of processes. We have previously shown the critical differences between cytoskeletal components in osteoblasts and osteocytes in two-dimensional culture. We have now extended that investigation to the cytoskeletal components of 3D-cultured osteoblasts and osteocytes using 3D cultures of the osteoblast cell line, MC3T3-E1, and primary osteocytes grown in collagen gel. Three-dimensional fluorescent image reconstructions for actin, fimbrin, alpha-actinin, myosin, tropomyosin, and microtubules were made using IMARIS software. Actin, fimbrin, alpha-actinin, myosin, and tropomyosin all appeared in the processes of both cell types, but fimbrin and myosin showed differences in their distribution patterns between cell types. Microtubules were limited in distribution to the proximal region of osteocyte processes but extended the entire length of MC3T3-E1 cell processes. Microtubules were essential for the integrity and formation of MC3T3-E1 cell processes, but osteocyte processes were dependent on actin. These results showed that there are significant differences between the actin and microtubule cytoskeletons in the processes of 3D-cultured MC3T3-E1 cells and in the processes of 3D-cultured primary osteocytes. These differences in the cytoskeleton of the processes of 3D-cultured osteoblasts and of osteocyte dendrites suggest that osteoblast processes may have a different functional role than the osteocyte dendritic network.
Collapse
Affiliation(s)
- Sakhr A Murshid
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Sendai 980-8574, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Cool SM, Nurcombe V. Substrate induction of osteogenesis from marrow-derived mesenchymal precursors. Stem Cells Dev 2006; 14:632-42. [PMID: 16433618 DOI: 10.1089/scd.2005.14.632] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Therapeutic modalities aimed at bone regeneration are increasingly employing extracellular matrix (ECM) constituents to control bone marrow progenitor cell (BMPC) commitment, growth, and differentiation. However, the precise role these ECM elements play during stem cell differentiation remains unclear. (See also Salaszynk et al., Stem Cells Dev 14(6):608-620, 2005; and Schwartz et al., Stem Cells Dev. 14(6), 643-655, 2005, both in this issue.) Because bone formation ultimately begins with the recruitment and commitment of BMPCs into the osteogenic lineage, factors that enhance this process are clearly therapeutic targets. We hypothesized that BMPC attachment, proliferation, and osteogenic differentiation would be potentiated when cultured on ECM proteins normally found in the bone niche. To examine this, we cultured murine BMPCs on laminin-1, fibronectin, and collagen type-1 substrates for up to 14 days and assessed their homogeneity, attachment, proliferation, and expression of the specific bone lineage markers RUNX2, collagen-1, alkaline phosphatase, and osteocalcin. We found that freshly harvested mBMPCs contain a mixed population of progenitor cells and that the mesenchymal pool can be enriched by adherent culture in the presence of leucine methyl ester. Furthermore, mBMPCs attached to laminin, fibronectin, and collagen-1 with varying affinity up to 3 h (fibronectin>or=collagen>laminin), after which time no difference could be detected. Despite this, growth was unaffected; cells thereafter proliferated equally well on all substrates up to confluence (7 days). Notably, commitment to the osteoblast lineage (RUNX2) increased up to 14 days for cells cultured on the various substrates, yet no difference was observed at day 14 in the expression of collagen-1, alkaline phosphatase, or osteocalcin. We conclude that mBMPC differentiation down the osteoblastic lineage is time-dependent in osteogenic culture and that attachment to ECM matrices potentiates lineage commitment rather than growth.
Collapse
Affiliation(s)
- Simon M Cool
- Institute of Molecular and Cell Biology, and Department of Orthopaedic Surgery, National University of Singapore, Singapore 117597.
| | | |
Collapse
|
42
|
Abstract
The basement membrane extracellular matrix contacts epithelial, endothelial, fat and smooth muscle cells. Because this extracellular matrix is so thin, it had been hard to study its composition, structure, and function. An extract of a tumor was found to contain all of the components present in basement and to be very biologically active. This extract, termed Matrigel, Cultrex, or EHS matrix, promotes cell differentiation, and is used to measure the invasive activity of tumor cells. In vivo, it is used for measuring angiogenic inhibitors and stimulators, to improve graft survival, repair damaged tissues, and increase tumor growth.
