1
|
Cordier F, Creytens D. RB1: governor of the cell cycle in health and disease-a primer for the practising pathologist. J Clin Pathol 2024; 77:435-438. [PMID: 38772617 DOI: 10.1136/jcp-2024-209480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
RB1 stands as the pioneering discovery in tumour-suppressor genes, marking a pivotal breakthrough in comprehending cancer development. This overview delves into the role of RB1 in both health and disease, exploring its association with the tumourigenesis of various cancers and a distinct subset of soft-tissue neoplasms. Additionally, we discuss the application of immunohistochemistry and fluorescence in situ hybridisation to detect RB1 alterations.
Collapse
Affiliation(s)
- Fleur Cordier
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - David Creytens
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
2
|
Militi S, Nibhani R, Jalali M, Pauklin S. RBL2-E2F-GCN5 guide cell fate decisions during tissue specification by regulating cell-cycle-dependent fluctuations of non-cell-autonomous signaling. Cell Rep 2023; 42:113146. [PMID: 37725511 DOI: 10.1016/j.celrep.2023.113146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/30/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
The retinoblastoma family proteins (RBs) and E2F transcription factors are cell-autonomous regulators of cell-cycle progression, but they also impact fate choice in addition to tumor suppression. The range of mechanisms involved remains to be uncovered. Here, we show that RBs, particularly RBL2/p130, repress WNT ligands such as WNT4 and WNT8A, thereby directing ectoderm specification between neural crest to neuroepithelium. RBL2 achieves this function through cell-cycle-dependent cooperation with E2Fs and GCN5 on the regulatory regions of WNT loci, which direct neuroepithelial versus neural crest specification by temporal fluctuations of WNT/β-catenin and DLL/NOTCH signaling activity. Thus, the RB-E2F bona fide cell-autonomous axis controls cell fate decisions, and RBL2 regulates field effects via WNT ligands. This reveals a non-cell-autonomous function of RBL2-E2F in stem cell and tissue progenitor differentiation that has broader implications for cell-cycle-dependent cell fate specification in organogenesis, adult stem cells, tissue homeostasis, and tumorigenesis.
Collapse
Affiliation(s)
- Stefania Militi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, UK
| | - Reshma Nibhani
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, UK
| | - Morteza Jalali
- Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, UK.
| |
Collapse
|
3
|
Butler E, Xu L, Rakheja D, Schwettmann B, Toubbeh S, Guo L, Kim J, Skapek SX, Zheng Y. Exon skipping in genes encoding lineage-defining myogenic transcription factors in rhabdomyosarcoma. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006190. [PMID: 35933111 PMCID: PMC9528969 DOI: 10.1101/mcs.a006190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a childhood sarcoma composed of myoblast-like cells, which suggests a defect in terminal skeletal muscle differentiation. To explore potential defects in the differentiation program, we searched for mRNA splicing variants in genes encoding transcription factors driving skeletal muscle lineage commitment and differentiation. We studied two RMS cases and identified altered splicing resulting in "skipping" the second of three exons in MYOD1. RNA-Seq data from 42 tumors and additional RMS cell lines revealed exon 2 skipping in both MYOD1 and MYF5 but not in MYF6 or MYOG. Complementary molecular analysis of MYOD1 mRNA found evidence for exon skipping in 5 additional RMS cases. Functional studies showed that so-called MYODΔEx2 protein failed to robustly induce muscle-specific genes, and its ectopic expression conferred a selective advantage in cultured fibroblasts and an RMS xenograft. In summary, we present previously unrecognized exon skipping within MYOD1 and MYF5 in RMS, and we propose that alternative splicing can represent a mechanism to alter the function of these two transcription factors in RMS.
