1
|
Zhou S, Yang F, Wang W, Yang Z, Song J, Jiang T, Huang Z, Gao Y, Wang Y. Impact of uranium on antibiotic resistance in activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170369. [PMID: 38278272 DOI: 10.1016/j.scitotenv.2024.170369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
The emergence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment is well established as a human health crisis. The impact of radioactive heavy metals on ecosystems and ultimately on human health has become a global issue, especially for the regions suffering various nuclear activities or accidents. However, whether the radionuclides can affect the fate of antibiotic resistance in bacteria remains poorly understood. Here, the dynamics of ARB, three forms of ARGs-intracellular ARGs (iARGs), adsorbed extracellular ARGs (aeARGs), and free extracellular ARGs (feARGs)-and microbial communities were investigated following exposure to uranium (U), a representative radioactive heavy metal. The results showed that 90-d of U exposure at environmentally relevant concentrations of 0.05 mg/L or 5 mg/L significantly increased the ARB concentration in activated sludge (p < 0.05). Furthermore, 90-d of U exposure slightly elevated the absolute abundance of aeARGs (except tetO) and sulfonamide iARGs, but decreased tetracycline iARGs. Regarding feARGs, the abundance of tetC, tetO, and sul1 decreased after 90-d of U stress, whereas sul2 showed the opposite trend. Partial least-squares path model analysis revealed that the abundance of aeARGs and iARGs under U stress was predominantly driven by increased cell membrane permeability/intI1 abundance and cell membrane permeability/reactive oxygen species concentration, respectively. Conversely, the changes in feARGs abundance depended on the composition of the microbial community and the expression of efflux pumps. Our findings shed light on the variations of ARGs and ARB in activated sludge under U exposure, providing a more comprehensive understanding of antibiotic resistance risks aggravated by radioactive heavy metal-containing wastewater.
Collapse
Affiliation(s)
- Shuai Zhou
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China; Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Fengjuan Yang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Zhengqing Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Jian Song
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Tianyun Jiang
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zefeng Huang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Yuanyuan Gao
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China.
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China.
| |
Collapse
|
2
|
Haas NW, Jain A, Hying Z, Arif SJ, Niehaus TD, Gralnick JA, Fixen KR. PioABC-Dependent Fe(II) Oxidation during Photoheterotrophic Growth on an Oxidized Carbon Substrate Increases Growth Yield. Appl Environ Microbiol 2022; 88:e0097422. [PMID: 35862670 PMCID: PMC9361825 DOI: 10.1128/aem.00974-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 01/21/2023] Open
Abstract
Microorganisms that carry out Fe(II) oxidation play a major role in biogeochemical cycling of iron in environments with low oxygen. Fe(II) oxidation has been largely studied in the context of autotrophy. Here, we show that the anoxygenic phototroph, Rhodopseudomonas palustris CGA010, carries out Fe(II) oxidation during photoheterotrophic growth with an oxidized carbon source, malate, leading to an increase in cell yield and allowing more carbon to be directed to cell biomass. We probed the regulatory basis for this by transcriptome sequencing (RNA-seq) and found that the expression levels of the known pioABC Fe(II) oxidation genes in R. palustris depended on the redox-sensing two-component system, RegSR, and the oxidation state of the carbon source provided to cells. This provides the first mechanistic demonstration of mixotrophic growth involving reducing power generated from both Fe(II) oxidation and carbon assimilation. IMPORTANCE The simultaneous use of carbon and reduced metals such as Fe(II) by bacteria is thought to be widespread in aquatic environments, and a mechanistic description of this process could improve our understanding of biogeochemical cycles. Anoxygenic phototrophic bacteria like Rhodopseudomonas palustris typically use light for energy and organic compounds as both a carbon and an electron source. They can also use CO2 for carbon by carbon dioxide fixation when electron-rich compounds like H2, thiosulfate, and Fe(II) are provided as electron donors. Here, we show that Fe(II) oxidation can be used in another context to promote higher growth yields of R. palustris when the oxidized carbon compound malate is provided. We further established the regulatory mechanism underpinning this observation.
Collapse
Affiliation(s)
- Nicholas W. Haas
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Abhiney Jain
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Zachary Hying
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Sabrina J. Arif
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas D. Niehaus
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Jeffrey A. Gralnick
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Kathryn R. Fixen
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
3
|
Capson-Tojo G, Batstone DJ, Grassino M, Hülsen T. Light attenuation in enriched purple phototrophic bacteria cultures: Implications for modelling and reactor design. WATER RESEARCH 2022; 219:118572. [PMID: 35569276 DOI: 10.1016/j.watres.2022.118572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/08/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Light attenuation in enriched purple phototrophic bacteria (PPB) cultures has not been studied, and its understanding is critical for proper process modelling and reactor design, especially for scaled systems. This work evaluated the effect of different biomass concentrations, reactor configurations, wastewater matrices, and growth conditions, on the attenuation extent of near infra-red (NIR) and ultraviolet-visible (UV-VIS) light spectra. The results show that increased biomass concentrations lead to higher light attenuation, and that PPB absorb both VIS and NIR wavelengths, with both fractions of the spectrum being equally absorbed at biomass concentrations above 1,000 g COD·m-3. A flat plate configuration showed less attenuation compared with cylindrical reactors illuminated from the top, representative for open ponds. Neither a complex wastewater matrix nor the presence of polyhydroxyalkanoates (under nutrient limited conditions) affected light attenuation significantly. The pigment concentration (both bacteriochlorophyll and carotenoids) however, had a strong effect, with significant attenuation in the presence of pigments. Attenuation predictions using the Lambert-Beer law (excluding scattering) and the Schuster model (including scattering) indicated that light scattering had a minimal effect. A proposed mathematical model, based on the Lambert-Beer law and a Monod function for light requirements, allowed effective prediction of the kinetics of photoheterotrophic growth. This resulted in a half saturation coefficient of 4.6 W·m-2. Finally, the results showed that in dense outdoor PPB cultures (≥1,000 g COD·m-3), effective light penetration is only 5 cm, which biases design away from horizontal lagoons, and towards non-incident multi-panel systems such as flat plate reactors.
Collapse
Affiliation(s)
- Gabriel Capson-Tojo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia; CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| | - Damien J Batstone
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Maria Grassino
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Tim Hülsen
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
4
|
Shimizu T, Aritoshi T, Beatty JT, Masuda T. Persulfide-Responsive Transcription Factor SqrR Regulates Gene Transfer and Biofilm Formation via the Metabolic Modulation of Cyclic di-GMP in Rhodobacter capsulatus. Microorganisms 2022; 10:908. [PMID: 35630353 PMCID: PMC9143464 DOI: 10.3390/microorganisms10050908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 12/04/2022] Open
Abstract
Bacterial phage-like particles (gene transfer agents-GTAs) are widely employed as a crucial genetic vector in horizontal gene transfer. GTA-mediated gene transfer is induced in response to various stresses; however, regulatory mechanisms are poorly understood. We found that the persulfide-responsive transcription factor SqrR may repress the expression of several GTA-related genes in the photosynthetic bacterium Rhodobacter capsulatus. Here, we show that the sqrR deletion mutant (ΔsqrR) produces higher amounts of intra- and extracellular GTA and gene transfer activity than the wild type (WT). The transcript levels of GTA-related genes are also increased in ΔsqrR. In spite of the presumption that GTA-related genes are regulated in response to sulfide by SqrR, treatment with sulfide did not alter the transcript levels of these genes in the WT strain. Surprisingly, hydrogen peroxide increased the transcript levels of GTA-related genes in the WT, and this alteration was abolished in the ΔsqrR strain. Moreover, the absence of SqrR changed the intracellular cyclic dimeric GMP (c-di-GMP) levels, and the amount of c-di-GMP was correlated with GTA activity and biofilm formation. These results suggest that SqrR is related to the repression of GTA production and the activation of biofilm formation via control of the intracellular c-di-GMP levels.
Collapse
Affiliation(s)
- Takayuki Shimizu
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan; (T.A.); (T.M.)
| | - Toma Aritoshi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan; (T.A.); (T.M.)
| | - J. Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan; (T.A.); (T.M.)
| |
Collapse
|
5
|
Petushkova E, Mayorova E, Tsygankov A. TCA Cycle Replenishing Pathways in Photosynthetic Purple Non-Sulfur Bacteria Growing with Acetate. Life (Basel) 2021; 11:711. [PMID: 34357087 PMCID: PMC8307300 DOI: 10.3390/life11070711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/27/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
Purple non-sulfur bacteria (PNSB) are anoxygenic photosynthetic bacteria harnessing simple organic acids as electron donors. PNSB produce a-aminolevulinic acid, polyhydroxyalcanoates, bacteriochlorophylls a and b, ubiquinones, and other valuable compounds. They are highly promising producers of molecular hydrogen. PNSB can be cultivated in organic waste waters, such as wastes after fermentation. In most cases, wastes mainly contain acetic acid. Therefore, understanding the anaplerotic pathways in PNSB is crucial for their potential application as producers of biofuels. The present review addresses the recent data on presence and diversity of anaplerotic pathways in PNSB and describes different classifications of these pathways.