Collapse
Affiliation(s)
- Hynda K Kleinman
- NIH, NIDCR, 30/433, 30 Convent Dr. MSC 4370, Bethesda, MD 20892-4370, USA.
| | | |
Collapse
|
43
|
Kayisli UA, Korgun ET, Akkoyunlu G, Arici A, Demir R. Expression of integrin alpha5 and integrin beta4 and their extracellular ligands fibronectin and laminin in human decidua during early pregnancy and its sex steroid-mediated regulation. Acta Histochem 2005; 107:173-85. [PMID: 15964615 DOI: 10.1016/j.acthis.2005.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 01/17/2005] [Accepted: 01/23/2005] [Indexed: 10/25/2022]
Abstract
The reorganization of the human endometrium is termed decidualization, which includes endometrial cell proliferation, differentiation, integrin switching and extracellular matrix (ECM) remodeling during early pregnancy. The present study aimed to investigate distribution patterns, staining intensity and sex steroid-mediated regulation of integrin alpha5 (CD49e), integrin beta4 (CD49f) expression and their ligands fibronectin and laminin during decidualization. Human tissue samples were evaluated in two groups, those collected in early days and those collected in advanced days of the first trimester. Correlating immunostaining was found between laminin and integrin beta4, and between fibronectin and integrin alpha5. The expression of fibronectin was higher than that of laminin in the early days (p < 0.05). Temporal and spatial immunostaining of integrin beta4 and alpha5 in the apical pole of luminal and glandular cells was observed as pregnancy progressed (p < 0.05). In vitro results showed that human chorionic gonadotropin (hCG) stimulated laminin expression, downregulated integrin beta4 expression, whereas estradiol decreased fibronectin expression by Ishikawa cells. hCG suppressed fibronectin expression in endometrial stromal cells in culture. Our results suggest that fibronectin is responsible for induction of decidual cell differentiation, and different temporal and spatial expression of the integrins may play a role in implantation. Our in vitro results suggest that regulation of extracellular matrix remodeling and integrin switching are at least partially regulated by reproductive hormones.
Collapse
Affiliation(s)
- Umit A Kayisli
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| | | | | | | | | |
Collapse
|
44
|
Philp D, Chen SS, Fitzgerald W, Orenstein J, Margolis L, Kleinman HK. Complex Extracellular Matrices Promote Tissue-Specific Stem Cell Differentiation. Stem Cells 2005; 23:288-96. [PMID: 15671151 DOI: 10.1634/stemcells.2002-0109] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Most cells in tissues contact an extracellular matrix on at least one surface. These complex mixtures of interacting proteins provide structural support and biological signals that regulate cell differentiation and may be important for stem cell differentiation. In this study, we have grown a rhesus monkey embryonic stem cell line in the presence of various extracellular matrix components in monolayer, in a NASA-developed rotating wall vessel bioreactor in vitro, and subcutaneously in vivo. We find that individual components of the extracellular matrix, such as laminin-1 or collagen I, do not influence the growth or morphology of the cells. In contrast, a basement membrane extract, Matrigel, containing multiple extracellular matrix components, induces the cells within 4 days to form immature glandular- and tubular-like structures, many of which contain a lumen with polarized epithelium and microvilli. Such structures were seen in vitro when the cells were grown in the bioreactor and when the cells were injected into mice. These tubular- and glandular-like structures were polarized epithelia based on immunostaining for laminin and cytokeratin. The cell aggregates and tumors also contained additional mixed populations of cells, including mesenchymal cells and neuronal cells, based on immunostaining with vimentin and neuronal markers. An extract of cartilage, containing multiple cartilage matrix components, promoted chondrogenesis in vivo where alcian blue-stained cartilage nodules could be observed. Some of these nodules stained with von Kossa, indicating that they had formed calcified cartilage. We conclude that extracellular matrices can promote the differentiation of embryonic stem cells into differentiated cells and structures that are similar to the tissue from which the matrix is derived. Such preprogramming of cell differentiation with extracellular matrices may be useful in targeting stem cells to repair specific damaged organs.
Collapse
Affiliation(s)
- Deborah Philp
- Cell Biology Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
45
|
Tu RS, Tirrell M. Bottom-up design of biomimetic assemblies. Adv Drug Deliv Rev 2004; 56:1537-63. [PMID: 15350288 DOI: 10.1016/j.addr.2003.10.047] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2003] [Accepted: 05/15/2004] [Indexed: 11/16/2022]
Abstract
Nature has evolved the ability to assemble a variety of molecules into functional architectures that can specifically bind cellular ligands. Mimicking this strategy requires the design of a set of multifaceted molecules, where elements that direct assembly were conjugated to biologically specific components. The development of functional molecular building-blocks that assemble to form compartments for therapeutics addresses the desire to have controllable morphologies that interact with biological interfaces at nanometer length scales. The practical application of such 'bottom-up' assemblies requires the ability to predict the type of aggregated structure and to synthesize molecules in a highly controlled fashion. This bottom-up approach results in a molecular platform that mimics biological systems with potential for encapsulating and delivering drug molecules.