Collapse
Affiliation(s)
- Erin Butler
- University of Texas Southwestern Medical Center;
| | - Lin Xu
- University of Texas Southwestern Medical Center
| | | | | | | | - Lei Guo
- University of Texas Southwestern Medical Center
| | - Jiwoon Kim
- University of Texas Southwestern Medical Center
| | | | | |
Collapse
|
4
|
Janostiak R, Torres-Sanchez A, Posas F, de Nadal E. Understanding Retinoblastoma Post-Translational Regulation for the Design of Targeted Cancer Therapies. Cancers (Basel) 2022; 14:cancers14051265. [PMID: 35267571 PMCID: PMC8909233 DOI: 10.3390/cancers14051265] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Rb1 is a regulator of cell cycle progression and genomic stability. This review focuses on post-translational modifications, their effect on Rb1 interactors, and their role in intracellular signaling in the context of cancer development. Finally, we highlight potential approaches to harness these post-translational modifications to design novel effective anticancer therapies. Abstract The retinoblastoma protein (Rb1) is a prototypical tumor suppressor protein whose role was described more than 40 years ago. Together with p107 (also known as RBL1) and p130 (also known as RBL2), the Rb1 belongs to a family of structurally and functionally similar proteins that inhibits cell cycle progression. Given the central role of Rb1 in regulating proliferation, its expression or function is altered in most types of cancer. One of the mechanisms underlying Rb-mediated cell cycle inhibition is the binding and repression of E2F transcription factors, and these processes are dependent on Rb1 phosphorylation status. However, recent work shows that Rb1 is a convergent point of many pathways and thus the regulation of its function through post-translational modifications is more complex than initially expected. Moreover, depending on the context, downstream signaling can be both E2F-dependent and -independent. This review seeks to summarize the most recent research on Rb1 function and regulation and discuss potential avenues for the design of novel cancer therapies.
Collapse
Affiliation(s)
- Radoslav Janostiak
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Ariadna Torres-Sanchez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Francesc Posas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Correspondence: (F.P.); (E.d.N.); Tel.: +34-93-403-4810 (F.P.); +34-93-403-9895 (E.d.N.)
| | - Eulàlia de Nadal
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Correspondence: (F.P.); (E.d.N.); Tel.: +34-93-403-4810 (F.P.); +34-93-403-9895 (E.d.N.)
| |
Collapse
|
5
|
Pajalunga D, Crescenzi M. Restoring the Cell Cycle and Proliferation Competence in Terminally Differentiated Skeletal Muscle Myotubes. Cells 2021; 10:cells10102753. [PMID: 34685732 PMCID: PMC8534385 DOI: 10.3390/cells10102753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023] Open
Abstract
Terminal differentiation is an ill-defined, insufficiently characterized, nonproliferation state. Although it has been classically deemed irreversible, it is now clear that at least several terminally differentiated (TD) cell types can be brought back into the cell cycle. We are striving to uncover the molecular bases of terminal differentiation, whose fundamental understanding is a goal in itself. In addition, the field has sought to acquire the ability to make TD cells proliferate. Attaining this end would probe the very molecular mechanisms we are trying to understand. Equally important, it would be invaluable in regenerative medicine, for tissues depending on TD cells and devoid of significant self-repair capabilities. The skeletal muscle has long been used as a model system to investigate the molecular foundations of terminal differentiation. Here, we summarize more than 50 years of studies in this field.