Collapse
Affiliation(s)
- Ekaterina Petushkova
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
| | - Ekaterina Mayorova
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
- Pushchino State Institute of Natural Science, The Federal State Budget Educational Institution of Higher Education, 3, Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Anatoly Tsygankov
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
| |
Collapse
|
6
|
Capson-Tojo G, Lin S, Batstone DJ, Hülsen T. Purple phototrophic bacteria are outcompeted by aerobic heterotrophs in the presence of oxygen. WATER RESEARCH 2021; 194:116941. [PMID: 33640750 DOI: 10.1016/j.watres.2021.116941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
There is an ongoing debate around the effect of microaerobic/aerobic conditions on the wastewater treatment performance and stability of enriched purple phototrophic bacteria (PPB) cultures. It is well known that oxygen-induced oxidative conditions inhibit the synthesis of light harvesting complexes, required for photoheterotrophy. However, in applied research, several publications have reported efficient wastewater treatment at high dissolved oxygen (DO) levels. This study evaluated the impact of different DO concentrations (0-0.25 mg·L-1, 0-0.5 mg·L-1 and 0-4.5 mg·L-1) on the COD, nitrogen and phosphorus removal performances, the biomass yields, and the final microbial communities of PPB-enriched cultures, treating real wastewaters (domestic and poultry processing wastewater). The results show that the presence of oxygen suppressed photoheterotrophic growth, which led to a complete pigment and colour loss in a matter of 20-30 h after starting the batch. Under aerobic conditions, chemoheterotrophy was the dominant catabolic pathway, with wastewater treatment performances similar to those achieved in common aerobic reactors, rather than those corresponding to phototrophic systems (i.e. considerable total COD decrease (45-57% aerobically vs. ± 10% anaerobically). This includes faster consumption of COD and nutrients, lower nutrient removal efficiencies (50-58% vs. 72-99% for NH4+-N), lower COD:N:P substrate ratios (100:4.5-5.0:0.4-0.8 vs. 100:6.7-12:0.9-1.2), and lower apparent biomass yields (0.15-0.31 vs. 0.8-1.2 g CODbiomass·g CODremoved-1)). The suppression of photoheterotrophy inevitably resulted in a reduction of the relative PPB abundances in all the aerated tests (below 20% at the end of the tests), as PPB lost their main competitive advantage against competing aerobic heterotrophic microbes. This was explained by the lower aerobic PPB growth rates (2.4 d-1 at 35 °C) when compared to common growth rates for aerobic heterotrophs (6.0 d-1 at 20 °C). Therefore, PPB effectively outcompete other microbes under illuminated-anaerobic conditions, but not under aerobic or even micro-aerobic conditions, as shown by continuously aerated tests controlled at undetectable DO levels. While their aerobic heterotrophic capabilities provide some resilience, at non-sterile conditions PPB cannot dominate when growing chemoheterotrophically, and will be outcompeted.
Collapse
Affiliation(s)
- Gabriel Capson-Tojo
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia; CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Shengli Lin
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Damien J Batstone
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tim Hülsen
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
7
|
Kullapanich C, Dubbs JM, Mongkolsuk S. Inactivation of the Agrobacterium tumefaciens ActSR system affects resistance to multiple stresses with increased H 2O 2 sensitivity due to reduced expression of hemH. MICROBIOLOGY-SGM 2020; 165:1117-1134. [PMID: 31339484 DOI: 10.1099/mic.0.000838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Agrobacterium tumefaciens ActSR two-component regulatory system is a member of a homologous group of global redox-responsive regulatory systems that adjust the expression of energy-consuming and energy-supplying metabolic pathways in order to maintain cellular redox balance. In this study, the transcriptional organization of the hrpB-actSR locus was determined and the effect of actSR system inactivation on stress resistance was investigated. It was found that hrpB is transcribed as a monocistronic mRNA and actS is transcribed along with actR as a bicistronic mRNA, while actR is also transcribed as a monocistronic message. Each message is initiated from a separate promoter. Inactivation of actR resulted in decreased resistance to membrane stress (sodium dodecyl sulfate), acid stress (pH 5.5), iron starvation (bipyridyl) and iron excess (FeCl3), and antibiotic stress (tetracycline and ciprofloxacin). Resistance to oxidative stress in the form of organic peroxide (cumene hydroperoxide) increased, while resistance to inorganic peroxide (H2O2) decreased. An actR insertion mutant displayed reduced catalase activity, even though transcription of katA and catE remained unchanged. Complementation of the actR inactivation mutant with plasmid-encoded actR or overexpression of hemH, encoding ferrochelatase, restored wild-type catalase activity and H2O2 resistance levels. Gel mobility shift and hemH promoter-lacZ fusion results indicated that ActR is a positive regulator of hemH that binds directly to the hemH promoter region. Thus, inactivation of the A. tumefaciens ActSR system affects resistance to multiple stresses, including reduced resistance to H2O2 resulting from a reduction in catalase activity due to reduced expression of hemH.
Collapse
Affiliation(s)
- Chitrasak Kullapanich
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - James M Dubbs
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Center of Excellence on Environmental Health and Toxicology, EHT Ministry of Education, Bangkok, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
8
|
Manna D, Lentz CS, Ehrenkaufer GM, Suresh S, Bhat A, Singh U. An NAD +-dependent novel transcription factor controls stage conversion in Entamoeba. eLife 2018; 7:e37912. [PMID: 30375973 PMCID: PMC6207428 DOI: 10.7554/elife.37912] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/17/2018] [Indexed: 12/22/2022] Open
Abstract
Developmental switching between life-cycle stages is a common feature among parasitic pathogens to facilitate disease transmission and pathogenesis. The protozoan parasite Entamoeba switches between invasive trophozoites and dormant cysts, but the encystation process remains poorly understood despite being central to amoebic biology. We identify a transcription factor, Encystation Regulatory Motif-Binding Protein (ERM-BP), that regulates encystation. Down-regulation of ERM-BP decreases encystation efficiency resulting in abnormal cysts with defective cyst walls. We demonstrate that direct binding of NAD+ to ERM-BP affects ERM-BP conformation and facilitates its binding to promoter DNA. Additionally, cellular NAD+ levels increase during encystation and exogenous NAD+ enhances encystation consistent with the role of carbon source depletion in triggering Entamoeba encystation. Furthermore, ERM-BP catalyzes conversion of nicotinamide to nicotinic acid, which might have second messenger effects on stage conversion. Our findings link the metabolic cofactors nicotinamide and NAD+ to transcriptional regulation via ERM-BP and provide the first mechanistic insights into Entamoeba encystation.
Collapse
Affiliation(s)
- Dipak Manna
- Division of Infectious Diseases, Department of Internal MedicineStanford University School of MedicineStanfordUnited States
| | | | - Gretchen Marie Ehrenkaufer
- Division of Infectious Diseases, Department of Internal MedicineStanford University School of MedicineStanfordUnited States
| | - Susmitha Suresh
- Division of Infectious Diseases, Department of Internal MedicineStanford University School of MedicineStanfordUnited States
| | - Amrita Bhat
- Division of Infectious Diseases, Department of Internal MedicineStanford University School of MedicineStanfordUnited States
| | - Upinder Singh
- Division of Infectious Diseases, Department of Internal MedicineStanford University School of MedicineStanfordUnited States
- Department of Microbiology and ImmunologyStanford University School of MedicineStanfordUnited States
| |
Collapse
|
9
|
Kumka JE, Schindel H, Fang M, Zappa S, Bauer CE. Transcriptomic analysis of aerobic respiratory and anaerobic photosynthetic states in Rhodobacter capsulatus and their modulation by global redox regulators RegA, FnrL and CrtJ. Microb Genom 2017; 3:e000125. [PMID: 29114403 PMCID: PMC5643017 DOI: 10.1099/mgen.0.000125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/19/2017] [Indexed: 01/09/2023] Open
Abstract
Anoxygenicphotosynthetic prokaryotes have simplified photosystems that represent ancient lineages that predate the more complex oxygen evolving photosystems present in cyanobacteria and chloroplasts. These organisms thrive under illuminated anaerobic photosynthetic conditions, but also have the ability to grow under dark aerobic respiratory conditions. This study provides a detailed snapshot of transcription ground states of both dark aerobic and anaerobic photosynthetic growth modes in the purple photosynthetic bacterium Rhodobactercapsulatus. Using 18 biological replicates for aerobic and photosynthetic states, we observed that 1834 genes (53 % of the genome) exhibited altered expression between aerobic and anaerobic growth. In comparison with aerobically grown cells, photosynthetically grown anaerobic cells showed decreased transcription of genes for cobalamin biosynthesis (-45 %), iron transport and homeostasis (-42 %), motility (-32 %), and glycolysis (-34 %). Conversely and more intuitively, the expression of genes involved in carbon fixation (547 %), bacteriochlorophyll biosynthesis (162 %) and carotenogenesis (114 %) were induced. We also analysed the relative contributions of known global redox transcription factors RegA, FnrL and CrtJ in regulating aerobic and anaerobic growth. Approximately 50 % of differentially expressed genes (913 of 1834) were affected by a deletion of RegA, while 33 % (598 out of 1834) were affected by FnrL, and just 7 % (136 out of 1834) by CrtJ. Numerous genes were also shown to be controlled by more than one redox responding regulator.