Collapse
Affiliation(s)
- Raymond S Tu
- Department of Chemical Engineering, College of Engineering, Office of the Dean of Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106-5130, USA
| | | |
Collapse
|
46
|
Schmeichel KL, Bissell MJ. Modeling tissue-specific signaling and organ function in three dimensions. J Cell Sci 2003; 116:2377-88. [PMID: 12766184 PMCID: PMC2933213 DOI: 10.1242/jcs.00503] [Citation(s) in RCA: 413] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In order to translate the findings from basic cellular research into clinical applications, cell-based models need to recapitulate both the 3D organization and multicellular complexity of an organ but at the same time accommodate systematic experimental intervention. Here we describe a hierarchy of tractable 3D models that range in complexity from organotypic 3D cultures (both monotypic and multicellular) to animal-based recombinations in vivo. Implementation of these physiologically relevant models, illustrated here in the context of human epithelial tissues, has enabled the study of intrinsic cell regulation pathways and also has provided compelling evidence for the role of the stromal compartment in directing epithelial cell function and dysfunction. Furthermore the experimental accessibility afforded by these tissue-specific 3D models has implications for the design and development of cancer therapies.
Collapse
Affiliation(s)
- Karen L Schmeichel
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 83-101, CA 94720, USA.
| | | |
Collapse
|
47
|
ter Brugge PJ, Torensma R, De Ruijter JE, Figdor CG, Jansen JA. Modulation of integrin expression on rat bone marrow cells by substrates with different surface characteristics. TISSUE ENGINEERING 2002; 8:615-26. [PMID: 12202001 DOI: 10.1089/107632702760240535] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Biomaterials have been shown to be able to influence the growth and differentiation of osteogenic cells cultured on the surface. Although the precise mechanisms by which the materials influence osteogenic cells are unclear, it is possible that the materials manipulate the expression of integrins by the cells. We therefore studied the expression of a number of integrins by rat bone marrow (RBM) cells, after culture on culture polystyrene, on machined and grit-blasted titanium, and on calcium phosphate-coated titanium. Integrin expression was studied by FACS analysis. We found a large variation in the expression of integrins by cells in replicate experiments. After culture on polystyrene for 7 days, cells expressed alpha1, alpha2, alpha3, alpha5, alpha6, beta1, and beta3, although some of the subunits were expressed only occasionally. The cells did not express the alpha4 subunit. After culture of RBM cells for 8 days on coated and noncoated titanium substrates, cells always expressed alpha3, alpha5, alpha6, and beta1. The alpha1 and beta3 subunits were only expressed in some of the experiments. Frequently, the expression of alpha5, alpha6, and beta1 was higher on the coated than on the noncoated titanium substrates. Based on our results, we conclude that the studied materials are capable of influencing the expression of integrins by RBM cells cultured on relevant implant materials.
Collapse
Affiliation(s)
- P J ter Brugge
- Department of Biomaterials, College of Dental Science, University Medical Center Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Narayanan K, Srinivas R, Ramachandran A, Hao J, Quinn B, George A. Differentiation of embryonic mesenchymal cells to odontoblast-like cells by overexpression of dentin matrix protein 1. Proc Natl Acad Sci U S A 2001; 98:4516-21. [PMID: 11287660 PMCID: PMC31866 DOI: 10.1073/pnas.081075198] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells of the craniofacial skeleton are derived from a common mesenchymal progenitor. The regulatory factors that control their differentiation into various cell lineages are unknown. To investigate the biological function of dentin matrix protein 1 (DMP1), an extracellular matrix gene involved in calcified tissue formation, stable transgenic cell lines and adenovirally infected cells overexpressing DMP1 were generated. The findings in this paper demonstrate that overexpression of DMP1 in pluripotent and mesenchyme-derived cells such as C3H10T1/2, MC3T3-E1, and RPC-C2A can induce these cells to differentiate and form functional odontoblast-like cells. Functional differentiation of odontoblasts requires unique sets of genes being turned on and off in a growth- and differentiation-specific manner. The genes studied include transcription factors like core binding factor 1 (Cbfa1), bone morphogenetic protein 2 (BMP2), and BMP4; early markers for extracellular matrix deposition like alkaline phosphatase (ALP), osteopontin, osteonectin, and osteocalcin; and late markers like DMP2 and dentin sialoprotein (DSP) that are expressed by terminally differentiated odontoblasts and are responsible for the formation of tissue-specific dentin matrix. However, this differentiation pathway was limited to mesenchyme-derived cells only. Other cell lines tested by the adenoviral expression system failed to express odontoblast-phenotypic specific genes. An in vitro mineralized nodule formation assay demonstrated that overexpressed cells could differentiate and form a mineralized matrix. Furthermore, we also demonstrate that phosphorylation of Cbfa1 (osteoblast-specific transcription factor) was not required for the expression of odontoblast-specific genes, indicating the involvement of other unidentified odontoblast-specific transcription factors or coactivators. Cell lines that differentiate into odontoblast-like cells are useful tools for studying the mechanism involved in the terminal differentiation process of these postmitotic cells.