Collapse
Affiliation(s)
- Deborah Pajalunga
- Department of Oncology and Molecular Medicine, Italian National Institute of Health, 00161 Rome, Italy;
| | - Marco Crescenzi
- Core Facilities, Italian National Institute of Health, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
6
|
In vitro CSC-derived cardiomyocytes exhibit the typical microRNA-mRNA blueprint of endogenous cardiomyocytes. Commun Biol 2021; 4:1146. [PMID: 34593953 PMCID: PMC8484596 DOI: 10.1038/s42003-021-02677-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023] Open
Abstract
miRNAs modulate cardiomyocyte specification by targeting mRNAs of cell cycle regulators and acting in cardiac muscle lineage gene regulatory loops. It is unknown if or to-what-extent these miRNA/mRNA networks are operative during cardiomyocyte differentiation of adult cardiac stem/progenitor cells (CSCs). Clonally-derived mouse CSCs differentiated into contracting cardiomyocytes in vitro (iCMs). Comparison of "CSCs vs. iCMs" mRNome and microRNome showed a balanced up-regulation of CM-related mRNAs together with a down-regulation of cell cycle and DNA replication mRNAs. The down-regulation of cell cycle genes and the up-regulation of the mature myofilament genes in iCMs reached intermediate levels between those of fetal and neonatal cardiomyocytes. Cardiomyo-miRs were up-regulated in iCMs. The specific networks of miRNA/mRNAs operative in iCMs closely resembled those of adult CMs (aCMs). miR-1 and miR-499 enhanced myogenic commitment toward terminal differentiation of iCMs. In conclusions, CSC specification/differentiation into contracting iCMs follows known cardiomyo-MiR-dependent developmental cardiomyocyte differentiation trajectories and iCMs transcriptome/miRNome resembles that of CMs.
Collapse
|
7
|
Key Genes Regulating Skeletal Muscle Development and Growth in Farm Animals. Animals (Basel) 2021; 11:ani11030835. [PMID: 33809500 PMCID: PMC7999090 DOI: 10.3390/ani11030835] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Skeletal muscle mass is an important economic trait, and muscle development and growth is a crucial factor to supply enough meat for human consumption. Thus, understanding (candidate) genes regulating skeletal muscle development is crucial for understanding molecular genetic regulation of muscle growth and can be benefit the meat industry toward the goal of increasing meat yields. During the past years, significant progress has been made for understanding these mechanisms, and thus, we decided to write a comprehensive review covering regulators and (candidate) genes crucial for muscle development and growth in farm animals. Detection of these genes and factors increases our understanding of muscle growth and development and is a great help for breeders to satisfy demands for meat production on a global scale. Abstract Farm-animal species play crucial roles in satisfying demands for meat on a global scale, and they are genetically being developed to enhance the efficiency of meat production. In particular, one of the important breeders’ aims is to increase skeletal muscle growth in farm animals. The enhancement of muscle development and growth is crucial to meet consumers’ demands regarding meat quality. Fetal skeletal muscle development involves myogenesis (with myoblast proliferation, differentiation, and fusion), fibrogenesis, and adipogenesis. Typically, myogenesis is regulated by a convoluted network of intrinsic and extrinsic factors monitored by myogenic regulatory factor genes in two or three phases, as well as genes that code for kinases. Marker-assisted selection relies on candidate genes related positively or negatively to muscle development and can be a strong supplement to classical selection strategies in farm animals. This comprehensive review covers important (candidate) genes that regulate muscle development and growth in farm animals (cattle, sheep, chicken, and pig). The identification of these genes is an important step toward the goal of increasing meat yields and improves meat quality.
Collapse
|
8
|
Shinji S, Umezawa K, Nihashi Y, Nakamura S, Shimosato T, Takaya T. Identification of the Myogenetic Oligodeoxynucleotides (myoDNs) That Promote Differentiation of Skeletal Muscle Myoblasts by Targeting Nucleolin. Front Cell Dev Biol 2021; 8:616706. [PMID: 33585451 PMCID: PMC7874222 DOI: 10.3389/fcell.2020.616706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Herein we report that the 18-base telomeric oligodeoxynucleotides (ODNs) designed from the Lactobacillus rhamnosus GG genome promote differentiation of skeletal muscle myoblasts which are myogenic precursor cells. We termed these myogenetic ODNs (myoDNs). The activity of one of the myoDNs, iSN04, was independent of Toll-like receptors, but dependent on its conformational state. Molecular simulation and iSN04 mutants revealed stacking of the 13-15th guanines as a core structure for iSN04. The alkaloid berberine bound to the guanine stack and enhanced iSN04 activity, probably by stabilizing and optimizing iSN04 conformation. We further identified nucleolin as an iSN04-binding protein. Results showed that iSN04 antagonizes nucleolin, increases the levels of p53 protein translationally suppressed by nucleolin, and eventually induces myotube formation by modulating the expression of genes involved in myogenic differentiation and cell cycle arrest. This study shows that bacterial-derived myoDNs serve as aptamers and are potential nucleic acid drugs directly targeting myoblasts.