Collapse
Affiliation(s)
- Joseph E. Kumka
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, USA
| | - Heidi Schindel
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, USA
| | - Mingxu Fang
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, USA
| | - Sebastien Zappa
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, USA
| | - Carl E. Bauer
- Biochemistry, Indiana University Bloomington, Simon Hall MSB, 212 S Hawthorne Dr, Bloomington, IN 47405-7003, USA
| |
Collapse
|
10
|
Tang G, Wang S, Lu D, Huang L, Li N, Luo L. Two-component regulatory system ActS/ActR is required for Sinorhizobium meliloti adaptation to oxidative stress. Microbiol Res 2017; 198:1-7. [DOI: 10.1016/j.micres.2017.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 11/16/2022]
|
11
|
Shimizu T, Shen J, Fang M, Zhang Y, Hori K, Trinidad JC, Bauer CE, Giedroc DP, Masuda S. Sulfide-responsive transcriptional repressor SqrR functions as a master regulator of sulfide-dependent photosynthesis. Proc Natl Acad Sci U S A 2017; 114:2355-2360. [PMID: 28196888 PMCID: PMC5338557 DOI: 10.1073/pnas.1614133114] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sulfide was used as an electron donor early in the evolution of photosynthesis, with many extant photosynthetic bacteria still capable of using sulfur compounds such as hydrogen sulfide (H2S) as a photosynthetic electron donor. Although enzymes involved in H2S oxidation have been characterized, mechanisms of regulation of sulfide-dependent photosynthesis have not been elucidated. In this study, we have identified a sulfide-responsive transcriptional repressor, SqrR, that functions as a master regulator of sulfide-dependent gene expression in the purple photosynthetic bacterium Rhodobacter capsulatus SqrR has three cysteine residues, two of which, C41 and C107, are conserved in SqrR homologs from other bacteria. Analysis with liquid chromatography coupled with an electrospray-interface tandem-mass spectrometer reveals that SqrR forms an intramolecular tetrasulfide bond between C41 and C107 when incubated with the sulfur donor glutathione persulfide. SqrR is oxidized in sulfide-stressed cells, and tetrasulfide-cross-linked SqrR binds more weakly to a target promoter relative to unmodified SqrR. C41S and C107S R. capsulatus SqrRs lack the ability to respond to sulfide, and constitutively repress target gene expression in cells. These results establish that SqrR is a sensor of H2S-derived reactive sulfur species that maintain sulfide homeostasis in this photosynthetic bacterium and reveal the mechanism of sulfide-dependent transcriptional derepression of genes involved in sulfide metabolism.
Collapse
Affiliation(s)
- Takayuki Shimizu
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Jiangchuan Shen
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | - Mingxu Fang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | - Yixiang Zhang
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
- Laboratory for Biological Mass Spectrometry, Indiana University, Bloomington, IN 47405-7102
| | - Koichi Hori
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
- Laboratory for Biological Mass Spectrometry, Indiana University, Bloomington, IN 47405-7102
| | - Carl E Bauer
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | - Shinji Masuda
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Kanagawa 226-8501, Japan;
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| |
Collapse
|
12
|
Schindel HS, Bauer CE. The RegA regulon exhibits variability in response to altered growth conditions and differs markedly between Rhodobacter species. Microb Genom 2016; 2:e000081. [PMID: 28348828 PMCID: PMC5359404 DOI: 10.1099/mgen.0.000081] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/21/2016] [Indexed: 01/01/2023] Open
Abstract
The RegB/RegA two-component system from Rhodobacter capsulatus regulates global changes in gene expression in response to alterations in oxygen levels. Studies have shown that RegB/RegA controls many energy-generating and energy-utilizing systems such as photosynthesis, nitrogen fixation, carbon fixation, hydrogen utilization, respiration, electron transport and denitrification. In this report, we utilized RNA-seq and ChIP-seq to analyse the breadth of genes indirectly and directly regulated by RegA. A comparison of mRNA transcript levels in wild type cells relative to a RegA deletion strain shows that there are 257 differentially expressed genes under photosynthetic defined minimal growth medium conditions and 591 differentially expressed genes when grown photosynthetically in a complex rich medium. ChIP-seq analysis also identified 61 unique RegA binding sites with a well-conserved recognition sequence, 33 of which exhibit changes in neighbouring gene expression. These transcriptome results define new members of the RegA regulon including genes involved in iron transport and motility. These results also reveal that the set of genes that are regulated by RegA are growth medium specific. Similar analyses under dark aerobic conditions where RegA is thought not to be phosphorylated by RegB reveal 40 genes that are differentially expressed in minimal medium and 20 in rich medium. Finally, a comparison of the R. capsulatus RegA regulon with the orthologous PrrA regulon in Rhodobacter sphaeroides shows that the number of photosystem genes regulated by RegA and PrrA are similar but that the identity of genes regulated by RegA and PrrA beyond those involved in photosynthesis are quite distinct.
Collapse
Affiliation(s)
- Heidi S. Schindel
- Biochemistry, Indiana University Bloomington, Simon Hall MSB, 212 S. Hawthorne Dr., Bloomington, IN 47405-7003, USA
| | - Carl E. Bauer
- Biochemistry, Indiana University Bloomington, Simon Hall MSB, 212 S. Hawthorne Dr., Bloomington, IN 47405-7003, USA
| |
Collapse
|
13
|
Amino acid residues of RegA important for interactions with the CbbR-DNA complex of Rhodobacter sphaeroides. J Bacteriol 2014; 196:3179-90. [PMID: 24957624 DOI: 10.1128/jb.01842-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
CbbR and RegA (PrrA) are transcriptional regulators of the Calvin-Benson-Bassham (CBB) CO2 fixation pathway (cbbI and cbbII) operons of Rhodobacter sphaeroides. The CbbR and RegA proteins interact, but CbbR must be bound to the promoter DNA in order for RegA-CbbR protein-protein interactions to occur. RegA greatly enhances the ability of CbbR to bind the cbbI promoter or greatly enhances the stability of the CbbR/promoter complex. The N-terminal receiver domain and the DNA binding domain of RegA were shown to interact with CbbR. Residues in α-helix 7 and α-helix 8 of the DNA binding domain (helix-turn-helix) of RegA directly interacted with CbbR, with α-helix 7 positioned immediately above the DNA and α-helix 8 located in the major groove of the DNA. A CbbR protein containing only the DNA binding motif and the linker helix was capable of binding to RegA. In contrast, a truncated CbbR containing only the linker helix and recognition domains I and II (required for effector binding) was not able to interact with RegA. The accumulated results strongly suggest that the DNA binding domains of both proteins interact to facilitate optimal transcriptional control over the cbb operons. In vivo analysis, using constitutively active mutant CbbR proteins, further indicated that CbbR must interact with phosphorylated RegA in order to accomplish transcriptional activation.
Collapse
|
14
|
Yin L, Bauer CE. Controlling the delicate balance of tetrapyrrole biosynthesis. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120262. [PMID: 23754814 DOI: 10.1098/rstb.2012.0262] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tetrapyrroles are a family of compounds that contain four pyrrole rings. They are involved in many fundamental biological processes such as photoreception, electron transport, gas transport and also as cofactors for enzymatic reactions. As regulators of protein activity, tetrapyrroles mediate cellular response to light, oxygen and nutrient levels in the surrounding environment. Biosynthesis of haem tetrapyrroles shares, conserved pathways and enzymes among all three domains of life. This is contrasted by chlorophyll biosynthesis that is only present in eubacteria and chloroplasts, or cobalamin biosynthesis that is only present in eubacteria and archaea. This implicates haem as the most ancient, and chlorophyll as the most recent, of the common tetrapyrroles that are currently synthesized by existing organisms. Haem and chlorophyll are both toxic when synthesized in excess over apo-proteins that bind these tetrapyrroles. Accordingly, the synthesis of these tetrapyrroles has to be tightly regulated and coordinated with apo-protein production. The mechanism of regulating haem and chlorophyll synthesis has been studied intensively in Rhodobacter species and will be discussed.
Collapse
Affiliation(s)
- Liang Yin
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
15
|
Myers JA, Curtis BS, Curtis WR. Improving accuracy of cell and chromophore concentration measurements using optical density. BMC BIOPHYSICS 2013; 6:4. [PMID: 24499615 PMCID: PMC3663833 DOI: 10.1186/2046-1682-6-4] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 03/07/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND UV-vis spectrophotometric optical density (OD) is the most commonly-used technique for estimating chromophore formation and cell concentration in liquid culture. OD wavelength is often chosen with little thought given to its effect on the quality of the measurement. Analysis of the contributions of absorption and scattering to the measured optical density provides a basis for understanding variability among spectrophotometers and enables a quantitative evaluation of the applicability of the Beer-Lambert law. This provides a rational approach for improving the accuracy of OD measurements used as a proxy for direct dry weight (DW), cell count, and pigment levels. RESULTS For pigmented organisms, the choice of OD wavelength presents a tradeoff between the robustness and the sensitivity of the measurement. The OD at a robust wavelength is primarily the result of light scattering and does not vary with culture conditions; whereas, the OD at a sensitive wavelength is additionally dependent on light absorption by the organism's pigments. Suitably robust and sensitive wavelengths are identified for a wide range of organisms by comparing their spectra to the true absorption spectra of dyes. The relative scattering contribution can be reduced either by measurement at higher OD, or by the addition of bovine serum albumin. Reduction of scattering or correlation with off-peak light attenuation provides for more accurate assessment of chromophore levels within cells. Conversion factors between DW, OD, and colony-forming unit density are tabulated for 17 diverse organisms to illustrate the scope of variability of these correlations. Finally, an inexpensive short pathlength LED-based flow cell is demonstrated for the online monitoring of growth in a bioreactor at culture concentrations greater than 5 grams dry weight per liter which would otherwise require off-line dilutions to obtain non-saturated OD measurements. CONCLUSIONS OD is most accurate as a time-saving proxy measurement for biomass concentration when light attenuation is dominated by scattering. However, the applicability of OD-based correlations is highly dependent on the measurement specifications (spectrophotometer model and wavelength) and culture conditions (media type; growth stage; culture stress; cell/colony geometry; presence and concentration of secreted compounds). These variations highlight the importance of treating literature conversion factors as rough approximations as opposed to concrete constants. There is an opportunity to optimize measurements of cell pigment levels by considering scattering and absorption-dependent wavelengths of the OD spectrum.