Collapse
Affiliation(s)
- K Narayanan
- Department of Oral Biology (M/C 690), University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
49
|
Filanti C, Dickson GR, Di Martino D, Ulivi V, Sanguineti C, Romano P, Palermo C, Manduca P. The expression of metalloproteinase-2, -9, and -14 and of tissue inhibitors-1 and -2 is developmentally modulated during osteogenesis in vitro, the mature osteoblastic phenotype expressing metalloproteinase-14. J Bone Miner Res 2000; 15:2154-68. [PMID: 11092396 DOI: 10.1359/jbmr.2000.15.11.2154] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During osteogenesis, in vitro, of tibial-derived rat osteoblasts (ROB) and derived clones, changes occur in the interactions of mature osteoblasts with the endogenous extracellular matrix (ECM) and these culminate in the formation of tridimensional nodules, which become sites of mineral deposition. We investigated if these changes might be mediated by remodeling of ECM, and we focused our study on the neutral metalloproteinases (MMPs), known agents of matrix remodeling, and on their tissue inhibitors (TIMPs). We report that during in vitro differentiation, osteoblasts express the secreted MMP-2 and -9 and the membrane gelatinase MMP-14. These, along with the tissue inhibitors TIMP-1 and -2, are developmentally regulated according to the maturation stage of osteoblasts. Their levels change in a similar association with osteoblast phenotypic maturation in different populations of ROB, which take different times to complete osteogenesis in vitro. MMP-14 expression coincides in both cell populations with the mature osteoblastic phenotype and is localized in the cells forming nodules. MMP-2 and -9 are expressed diffusely in the osteoblast population. Developmentally associated changes in the activation of MMP-2 are detected, associated in their timing with the expression of MMP-14 in both populations of ROB, and MMP-14 activates pro-MMP-2 in vitro. Expression of messenger RNAs (mRNAs) for the three MMPs increases up to the time of nodule formation. At this stage, TIMP-1 mRNA levels are lowest. TIMP-2 mRNA decreases throughout osteogenesis. In situ hybridization in 7-day-old rat tibias shows the strongest expression of MMP-14 among osteogenic cells, in lining osteoblasts on the newly formed trabeculae under the growth plate, and on the endosteal surface of cortical bone. Our data support the concept that the developmentally regulated expression of MMP-14 triggers localized proteolysis within the osteogenic population, concomitant in vitro to nodule formation.
Collapse
Affiliation(s)
- C Filanti
- Department of Oncology, Biology and Genetics, University of Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Song J, Rolfe BE, Hayward IP, Campbell GR, Campbell JH. Effects of collagen gel configuration on behavior of vascular smooth muscle cells in vitro: association with vascular morphogenesis. In Vitro Cell Dev Biol Anim 2000; 36:600-10. [PMID: 11212145 DOI: 10.1007/bf02577528] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The growth, behavior, and contractile protein expression of rabbit aortic smooth muscle cells (SMC) grown on, between layers, or within a collagen gel was investigated by confocal laser scanning fluorescence microscopy and Western analysis. SMC grown on collagen gel behaved similarly to those on conventional culture dishes. However, when a second layer of collagen was overlaid, cells underwent an elongated quiescent phase before onset of proliferation and a more than threefold lower logarithmic growth rate was observed. These cells self-organized into a network with ring-like structures. With increasing culture time, some of the rings developed into funnel-like, incomplete or complete tubular structures. If a tubular template preexisted within the gel, the SMC established a cylinder-shaped tube with several circularly arranged muscular layers (similar to an artery wall). This behavior mimicked endothelial cells during angiogenesis in vitro. A similar phenomenon occurred in cultures in which SMC were randomly mixed in a collagen gel, but here their behavior and morphology varied with their position within the gel. Western blot analysis showed that the SMC differentiation marker, smooth muscle myosin heavy chain-2 (SM-2), rapidly decreased, disappearing by day 10 in SMC grown on collagen, but was still detectable until day 25 in cells cultured between or within the same gel. These findings indicate that like endothelial cells, vascular SMC can display blood vessel formation behavior in vitro when an appropriate three-dimensional matrix environment is provided to keep them in a relatively higher-differentiated and low-proliferative state.
Collapse
Affiliation(s)
- J Song
- Department of Anatomical Sciences, University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|