Collapse
Affiliation(s)
- Sayaka Shinji
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Koji Umezawa
- Department of Agricultural and Life Science, Faculty of Agriculture, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Yuma Nihashi
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
| | - Shunichi Nakamura
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Takeshi Shimosato
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- Department of Agricultural and Life Science, Faculty of Agriculture, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
| | - Tomohide Takaya
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- Department of Agricultural and Life Science, Faculty of Agriculture, Shinshu University, Nagano, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, Japan
| |
Collapse
|
9
|
Blockade of Hemichannels Normalizes the Differentiation Fate of Myoblasts and Features of Skeletal Muscles from Dysferlin-Deficient Mice. Int J Mol Sci 2020; 21:ijms21176025. [PMID: 32825681 PMCID: PMC7503700 DOI: 10.3390/ijms21176025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 01/18/2023] Open
Abstract
Dysferlinopathies are muscle dystrophies caused by mutations in the gene encoding dysferlin, a relevant protein for membrane repair and trafficking. These diseases are untreatable, possibly due to the poor knowledge of relevant molecular targets. Previously, we have shown that human myofibers from patient biopsies as well as myotubes derived from immortalized human myoblasts carrying a mutated form of dysferlin express connexin proteins, but their relevance in myoblasts fate and function remained unknown. In the present work, we found that numerous myoblasts bearing a mutated dysferlin when induced to acquire myogenic commitment express PPARγ, revealing adipogenic instead of myogenic commitment. These cell cultures presented many mononucleated cells with fat accumulation and within 48 h of differentiation formed fewer multinucleated cells. In contrast, dysferlin deficient myoblasts treated with boldine, a connexin hemichannels blocker, neither expressed PPARγ, nor accumulated fat and formed similar amount of multinucleated cells as wild type precursor cells. We recently demonstrated that myofibers of skeletal muscles from blAJ mice (an animal model of dysferlinopathies) express three connexins (Cx39, Cx43, and Cx45) that form functional hemichannels (HCs) in the sarcolemma. In symptomatic blAJ mice, we now show that eight-week treatment with a daily dose of boldine showed a progressive recovery of motor activity reaching normality. At the end of this treatment, skeletal muscles were comparable to those of wild type mice and presented normal CK activity in serum. Myofibers of boldine-treated blAJ mice also showed strong dysferlin-like immunoreactivity. These findings reveal that muscle dysfunction results from a pathophysiologic mechanism triggered by mutated dysferlin and downstream connexin hemichannels expressed de novo lead to a drastic reduction of myogenesis and favor muscle damage. Thus, boldine could represent a therapeutic opportunity to treat dysfernilopathies.