Collapse
Affiliation(s)
- John A Myers
- Department of Chemical Engineering, Fenske Laboratory, The Pennsylvania State University, University Park, 16802, PA
| | - Brandon S Curtis
- Department of Chemical Engineering, Fenske Laboratory, The Pennsylvania State University, University Park, 16802, PA
| | - Wayne R Curtis
- Department of Chemical Engineering, Fenske Laboratory, The Pennsylvania State University, University Park, 16802, PA
| |
Collapse
|
16
|
Wu J, Cheng Z, Reddie K, Carroll K, Hammad LA, Karty JA, Bauer CE. RegB kinase activity is repressed by oxidative formation of cysteine sulfenic acid. J Biol Chem 2013; 288:4755-62. [PMID: 23306201 DOI: 10.1074/jbc.m112.413492] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
RegB/RegA comprise a global redox-sensing signal transduction system utilized by a wide range of proteobacteria to sense environmental changes in oxygen tension. The conserved cysteine 265 in the sensor kinase RegB was previously reported to form an intermolecular disulfide bond under oxidizing conditions that converts RegB from an active dimer into an inactive tetramer. In this study, we demonstrate that a stable sulfenic acid (-SOH) derivative also forms at Cys-265 in vitro and in vivo when RegB is exposed to oxygen. This sulfenic acid modification is reversible and stable in the air. Autophosphorylation assay shows that reduction of the SOH at Cys-265 to a free thiol (SH) can increase RegB kinase activity in vitro. Our results suggest that a sulfenic acid modification at Cys-265 performs a regulatory role in vivo and that it may be the major oxidation state of Cys-265 under aerobic conditions. Cys-265 thus functions as a complex redox switch that can form multiple thiol modifications in response to different redox signals to control the kinase activity of RegB.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Ekici S, Pawlik G, Lohmeyer E, Koch HG, Daldal F. Biogenesis of cbb(3)-type cytochrome c oxidase in Rhodobacter capsulatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:898-910. [PMID: 22079199 DOI: 10.1016/j.bbabio.2011.10.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 10/31/2011] [Indexed: 11/18/2022]
Abstract
The cbb(3)-type cytochrome c oxidases (cbb(3)-Cox) constitute the second most abundant cytochrome c oxidase (Cox) group after the mitochondrial-like aa(3)-type Cox. They are present in bacteria only, and are considered to represent a primordial innovation in the domain of Eubacteria due to their phylogenetic distribution and their similarity to nitric oxide (NO) reductases. They are crucial for the onset of many anaerobic biological processes, such as anoxygenic photosynthesis or nitrogen fixation. In addition, they are prevalent in many pathogenic bacteria, and important for colonizing low oxygen tissues. Studies related to cbb(3)-Cox provide a fascinating paradigm for the biogenesis of sophisticated oligomeric membrane proteins. Complex subunit maturation and assembly machineries, producing the c-type cytochromes and the binuclear heme b(3)-Cu(B) center, have to be coordinated precisely both temporally and spatially to yield a functional cbb(3)-Cox enzyme. In this review we summarize our current knowledge on the structure, regulation and assembly of cbb(3)-Cox, and provide a highly tentative model for cbb(3)-Cox assembly and formation of its heme b(3)-Cu(B) binuclear center. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Seda Ekici
- University of Pennsylvania, Department of Biology, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
18
|
The poor growth of Rhodospirillum rubrum mutants lacking RubisCO is due to the accumulation of ribulose-1,5-bisphosphate. J Bacteriol 2011; 193:3293-303. [PMID: 21531802 DOI: 10.1128/jb.00265-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) catalyzes the first step of CO(2) fixation in the Calvin-Benson-Bassham (CBB) cycle. Besides its function in fixing CO(2) to support photoautotrophic growth, the CBB cycle is also important under photoheterotrophic growth conditions in purple nonsulfur photosynthetic bacteria. It has been assumed that the poor photoheterotrophic growth of RubisCO-deficient strains was due to the accumulation of excess intracellular reductant, which implied that the CBB cycle is important for maintaining the redox balance under these conditions. However, we present analyses of cbbM mutants in Rhodospirillum rubrum that indicate that toxicity is the result of an elevated intracellular pool of ribulose-1,5-bisphosphate (RuBP). There is a redox effect on growth, but it is apparently an indirect effect on the accumulation of RuBP, perhaps by the regulation of the activities of enzymes involved in RuBP regeneration. Our studies also show that the CBB cycle is not essential for R. rubrum to grow under photoheterotrophic conditions and that its role in controlling the redox balance needs to be further elucidated. Finally, we also show that CbbR is a positive transcriptional regulator of the cbb operon (cbbEFPT) in R. rubrum, as seen with related organisms, and define the transcriptional organization of the cbb genes.
Collapse
|
19
|
Joshi GS, Bobst CE, Tabita FR. Unravelling the regulatory twist--regulation of CO2 fixation in Rhodopseudomonas palustris CGA010 mediated by atypical response regulator(s). Mol Microbiol 2011; 80:756-71. [PMID: 21362064 DOI: 10.1111/j.1365-2958.2011.07606.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In Rhodopseudomonas palustris CGA010, the LysR type regulator, CbbR, specifically controls transcription of the cbbLS genes encoding form I RubisCO. Previous genetic and physiological studies had indicated that a unique two-component (CbbRRS) system influences CbbR-mediated cbbLS transcription under conditions where CO(2) is the sole carbon source. In this study, we have established direct protein-protein interactions between the response regulators of the CbbRRS system and CbbR, using a variety of techniques. The bacterial two-hybrid system established a specific interaction between CbbR and CbbRR1 (response regulator 1 of the CbbRRS system), confirmed in vitro by chemical cross-linking. In addition, both response regulators (CbbRR1 and CbbRR2) played distinct roles in influencing the CbbR-cbbLS promoter interactions in gel mobility shift assays. CbbRR1 increased the binding affinity of CbbR at the cbb(I) promoter three- to fivefold while CbbRR2 appeared to stabilize CbbR binding. Specific interactions were further supported by surface plasmon resonance (SPR) analyses. In total, the results suggested that both response regulators, with no discernible DNA-binding domains, must interact with CbbR to influence cbbLS expression. Thus the CbbRRS system provides an additional level of transcriptional control beyond CbbR alone, and appears to be significant for potentially fine-tuning cbbLS expression in Rps. palustris.
Collapse
Affiliation(s)
- Gauri S Joshi
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | | | | |
Collapse
|
20
|
Alber BE. Biotechnological potential of the ethylmalonyl-CoA pathway. Appl Microbiol Biotechnol 2010; 89:17-25. [PMID: 20882276 DOI: 10.1007/s00253-010-2873-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/22/2010] [Accepted: 08/24/2010] [Indexed: 11/26/2022]
Abstract
The ethylmalonyl-CoA pathway is central to the carbon metabolism of many α-proteobacteria, like Rhodobacter sphaeroides and Methylobacterium extorquens as well as actinomycetes, like Streptomyces spp. Its function is to convert acetyl-CoA, a central carbon intermediate, to other precursor metabolites for cell carbon biosynthesis. In contrast to the glyoxylate cycle--another widely distributed acetyl-CoA assimilation strategy--the ethylmalonyl-CoA pathway contains many unique CoA-ester intermediates, such as (2R)- and (2S)-ethylmalonyl-CoA, (2S)-methylsuccinyl-CoA, mesaconyl-(C1)-CoA, and (2R, 3S)-methylmalyl-CoA. With this come novel catalysts that interconvert these compounds. Among these unique enzymes is a novel carboxylase that reductively carboxylates crotonyl-CoA, crotonyl-CoA carboxylase/reductase, and (3S)-malyl-CoA thioesterase. The latter represents the first example of a non-Claisen condensation enzyme of the malate synthase superfamily and defines a new class of thioesterases apart from the hotdog-fold and α/β-fold thioesterases. The biotechnological implications of the ethylmalonyl-CoA pathway are tremendous as one looks to tap into the potential of using these new intermediates and catalysts to produce value-added products.