Collapse
|
10
|
Schwämmle V, Hagensen CE, Rogowska-Wrzesinska A, Jensen ON. PolySTest: Robust Statistical Testing of Proteomics Data with Missing Values Improves Detection of Biologically Relevant Features. Mol Cell Proteomics 2020; 19:1396-1408. [PMID: 32424025 PMCID: PMC8015005 DOI: 10.1074/mcp.ra119.001777] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/1919] [Revised: 04/18/2020] [Indexed: 12/11/2022] Open
Abstract
Statistical testing remains one of the main challenges for high-confidence detection of differentially regulated proteins or peptides in large-scale quantitative proteomics experiments by mass spectrometry. Statistical tests need to be sufficiently robust to deal with experiment intrinsic data structures and variations and often also reduced feature coverage across different biological samples due to ubiquitous missing values. A robust statistical test provides accurate confidence scores of large-scale proteomics results, regardless of instrument platform, experimental protocol and software tools. However, the multitude of different combinations of experimental strategies, mass spectrometry techniques and informatics methods complicate the decision of choosing appropriate statistical approaches. We address this challenge by introducing PolySTest, a user-friendly web service for statistical testing, data browsing and data visualization. We introduce a new method, Miss test, that simultaneously tests for missingness and feature abundance, thereby complementing common statistical tests by rescuing otherwise discarded data features. We demonstrate that PolySTest with integrated Miss test achieves higher confidence and higher sensitivity for artificial and experimental proteomics data sets with known ground truth. Application of PolySTest to mass spectrometry based large-scale proteomics data obtained from differentiating muscle cells resulted in the rescue of 10-20% additional proteins in the identified molecular networks relevant to muscle differentiation. We conclude that PolySTest is a valuable addition to existing tools and instrument enhancements that improve coverage and depth of large-scale proteomics experiments. A fully functional demo version of PolySTest and Miss test is available via http://computproteomics.bmb.sdu.dk/Apps/PolySTest.
Collapse
Affiliation(s)
- Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark; VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark.
| | - Christina E Hagensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark; VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Adelina Rogowska-Wrzesinska
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark; VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark; VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
11
|
Zluhan-Martínez E, Pérez-Koldenkova V, Ponce-Castañeda MV, Sánchez MDLP, García-Ponce B, Miguel-Hernández S, Álvarez-Buylla ER, Garay-Arroyo A. Beyond What Your Retina Can See: Similarities of Retinoblastoma Function between Plants and Animals, from Developmental Processes to Epigenetic Regulation. Int J Mol Sci 2020; 21:E4925. [PMID: 32664691 PMCID: PMC7404004 DOI: 10.3390/ijms21144925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
The Retinoblastoma protein (pRb) is a key cell cycle regulator conserved in a wide variety of organisms. Experimental analysis of pRb's functions in animals and plants has revealed that this protein participates in cell proliferation and differentiation processes. In addition, pRb in animals and its orthologs in plants (RBR), are part of highly conserved protein complexes which suggest the possibility that analogies exist not only between functions carried out by pRb orthologs themselves, but also in the structure and roles of the protein networks where these proteins are involved. Here, we present examples of pRb/RBR participation in cell cycle control, cell differentiation, and in the regulation of epigenetic changes and chromatin remodeling machinery, highlighting the similarities that exist between the composition of such networks in plants and animals.
Collapse
Affiliation(s)
- Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
- Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán 04510, Mexico
| | - Vadim Pérez-Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc, 330. Col. Doctores, Alc. Cuauhtémoc 06720, Mexico;
| | - Martha Verónica Ponce-Castañeda
- Unidad de Investigación Médica en Enfermedades Infecciosas, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Sergio Miguel-Hernández
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda, Manuel Stampa 07738, Mexico;
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| |
Collapse
|
12
|
Olorunniji FJ, Lawson-Williams M, McPherson AL, Paget JE, Stark WM, Rosser SJ. Control of ϕC31 integrase-mediated site-specific recombination by protein trans-splicing. Nucleic Acids Res 2019; 47:11452-11460. [PMID: 31667500 PMCID: PMC6868429 DOI: 10.1093/nar/gkz936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 11/13/2022] Open
Abstract
Serine integrases are emerging as core tools in synthetic biology and have applications in biotechnology and genome engineering. We have designed a split-intein serine integrase-based system with potential for regulation of site-specific recombination events at the protein level in vivo. The ϕC31 integrase was split into two extein domains, and intein sequences (Npu DnaEN and Ssp DnaEC) were attached to the two termini to be fused. Expression of these two components followed by post-translational protein trans-splicing in Escherichia coli generated a fully functional ϕC31 integrase. We showed that protein splicing is necessary for recombination activity; deletion of intein domains or mutation of key intein residues inactivated recombination. We used an invertible promoter reporter system to demonstrate a potential application of the split intein-regulated site-specific recombination system in building reversible genetic switches. We used the same split inteins to control the reconstitution of a split Integrase-Recombination Directionality Factor fusion (Integrase-RDF) that efficiently catalysed the reverse attR x attL recombination. This demonstrates the potential for split-intein regulation of the forward and reverse reactions using the integrase and the integrase-RDF fusion, respectively. The split-intein integrase is a potentially versatile, regulatable component for building synthetic genetic circuits and devices.