Collapse
Affiliation(s)
- Birgit E Alber
- The Department of Microbiology, Ohio State University, 484 West 12th Ave, Room 417, Columbus, OH, USA.
| |
Collapse
|
21
|
Rey FE, Harwood CS. FixK, a global regulator of microaerobic growth, controls photosynthesis inRhodopseudomonas palustris. Mol Microbiol 2010; 75:1007-20. [DOI: 10.1111/j.1365-2958.2009.07037.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Half-Site DNA sequence and spacing length contributions to PrrA binding to PrrA site 2 of RSP3361 in Rhodobacter sphaeroides 2.4.1. J Bacteriol 2009; 191:4353-64. [PMID: 19411326 DOI: 10.1128/jb.00244-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The consensus DNA binding sequence for PrrA, a global regulator in Rhodobacter sphaeroides 2.4.1, is poorly defined. We have performed mutational analysis of PrrA site 2, of the RSP3361 gene, to which PrrA binds in vitro (J. M. Eraso and S. Kaplan, J. Bacteriol. 191:4341-4352, 2009), to further define the consensus sequence for DNA binding. Two half-sites of equal length, containing 6 nucleotides each, were required for PrrA binding to this DNA sequence. Systematic nucleotide substitutions in both inverted half-sites led to a decrease in binding affinity of phosphorylated PrrA in vitro, the level of which was dependent on the substitution. The reduced binding affinities were confirmed by competition experiments and led to proportional decreases in the expression of lacZ transcriptional fusions to the RSP3361 gene in vivo. The 5-nucleotide spacer region between the half-sites was found to be optimal for PrrA binding to the wild-type half-sites, as shown by decreased PrrA DNA binding affinities to synthetic DNA sequences without spacer regions or with spacer regions ranging from 1 to 10 nucleotides. The synthetic spacer region alleles also showed decreased gene expression in vivo when analyzed using lacZ transcriptional fusions. We have studied three additional DNA sequences to which PrrA binds in vitro. They are located in the regulatory regions of genes positively regulated by PrrA and contain spacer regions with 5 or 8 nucleotides. We demonstrate that PrrA can bind in vitro to DNA sequences with different lengths in the spacer regions between the half-sites.
Collapse
|
23
|
Bauer CE, Setterdahl A, Wu J, Robinson BR. Regulation of Gene Expression in Response to Oxygen Tension. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_35] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Dangel AW, Tabita FR. Protein-protein interactions between CbbR and RegA (PrrA), transcriptional regulators of the cbb operons of Rhodobacter sphaeroides. Mol Microbiol 2008; 71:717-29. [PMID: 19077171 DOI: 10.1111/j.1365-2958.2008.06558.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CbbR and RegA (PrrA) are transcriptional regulators of the cbb(I) and cbb(II) (Calvin-Benson-Bassham CO(2) fixation pathway) operons of Rhodobacter sphaeroides. Both proteins interact specifically with promoter sequences of the cbb operons. RegA has four DNA binding sites within the cbb(I) promoter region, with the CbbR binding site and RegA binding site 1 overlapping each other. This study demonstrated that CbbR and RegA interact and form a discrete complex in vitro, as illustrated by gel mobility shift experiments, direct isolation of the proteins from DNA complexes, and chemical cross-linking analyses. For CbbR/RegA interactions to occur, CbbR must be bound to the DNA, with the ability of CbbR to bind the cbb(I) promoter enhanced by RegA. Conversely, interactions with CbbR did not require RegA to bind the cbb(I) promoter. RegA itself formed incrementally larger multimeric complexes with DNA as the concentration of RegA increased. The presence of RegA binding sites 1, 2 and 3 promoted RegA/DNA binding at significantly lower concentrations of RegA than when RegA binding site 3 was not present in the cbb(I) promoter. These studies support the premise that both CbbR and RegA are necessary for optimal transcription of the cbb(I) operon genes of R. sphaeroides.
Collapse
Affiliation(s)
- Andrew W Dangel
- Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | | |
Collapse
|
25
|
RegB/RegA, A Global Redox-Responding Two-Component System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 631:131-48. [DOI: 10.1007/978-0-387-78885-2_9] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Hierarchical regulation of photosynthesis gene expression by the oxygen-responsive PrrBA and AppA-PpsR systems of Rhodobacter sphaeroides. J Bacteriol 2008; 190:8106-14. [PMID: 18931128 DOI: 10.1128/jb.01094-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the facultatively phototrophic proteobacterium Rhodobacter sphaeroides, formation of the photosynthetic apparatus is oxygen dependent. When oxygen tension decreases, the response regulator PrrA of the global two-component PrrBA system is believed to directly activate transcription of the puf, puh, and puc operons, encoding structural proteins of the photosynthetic complexes, and to indirectly upregulate the photopigment biosynthesis genes bch and crt. Decreased oxygen also results in inactivation of the photosynthesis-specific repressor PpsR, bringing about derepression of the puc, bch, and crt operons. We uncovered a hierarchical relationship between these two regulatory systems, earlier thought to function independently. We also more accurately assessed the spectrum of gene targets of the PrrBA system. First, expression of the appA gene, encoding the PpsR antirepressor, is PrrA dependent, which establishes one level of hierarchical dominance of the PrrBA system over AppA-PpsR. Second, restoration of the appA transcript to the wild-type level is insufficient for rescuing phototrophic growth impairment of the prrA mutant, whereas inactivation of ppsR is sufficient. This suggests that in addition to controlling appA transcription, PrrA affects the activity of the AppA-PpsR system via an as yet unidentified mechanism(s). Third, PrrA directly activates several bch and crt genes, traditionally considered to be the PpsR targets. Therefore, in R. sphaeroides, the global PrrBA system regulates photosynthesis gene expression (i) by rigorous control over the photosynthesis-specific AppA-PpsR regulatory system and (ii) by extensive direct transcription activation of genes encoding structural proteins of photosynthetic complexes as well as genes encoding photopigment biosynthesis enzymes.
Collapse
|
27
|
Role of the global transcriptional regulator PrrA in Rhodobacter sphaeroides 2.4.1: combined transcriptome and proteome analysis. J Bacteriol 2008; 190:4831-48. [PMID: 18487335 DOI: 10.1128/jb.00301-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PrrBA two-component regulatory system is a major global regulator in Rhodobacter sphaeroides 2.4.1. Here we have compared the transcriptome and proteome profiles of the wild-type (WT) and mutant PrrA2 cells grown anaerobically in the dark with dimethyl sulfoxide as an electron acceptor. Approximately 25% of the genes present in the PrrA2 genome are regulated by PrrA at the transcriptional level, either directly or indirectly, by twofold or more relative to the WT. The genes affected are widespread throughout all COG (cluster of orthologous group) functional categories, with previously unsuspected "metabolic" genes affected in PrrA2 cells. PrrA was found to act as both an activator and a repressor of transcription, with more genes being repressed in the presence of PrrA (9:5 ratio). An analysis of the genes encoding the 1,536 peptides detected through our chromatographic study, which corresponds to 36% coverage of the genome, revealed that approximately 20% of the genes encoding these proteins were positively regulated, whereas approximately 32% were negatively regulated by PrrA, which is in excellent agreement with the percentages obtained for the whole-genome transcriptome profile. In addition, comparison of the transcriptome and proteome mean parameter values for WT and PrrA2 cells showed good qualitative agreement, indicating that transcript regulation paralleled the corresponding protein abundance, although not one for one. The microarray analysis was validated by direct mRNA measurement of randomly selected genes that were both positively and negatively regulated. lacZ transcriptional and kan translational fusions enabled us to map putative PrrA binding sites and revealed potential gene targets for indirect regulation by PrrA.
Collapse
|
28
|
Mackenzie C, Eraso JM, Choudhary M, Roh JH, Zeng X, Bruscella P, Puskás A, Kaplan S. Postgenomic adventures with Rhodobacter sphaeroides. Annu Rev Microbiol 2007; 61:283-307. [PMID: 17506668 DOI: 10.1146/annurev.micro.61.080706.093402] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review describes some of the recent highlights taken from the studies of Rhodobacter sphaeroides 2.4.1. The review is not intended to be comprehensive, but to reflect the bias of the authors as to how the availability of a sequenced and annotated genome, a gene-chip, and proteomic profile as well as comparative genomic analyses can direct the progress of future research in this system.
Collapse
Affiliation(s)
- Chris Mackenzie
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Han Y, Meyer MHF, Keusgen M, Klug G. A haem cofactor is required for redox and light signalling by the AppA protein of Rhodobacter sphaeroides. Mol Microbiol 2007; 64:1090-104. [PMID: 17501930 DOI: 10.1111/j.1365-2958.2007.05724.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The AppA protein of Rhodobacter sphaeroides is unique in its ability to sense and transmit redox signals as well as light signals. By functioning as antagonist to the PpsR transcriptional repressor, it regulates the expression of photosynthesis genes in response to these environmental stimuli. Here we show binding of the cofactor haem to a domain in the C-terminal part of AppA and redox activity of bound haem. This is supported by the findings that: (i) the C-terminal domain of AppA (AppADeltaN) binds to haemin agarose, (ii) AppADeltaN isolated from Escherichia coli shows absorbance at 411 nm and absorbances at 424 nm and 556 nm after reduction with dithionite and (iii) AppADeltaN can be reconstituted with haem in vitro. Expression of AppA variants in R. sphaeroides reveals that the haem binding domain is important for normal expression levels of photosynthesis genes and for normal light regulation in the presence of oxygen. The haem cofactor affects the interaction of the C-terminal part of AppA to PpsR but also its interaction to the N-terminal light sensing AppA-BLUF domain. Based on this we present a model for the transmission of light and redox signals by AppA.