Collapse
Affiliation(s)
- Femi J Olorunniji
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Makeba Lawson-Williams
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Arlene L McPherson
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Jane E Paget
- UK Centre for Mammalian Synthetic Biology at the Institute of Quantitative Biology, Biochemistry, and Biotechnology, SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JD, UK.,Institute for Bioengineering, University of Edinburgh, Faraday Building, The King's Buildings, Edinburgh, 2 EH9 3DW, UK
| | - W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Susan J Rosser
- UK Centre for Mammalian Synthetic Biology at the Institute of Quantitative Biology, Biochemistry, and Biotechnology, SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JD, UK.,Institute for Bioengineering, University of Edinburgh, Faraday Building, The King's Buildings, Edinburgh, 2 EH9 3DW, UK
| |
Collapse
|
13
|
Takahashi K, Itakura E, Takano K, Endo T. DA-Raf, a dominant-negative regulator of the Ras–ERK pathway, is essential for skeletal myocyte differentiation including myoblast fusion and apoptosis. Exp Cell Res 2019; 376:168-180. [DOI: 10.1016/j.yexcr.2019.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/19/2019] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
|
14
|
Autochthonous tumors driven by Rb1 loss have an ongoing requirement for the RBP2 histone demethylase. Proc Natl Acad Sci U S A 2018; 115:E3741-E3748. [PMID: 29610306 DOI: 10.1073/pnas.1716029115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inactivation of the retinoblastoma gene (RB1) product, pRB, is common in many human cancers. Targeting downstream effectors of pRB that are central to tumorigenesis is a promising strategy to block the growth of tumors harboring loss-of-function RB1 mutations. One such effector is retinoblastoma-binding protein 2 (RBP2, also called JARID1A or KDM5A), which encodes an H3K4 demethylase. Binding of pRB to RBP2 has been linked to the ability of pRB to promote senescence and differentiation. Importantly, genetic ablation of RBP2 is sufficient to phenocopy pRB's ability to induce these cellular changes in cell culture experiments. Moreover, germline Rbp2 deletion significantly impedes tumorigenesis in Rb1+/- mice. The value of RBP2 as a therapeutic target in cancer, however, hinges on whether loss of RBP2 could block the growth of established tumors as opposed to simply delaying their onset. Here we show that conditional, systemic ablation of RBP2 in tumor-bearing Rb1+/- mice is sufficient to slow tumor growth and significantly extend survival without causing obvious toxicity to the host. These findings show that established Rb1-null tumors require RBP2 for growth and further credential RBP2 as a therapeutic target in human cancers driven by RB1 inactivation.
Collapse
|
15
|
Hwang Y, Futran M, Hidalgo D, Pop R, Iyer DR, Scully R, Rhind N, Socolovsky M. Global increase in replication fork speed during a p57 KIP2-regulated erythroid cell fate switch. SCIENCE ADVANCES 2017; 3:e1700298. [PMID: 28560351 PMCID: PMC5446218 DOI: 10.1126/sciadv.1700298] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
Cell cycle regulators are increasingly implicated in cell fate decisions, such as the acquisition or loss of pluripotency and self-renewal potential. The cell cycle mechanisms that regulate these cell fate decisions are largely unknown. We studied an S phase-dependent cell fate switch, in which murine early erythroid progenitors transition in vivo from a self-renewal state into a phase of active erythroid gene transcription and concurrent maturational cell divisions. We found that progenitors are dependent on p57KIP2-mediated slowing of replication forks for self-renewal, a novel function for cyclin-dependent kinase inhibitors. The switch to differentiation entails rapid down-regulation of p57KIP2 with a consequent global increase in replication fork speed and an abruptly shorter S phase. Our work suggests that cell cycles with specialized global DNA replication dynamics are integral to the maintenance of specific cell states and to cell fate decisions.