Collapse
Affiliation(s)
- Yuchen Han
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
30
|
Kwa LG, Wegmann D, Brügger B, Wieland FT, Wanner G, Braun P. Mutation of a single residue, beta-glutamate-20, alters protein-lipid interactions of light harvesting complex II. Mol Microbiol 2007; 67:63-77. [PMID: 18034796 PMCID: PMC2229836 DOI: 10.1111/j.1365-2958.2007.06017.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is well established that assembly of the peripheral antenna complex, LH2, is required for proper photosynthetic membrane biogenesis in the purple bacterium Rhodobacter sphaeroides. The underlying interactions are, as yet, not understood. Here we examined the relationship between the morphology of the photosynthetic membrane and the lipid–protein interactions at the LH2–lipid interface. The non-bilayer lipid, phosphatidylethanolamine, is shown to be highly enriched in the boundary lipid phase of LH2. Sequence alignments indicate a putative lipid binding site, which includes β-glutamate-20 and the adjacent carotenoid end group. Replacement of β-glutamate-20 with alanine results in significant reduction of phosphatidylethanolamine and concomitant raise in phosphatidylcholine in the boundary lipid phase of LH2 without altering the lipid composition of the bulk phase. The morphology of the LH2 housing membrane is, however, unaffected by the amino acid replacement. In contrast, simultaneous modification of glutamate-20 and exchange of the carotenoid sphaeroidenone with neurosporene results in significant enlargement of the vesicular membrane invaginations. These findings suggest that the LH2 complex, specifically β-glutamate-20 and the carotenoids' polar head group, contribute to the shaping of the photosynthetic membrane by specific interactions with surrounding lipid molecules.
Collapse
Affiliation(s)
- Lee Gyan Kwa
- Department Biologie I der LM-Universität München, Botanik, 80638 München, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Willett J, Smart JL, Bauer CE. RegA control of bacteriochlorophyll and carotenoid synthesis in Rhodobacter capsulatus. J Bacteriol 2007; 189:7765-73. [PMID: 17616588 PMCID: PMC2168725 DOI: 10.1128/jb.00853-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 06/29/2007] [Indexed: 11/20/2022] Open
Abstract
We provide in vivo genetic and in vitro biochemical evidence that RegA directly regulates bacteriochlorophyll and carotenoid biosynthesis in Rhodobacter capsulatus. beta-Galactosidase expression assays with a RegA-disrupted strain containing reporter plasmids for Mg-protoporphyrin IX monomethyl ester oxidative cyclase (bchE), Mg-protoporphyrin IX chelatase (bchD), and phytoene dehydrogenase (crtI) demonstrate RegA is responsible for fourfold anaerobic induction of bchE, threefold induction of bchD, and twofold induction of crtI. Promoter mapping studies, coupled with DNase I protection assays, map the region of RegA binding to three sites in the bchE promoter region. Similar studies at the crtA and crtI promoters indicate that RegA binds to a single region equidistant from these divergent promoters. These results demonstrate that RegA is directly responsible for anaerobic induction of bacteriochlorophyll biosynthesis genes bchE, bchD, bchJ, bchI, bchG, and bchP and carotenoid biosynthesis genes crtI, crtB, and crtA.
Collapse
|
32
|
Gregor J, Zeller T, Balzer A, Haberzettl K, Klug G. Bacterial Regulatory Networks Include Direct Contact of Response Regulator Proteins: Interaction of RegA and NtrX in Rhodobacter capsulatus. J Mol Microbiol Biotechnol 2007; 13:126-39. [PMID: 17693720 DOI: 10.1159/000103604] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The formation of photosynthetic complexes in facultatively photosynthetic bacteria is controlled by the oxygen tension in the environment. In Rhodobacter capsulatus the two-component system RegB/RegA plays a major role in the redox control of photosynthesis genes but also controls other redox-dependent systems. The response regulator RegA is phosphorylated under low oxygen tension and activates the puf and puc operons, which encode pigment binding proteins, by binding to their promoter regions. Data from a yeast two-hybrid analysis as well as an in vitroanalysis indicate that RegA interacts with the NtrX protein, the response regulator of the NtrY/NtrX two-component system which is believed to be involved in regulation of nitrogen fixation genes. Our further analysis revealed that NtrX is indeed involved in the regulation of the puf and puc operons. Furthermore, we showed that an altered NtrX protein, which is predicted to adopt the conformation of phosphorylated NtrX protein, binds within the puf promoter region close to the RegA binding sites. We conclude that a direct interaction of two response regulators connects the regulatory systems for redox control and nitrogen control.
Collapse
Affiliation(s)
- Jutta Gregor
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
33
|
Galperin MY. Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 2006; 188:4169-82. [PMID: 16740923 PMCID: PMC1482966 DOI: 10.1128/jb.01887-05] [Citation(s) in RCA: 380] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 03/28/2006] [Indexed: 11/20/2022] Open
Abstract
CheY-like phosphoacceptor (or receiver [REC]) domain is a common module in a variety of response regulators of the bacterial signal transduction systems. In this work, 4,610 response regulators, encoded in complete genomes of 200 bacterial and archaeal species, were identified and classified by their domain architectures. Previously uncharacterized output domains were analyzed and, in some cases, assigned to known domain families. Transcriptional regulators of the OmpR, NarL, and NtrC families were found to comprise almost 60% of all response regulators; transcriptional regulators with other DNA-binding domains (LytTR, AraC, Spo0A, Fis, YcbB, RpoE, and MerR) account for an additional 6%. The remaining one-third is represented by the stand-alone REC domain (approximately 14%) and its combinations with a variety of enzymatic (GGDEF, EAL, HD-GYP, CheB, CheC, PP2C, and HisK), RNA-binding (ANTAR and CsrA), protein- or ligand-binding (PAS, GAF, TPR, CAP_ED, and HPt) domains, or newly described domains of unknown function. The diversity of domain architectures and the abundance of alternative domain combinations suggest that fusions between the REC domain and various output domains is a widespread evolutionary mechanism that allows bacterial cells to regulate transcription, enzyme activity, and/or protein-protein interactions in response to environmental challenges. The complete list of response regulators encoded in each of the 200 analyzed genomes is available online at http://www.ncbi.nlm.nih.gov/Complete_Genomes/RRcensus.html.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
34
|
Potter CA, Jeong EL, Williamson MP, Henderson PJF, Phillips-Jones MK. Redox-responsive in vitro modulation of the signalling state of the isolated PrrB sensor kinase of Rhodobacter sphaeroides NCIB 8253. FEBS Lett 2006; 580:3206-10. [PMID: 16684526 DOI: 10.1016/j.febslet.2006.04.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 04/25/2006] [Accepted: 04/28/2006] [Indexed: 11/26/2022]
Abstract
Prr is a global regulatory system that controls a large and diverse range of genes in Rhodobacter sphaeroides in response to changing conditions of environmental redox potential. PrrB is the membrane-bound sensor kinase and previously we showed that the purified, detergent-solubilised intact membrane protein is functional in autophosphorylation, phosphotransfer and phosphatase activities. Here we confirm that it also senses and responds directly to its environmental signal, redox potential; strong autophosphorylation of PrrB occurred in response to dithiothreitol (DTT)-induced reducing conditions (and levels increased in response to a wide 0.1-100 mM DTT range), whilst under oxidising conditions, PrrB exhibited low, just detectable levels of autophosphorylation. The clear response of PrrB to changes in reducing conditions confirmed its suitability for in vitro studies to identify modulators of its phosphorylation signalling state, and was used here to investigate whether PrrB might sense more than one redox-related signal, such as signals of cell energy status. NADH, ATP and AMP were found to exert no detectable effect on maintenance of the PrrB-P signalling state. By contrast, adenosine diphosphate produced a very strong increase in PrrB-P dephosphorylation rate, presumably through the back-conversion of PrrB-P to PrrB.
Collapse
Affiliation(s)
- Christopher A Potter
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|
35
|
Smart JL, Bauer CE. Tetrapyrrole biosynthesis in Rhodobacter capsulatus is transcriptionally regulated by the heme-binding regulatory protein, HbrL. J Bacteriol 2006; 188:1567-76. [PMID: 16452440 PMCID: PMC1367214 DOI: 10.1128/jb.188.4.1567-1576.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We demonstrate that the expression of hem genes in Rhodobacter capsulatus is transcriptionally repressed in response to the exogenous addition of heme. A high-copy suppressor screen for regulators of hem gene expression resulted in the identification of an LysR-type transcriptional regulator, called HbrL, that regulates hem promoters in response to the availability of heme. HbrL is shown to activate the expression of hemA and hemZ in the absence of exogenous hemin and repress hemB expression in the presence of exogenous hemin. Heterologously expressed HbrL apoprotein binds heme b and is purified with bound heme b when expressed in the presence of 5-aminolevulinic acid. Electrophoretic gel shift analysis demonstrated that HbrL binds the promoter region of hemA, hemB, and hemZ as well as its own promoter and that the presence of heme increases the binding affinity of HbrL to hemB.
Collapse
Affiliation(s)
- James L Smart
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
36
|
Happ HN, Braatsch S, Broschek V, Osterloh L, Klug G. Light-dependent regulation of photosynthesis genes in Rhodobacter sphaeroides 2.4.1 is coordinately controlled by photosynthetic electron transport via the PrrBA two-component system and the photoreceptor AppA. Mol Microbiol 2006; 58:903-14. [PMID: 16238636 DOI: 10.1111/j.1365-2958.2005.04882.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Formation of the photosynthetic apparatus in Rhodobacter is regulated by oxygen tension and light intensity. Here we show that in anaerobically grown Rhodobacter cells a light-dependent increase in expression of the puc and puf operons encoding structural proteins of the photosynthetic complexes requires an active photosynthetic electron transport. The redox-sensitive CrtJ/PpsR repressor of photosynthesis genes, which was suggested to mediate electron transport-dependent signals, is not involved in this light-dependent signal chain. Our data reveal that the signal initiated in the photosynthetic reaction centre is transmitted via components of the electron transport chain and the PrrB/PrrA two-component system in Rhodobacter sphaeroides. Under blue light illumination in the absence of oxygen this signal leads to activation of photosynthesis genes and interferes with a blue-light repression mediated by the AppA photoreceptor and the PpsR transcriptional repressor in R. sphaeroides. Thus, light either sensed by a photoreceptor or initiating photosynthetic electron transport has opposite effects on the transcription of photosynthesis genes. Both signalling pathways involve redox-dependent steps that finally determine the effect of light on gene expression.
Collapse
Affiliation(s)
- Hendrik N Happ
- Institut für Mikrobiologie und Molekularbiologie, Universität Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
37
|
Swem DL, Swem LR, Setterdahl A, Bauer CE. Involvement of SenC in assembly of cytochrome c oxidase in Rhodobacter capsulatus. J Bacteriol 2005; 187:8081-7. [PMID: 16291681 PMCID: PMC1291261 DOI: 10.1128/jb.187.23.8081-8087.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SenC, a Sco1 homolog found in the purple photosynthetic bacteria, has been implicated in affecting photosynthesis and respiratory gene expression, as well as assembly of cytochrome c oxidase. In this study, we show that SenC from Rhodobacter capsulatus is involved in the assembly of a fully functional cbb(3)-type cytochrome c oxidase, as revealed by decreased cytochrome c oxidase activity in a senC mutant. We also show that a putative copper-binding site in SenC is required for activity and that a SenC deletion phenotype can be rescued by the addition of exogenous copper to the growth medium. In addition, we demonstrate that a SenC mutation has an indirect effect on gene expression caused by a reduction in cytochrome c oxidase activity. A model is proposed whereby a reduction in cytochrome c oxidase activity impedes the flow of electrons through the respiratory pathway, thereby affecting the oxidation/reduction state of the ubiquinone pool, leading to alterations of photosystem and respiratory gene expression.
Collapse
Affiliation(s)
- Danielle L Swem
- Department of Biology, Indiana University, Bloomington, 47405, USA
| | | | | | | |
Collapse
|
38
|
Koblízek M, Shih JD, Breitbart SI, Ratcliffe EC, Kolber ZS, Hunter CN, Niederman RA. Sequential assembly of photosynthetic units in Rhodobacter sphaeroides as revealed by fast repetition rate analysis of variable bacteriochlorophyll a fluorescence. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1706:220-31. [PMID: 15694350 DOI: 10.1016/j.bbabio.2004.11.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 10/27/2004] [Accepted: 11/10/2004] [Indexed: 11/25/2022]
Abstract
The development of functional photosynthetic units in Rhodobacter sphaeroides was followed by near infra-red fast repetition rate (IRFRR) fluorescence measurements that were correlated to absorption spectroscopy, electron microscopy and pigment analyses. To induce the formation of intracytoplasmic membranes (ICM) (greening), cells grown aerobically both in batch culture and in a carbon-limited chemostat were transferred to semiaerobic conditions. In both aerobic cultures, a low level of photosynthetic complexes was observed, which were composed of the reaction center and the LH1 core antenna. Interestingly, in the batch cultures the reaction centers were essentially inactive in forward electron transfer and exhibited low photochemical yields F(V)/F(M), whereas the chemostat culture displayed functional reaction centers with a rather rapid (1-2 ms) electron transfer turnover, as well as a high F(V)/F(M) of approximately 0.8. In both cases, the transfer to semiaerobiosis resulted in rapid induction of bacteriochlorophyll a synthesis that was reflected by both an increase in the number of LH1-reaction center and peripheral LH2 antenna complexes. These studies establish that photosynthetic units are assembled in a sequential manner, where the appearance of the LH1-reaction center cores is followed by the activation of functional electron transfer, and finally by the accumulation of the LH2 complexes.
Collapse
Affiliation(s)
- Michal Koblízek
- Environmental Biophysics and Molecular Ecology Program, Rutgers University, 71 Dudley Road, Institute of Coastal and Marine Sciences, New Brunswick, NJ 08901-8521, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Tsuzuki M, Xu XY, Sato K, Abo M, Arioka M, Nakajima H, Kitamoto K, Okubo A. SspA, an outer membrane protein, is highly induced under salt-stressed conditions and is essential for growth under salt-stressed aerobic conditions in Rhodobacter sphaeroides f. sp. denitrificans. Appl Microbiol Biotechnol 2005; 68:242-50. [PMID: 15647934 DOI: 10.1007/s00253-004-1852-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 10/28/2004] [Accepted: 11/12/2004] [Indexed: 02/06/2023]
Abstract
We have previously shown that an outer membrane protein, SspA, is prominently induced by salt stress in a photosynthetic bacterium, Rhodobacter sphaeroides f. sp. denitrificans IL106 (R. sphaeroides). In this study, we investigated the physiological role of SspA under various stress conditions. Using recombinant SspA expressed in Escherichia coli as an antigen, the polyclonal antiserum of SspA was prepared. Western blot analysis demonstrated that SspA was highly induced by salt stress under both anaerobic and aerobic conditions. SspA was also induced, but to a lesser extent, by osmotic and acid stress. It is reduced under heat and cold compared to non-stressed conditions. While sspA-disrupted R. sphaeroides grew normally under anaerobic conditions in either the presence or absence of stress, it displayed significantly retarded growth under aerobic conditions in the dark, especially when osmotic or salt stress were imposed. In addition, the sspA disruptant, but not the wild type, formed cell aggregates when grown under both anaerobic and aerobic conditions, and this phenotype was significantly enhanced under salt-stressed aerobic conditions. Together, our findings suggest that SspA is critical under salt-stressed, aerobic growth conditions.
Collapse
Affiliation(s)
- M Tsuzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657. Japan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Redox reactions pervade living cells. They are central to both anabolic and catabolic metabolism. The ability to maintain redox balance is therefore vital to all organisms. Various regulatory sensors continually monitor the redox state of the internal and external environments and control the processes that work to maintain redox homeostasis. In response to redox imbalance, new metabolic pathways are initiated, the repair or bypassing of damaged cellular components is coordinated and systems that protect the cell from further damage are induced. Advances in biochemical analyses are revealing a range of elegant solutions that have evolved to allow bacteria to sense different redox signals.
Collapse
Affiliation(s)
- Jeffrey Green
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom.
| | | |
Collapse
|
41
|
Smart JL, Willett JW, Bauer CE. Regulation of hem gene expression in Rhodobacter capsulatus by redox and photosystem regulators RegA, CrtJ, FnrL, and AerR. J Mol Biol 2004; 342:1171-86. [PMID: 15351643 DOI: 10.1016/j.jmb.2004.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 08/02/2004] [Accepted: 08/03/2004] [Indexed: 11/18/2022]
Abstract
Biosynthetic pathways for heme and chlorophyll share common intermediates from 5-aminolevulinic acid through protoporphyrin IX. To obtain a better understanding of how photosynthetic organisms coordinate heme and chlorophyll biosynthesis, we have undertaken detailed analysis of the expression pattern of numerous heme biosynthesis genes in the purple photosynthetic bacterium Rhodobacter capsulatus. beta-Galactosidase reporter assays demonstrated that expression of hemA, hemB, hemC, hemE and hemZ genes is elevated under conditions that give rise to elevated bacteriochlorophyll synthesis. Heme gene expression is shown to be affected by mutations in previously identified transcriptional regulators RegA, FnrL, CrtJ, and AerR, which also control expression of genes involved in bacteriochlorophyll and carotenoid synthesis, and synthesis of the apoprotein subunits of the photosynthetic and electron transport apparatus. High-resolution primer extension analysis of hem mRNA reveals the presence of numerous putative RegA, FnrL and CrtJ binding sites in several hem promoter regions.