Collapse
Affiliation(s)
- Yung Hwang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Melinda Futran
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daniel Hidalgo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ramona Pop
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Divya Ramalingam Iyer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ralph Scully
- Division of Hematology-Oncology, Department of Medicine, and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas Rhind
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Merav Socolovsky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
16
|
Ge J, Wang L, Yang C, Ran L, Wen M, Fu X, Fan D, Luo K. Intein-mediated Cre protein assembly for transgene excision in hybrid progeny of transgenic Arabidopsis. PLANT CELL REPORTS 2016; 35:2045-2053. [PMID: 27324752 DOI: 10.1007/s00299-016-2015-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
An approach for restoring recombination activity of complementation split-Cre was developed to excise the transgene in hybrid progeny of GM crops. Growing concerns about the biosafety of genetically modified (GM) crops has currently become a limited factor affecting the public acceptance. Several approaches have been developed to generate selectable-marker-gene-free GM crops. However, no strategy was reported to be broadly applicable to hybrid crops. Previous studies have demonstrated that complementation split-Cre recombinase restored recombination activity in transgenic plants. In this study, we found that split-Cre mediated by split-intein Synechocystis sp. DnaE had high recombination efficiency when Cre recombinase was split at Asp232/Asp233 (866 bp). Furthermore, we constructed two plant expression vectors, pCA-NCre-In and pCA-Ic-CCre, containing NCre866-In and Ic-CCre866 fragments, respectively. After transformation, parent lines of transgenic Arabidopsis with one single copy were generated and used for hybridization. The results of GUS staining demonstrated that the recombination activity of split-Cre could be reassembled in these hybrid progeny of transgenic plants through hybridization and the foreign genes flanked by two loxP sites were efficiently excised. Our strategy may provide an effective approach for generating the next generation of GM hybrid crops without biosafety concerns.
Collapse
Affiliation(s)
- Jia Ge
- Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lijun Wang
- Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chen Yang
- Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lingyu Ran
- Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Mengling Wen
- Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xianan Fu
- Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Di Fan
- Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Keming Luo
- Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
17
|
Abstract
Development of methods to reawaken the semi-dormant regenerative potential that lies within adult human tissues would hold promise for the restoration of diseased or damaged organs and tissues. While most of the regeneration potential is suppressed in many vertebrates, including humans, during adult life, urodele amphibians (salamanders) retain their regenerative ability throughout adulthood. Studies in newts and axolotls, two salamander models, have provided significant knowledge about adult limb regeneration. In this review, we present a comparative analysis of salamander and mammalian regeneration and discuss how evolutionarily altered properties of the regenerative environment can be exploited to restore full regenerative potential in the human body.
Collapse
Affiliation(s)
- Alessandra Dall'Agnese
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Development, Aging and Regeneration Program (DARe), Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program (DARe), Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,Epigenetics and Regenerative Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
18
|
Abstract
Human retinoblastoma gene RB1 is the first tumor suppressor gene (TSG) isolated by positional cloning in 1986. RB is extensively studied for its ability to regulate cell cycle by binding to E2F1 and inhibiting the transcriptional activity of the latter. In human embryonic stem cells (ESCs), only a minute trace of RB is found in complex with E2F1. Increased activity of RB triggers differentiation, cell cycle arrest, and cell death. On the other hand, inactivation of the entire RB family (RB1, RBL1, and RBL2) in human ESC induces G2/M arrest and cell death. These observations indicate that both loss and overactivity of RB could be lethal for the stemness of cells. A question arises why inactive RB is required for the survival and stemness of cells? To shed some light on this question, we analyzed the RB-binding proteins. In this review we have focused on 27 RB-binding partners that may have potential roles in different aspects of stem cell biology.