Collapse
Affiliation(s)
- James L Smart
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
42
|
Dubbs JM, Tabita FR. Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy generation. FEMS Microbiol Rev 2004; 28:353-76. [PMID: 15449608 DOI: 10.1016/j.femsre.2004.01.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
For the metabolically diverse nonsulfur purple phototrophic bacteria, maintaining redox homeostasis requires balancing the activities of energy supplying and energy-utilizing pathways, often in the face of drastic changes in environmental conditions. These organisms, members of the class Alphaproteobacteria, primarily use CO2 as an electron sink to achieve redox homeostasis. After noting the consequences of inactivating the capacity for CO2 reduction through the Calvin-Benson-Bassham (CBB) pathway, it was shown that the molecular control of many additional important biological processes catalyzed by nonsulfur purple bacteria is linked to expression of the CBB genes. Several regulator proteins are involved, with the two component Reg/Prr regulatory system playing a major role in maintaining redox poise in these organisms. Reg/Prr was shown to be a global regulator involved in the coordinate control of a number of metabolic processes including CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy-generation pathways. Accumulating evidence suggests that the Reg/Prr system senses the oxidation/reduction state of the cell by monitoring a signal associated with electron transport. The response regulator RegA/PrrA activates or represses gene expression through direct interaction with target gene promoters where it often works in concert with other regulators that can be either global or specific. For the key CO2 reduction pathway, which clearly triggers whether other redox balancing mechanisms are employed, the ability to activate or inactivate the specific regulator CbbR is of paramount importance. From these studies, it is apparent that a detailed understanding of how diverse regulatory elements integrate and control metabolism will eventually be achieved.
Collapse
Affiliation(s)
- James M Dubbs
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | | |
Collapse
|
43
|
Elsen S, Swem LR, Swem DL, Bauer CE. RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol Mol Biol Rev 2004; 68:263-79. [PMID: 15187184 PMCID: PMC419920 DOI: 10.1128/mmbr.68.2.263-279.2004] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Reg regulon from Rhodobacter capsulatus and Rhodobacter sphaeroides encodes proteins involved in numerous energy-generating and energy-utilizing processes such as photosynthesis, carbon fixation, nitrogen fixation, hydrogen utilization, aerobic and anaerobic respiration, denitrification, electron transport, and aerotaxis. The redox signal that is detected by the membrane-bound sensor kinase, RegB, appears to originate from the aerobic respiratory chain, given that mutations in cytochrome c oxidase result in constitutive RegB autophosphorylation. Regulation of RegB autophosphorylation also involves a redox-active cysteine that is present in the cytosolic region of RegB. Both phosphorylated and unphosphorylated forms of the cognate response regulator RegA are capable of activating or repressing a variety of genes in the regulon. Highly conserved homologues of RegB and RegA have been found in a wide number of photosynthetic and nonphotosynthetic bacteria, with evidence suggesting that RegB/RegA plays a fundamental role in the transcription of redox-regulated genes in many bacterial species.
Collapse
Affiliation(s)
- Sylvie Elsen
- Laboratoire de Biochimie et de Biophysique des Systèmes Intégrés (UMR 5092 CNRS-CEA-UJF), Grenoble, France
| | | | | | | |
Collapse
|
44
|
Fenner BJ, Tiwari RP, Reeve WG, Dilworth MJ, Glenn AR. Sinorhizobium medicaegenes whose regulation involves the ActS and/or ActR signal transduction proteins. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09622.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
45
|
Swem LR, Kraft BJ, Swem DL, Setterdahl AT, Masuda S, Knaff DB, Zaleski JM, Bauer CE. Signal transduction by the global regulator RegB is mediated by a redox-active cysteine. EMBO J 2003; 22:4699-708. [PMID: 12970182 PMCID: PMC212728 DOI: 10.1093/emboj/cdg461] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
All living organisms alter their physiology in response to changes in oxygen tension. The photosynthetic bacterium uses the RegB-RegA signal transduction cascade to control a wide variety of oxygen-responding processes such as respiration, photosynthesis, carbon fixation and nitrogen fixation. We demonstrate that a highly conserved cysteine has a role in controlling the activity of the sensor kinase, RegB. In vitro studies indicate that exposure of RegB to oxidizing conditions results in the formation of an intermolecular disulfide bond and that disulfide bond formation is metal-dependent, with the metal fulfilling a structural role. Formation of a disulfide bond in vitro is also shown to convert the kinase from an active dimer into an inactive tetramer state. Mutational analysis indicates that a cysteine residue flanked by cationic amino acids is involved in redox sensing in vitro and in vivo. These residues appear to constitute a novel 'redox-box' that is present in sensor kinases from diverse species of bacteria.
Collapse
Affiliation(s)
- Lee R Swem
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Li K, Härtig E, Klug G. Thioredoxin 2 is involved in oxidative stress defence and redox-dependent expression of photosynthesis genes in Rhodobacter capsulatus. MICROBIOLOGY (READING, ENGLAND) 2003; 149:419-430. [PMID: 12624204 DOI: 10.1099/mic.0.25978-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Thioredoxins are small ubiquitous proteins that display different functions mainly via redox-mediated processes. The facultatively photosynthetic bacterium Rhodobacter capsulatus harbours at least two genes for thioredoxin 1 and 2, trxA and trxC. It is demonstrated that thioredoxin 2 of R. capsulatus can partially replace the thioredoxin 1 function as a hydrogen donor for methionine sulfoxide reductase but cannot replace thioredoxin 1 as a subunit of phage T7 DNA polymerase. By inactivating the trxC gene in R. capsulatus, it is shown that thioredoxin 2 is involved in resistance against oxidative stress. As thioredoxin 1 of Rhodobacter sphaeroides, R. capsulatus thioredoxin 2 affects the oxygen-dependent expression of photosynthesis genes, albeit in an opposite way. The trxC mutant of R. capsulatus shows a stronger increase in photosynthesis gene expression after a decrease in oxygen tension than the isogenic wild-type strain. The expression of the trxC gene is downregulated by oxygen.
Collapse
Affiliation(s)
- Kuanyu Li
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Elisabeth Härtig
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Gabriele Klug
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| |
Collapse
|
47
|
Inui M, Nakata K, Roh JH, Vertès AA, Yukawa H. Isolation and molecular characterization of pMG160, a mobilizable cryptic plasmid from Rhodobacter blasticus. Appl Environ Microbiol 2003; 69:725-33. [PMID: 12570988 PMCID: PMC143669 DOI: 10.1128/aem.69.2.725-733.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 3.4-kb cryptic plasmid was obtained from a new isolate of Rhodobacter blasticus. This plasmid, designated pMG160, was mobilizable by the conjugative strain Escherichia coli S17.1 into Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodopseudomonas palustris. It replicated in the latter strains but not in Rhodospirillum rubrum, Rhodocyclus gelatinosus, or Bradyrhizobium species. Plasmid pMG160 was stably maintained in R. sphaeroides for more than 100 generations in the absence of selection but showed segregational instability in R. palustris. Instability in R. palustris correlated with a decrease in plasmid copy number compared to the copy number in R. sphaeroides. The complete nucleotide sequence of plasmid pMG160 contained three open reading frames (ORFs). The deduced amino acid sequences encoded by ORF1 and ORF2 showed high degrees of homology to the MobS and MobL proteins that are involved in plasmid mobilization of certain plasmids. Based on homology with the Rep protein of several other plasmids, ORF3 encodes a putative rep gene initiator of plasmid replication. The functions of these sequences were demonstrated by deletion mapping, frameshift analysis, and analysis of point mutations. Two 6.1-kb pMG160-based E. coli-R. sphaeroides shuttle cloning vectors were constructed and designated pMG170 and pMG171. These two novel shuttle vectors were segregationally stable in R. sphaeroides growing under nonselective conditions.
Collapse
Affiliation(s)
- Masayuki Inui
- Research Institute of Innovative Technology for the Earth, Kizu, Soraku, Kyoto 619-0292, Japan
| | | | | | | | | |
Collapse
|
48
|
Bauer C, Elsen S, Swem LR, Swem DL, Masuda S. Redox and light regulation of gene expression in photosynthetic prokaryotes. Philos Trans R Soc Lond B Biol Sci 2003; 358:147-53; discussion 153-4. [PMID: 12594923 PMCID: PMC1693112 DOI: 10.1098/rstb.2002.1189] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
All photosynthetic organisms control expression of photosynthesis genes in response to alterations in light intensity as well as to changes in cellular redox potential. Light regulation in plants involves a well-defined set of red- and blue-light absorbing photoreceptors called phytochrome and cryptochrome. Less understood are the factors that control synthesis of the plant photosystem in response to changes in cellular redox. Among a diverse set of photosynthetic bacteria the best understood regulatory systems are those synthesized by the photosynthetic bacterium Rhodobacter capsulatus. This species uses the global two-component signal transduction cascade, RegB and RegA, to anaerobically de-repress anaerobic gene expression. Under reducing conditions, the phosphate on RegB is transferred to RegA, which then activates genes involved in photosynthesis, nitrogen fixation, carbon fixation, respiration and electron transport. In the presence of oxygen, there is a second regulator known as CrtJ, which is responsible for repressing photosynthesis gene expression. CrtJ responds to redox by forming an intramolecular disulphide bond under oxidizing, but not reducing, growth conditions. The presence of the disulphide bond stimulates DNA binding activity of the repressor. There is also a flavoprotein that functions as a blue-light absorbing anti-repressor of CrtJ in the related bacterial species Rhodobacter sphaeroides called AppA. AppA exhibits a novel long-lived photocycle that is initiated by blue-light absorption by the flavin. Once excited, AppA binds to CrtJ thereby inhibiting the repressor activity of CrtJ. Various mechanistic aspects of this photocycle will be discussed.
Collapse
Affiliation(s)
- Carl Bauer
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Affiliation(s)
- Jesus M Eraso
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|