Collapse
Affiliation(s)
- M Mushtaq
- Karolinska Institutet, Stockholm, Sweden
| | | | - E V Kashuba
- Karolinska Institutet, Stockholm, Sweden; R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NASU, Kyiv, Ukraine.
| |
Collapse
|
19
|
Rao VK, Ow JR, Shankar SR, Bharathy N, Manikandan J, Wang Y, Taneja R. G9a promotes proliferation and inhibits cell cycle exit during myogenic differentiation. Nucleic Acids Res 2016; 44:8129-43. [PMID: 27229136 PMCID: PMC5041453 DOI: 10.1093/nar/gkw483] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/19/2016] [Indexed: 11/12/2022] Open
Abstract
Differentiation of skeletal muscle cells, like most other cell types, requires a permanent exit from the cell cycle. The epigenetic programming underlying these distinct cellular states is not fully understood. In this study, we provide evidence that the lysine methyltransferase G9a functions as a central axis to regulate proliferation and differentiation of skeletal muscle cells. Transcriptome analysis of G9a knockdown cells revealed deregulation of many cell cycle regulatory genes. We demonstrate that G9a enhances cellular proliferation by two distinct mechanisms. G9a blocks cell cycle exit via methylation-dependent transcriptional repression of the MyoD target genes p21(Cip/Waf1) and Rb1. In addition, it activates E2F1-target genes in a methyltransferase activity-independent manner. We show that G9a is present in the E2F1/PCAF complex, and enhances PCAF occupancy and histone acetylation marks at E2F1-target promoters. Interestingly, G9a preferentially associates with E2F1 at the G1/S phase and with MyoD at the G2/M phase. Our results provide evidence that G9a functions both as a co-activator and a co-repressor to enhance cellular proliferation and inhibit myogenic differentiation.
Collapse
Affiliation(s)
- Vinay Kumar Rao
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Jin Rong Ow
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Shilpa Rani Shankar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Narendra Bharathy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Jayapal Manikandan
- NanoString Technologies, 530 Fairview Ave N, Suite 2000 Seattle, WA, USA
| | - Yaju Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| |
Collapse
|
20
|
Wang LH, Baker NE. E Proteins and ID Proteins: Helix-Loop-Helix Partners in Development and Disease. Dev Cell 2016; 35:269-80. [PMID: 26555048 DOI: 10.1016/j.devcel.2015.10.019] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/18/2015] [Accepted: 10/23/2015] [Indexed: 01/12/2023]
Abstract
The basic Helix-Loop-Helix (bHLH) proteins represent a well-known class of transcriptional regulators. Many bHLH proteins act as heterodimers with members of a class of ubiquitous partners, the E proteins. A widely expressed class of inhibitory heterodimer partners-the Inhibitor of DNA-binding (ID) proteins-also exists. Genetic and molecular analyses in humans and in knockout mice implicate E proteins and ID proteins in a wide variety of diseases, belying the notion that they are non-specific partner proteins. Here, we explore relationships of E proteins and ID proteins to a variety of disease processes and highlight gaps in knowledge of disease mechanisms.
Collapse
Affiliation(s)
- Lan-Hsin Wang
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
21
|
Negative regulation of initial steps in skeletal myogenesis by mTOR and other kinases. Sci Rep 2016; 6:20376. [PMID: 26847534 PMCID: PMC4742887 DOI: 10.1038/srep20376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/31/2015] [Indexed: 11/08/2022] Open
Abstract
The transition from a committed progenitor cell to one that is actively differentiating represents a process that is fundamentally important in skeletal myogenesis. Although the expression and functional activation of myogenic regulatory transcription factors (MRFs) are well known to govern lineage commitment and differentiation, exactly how the first steps in differentiation are suppressed in a proliferating myoblast is much less clear. We used cultured mammalian myoblasts and an RNA interference library targeting 571 kinases to identify those that may repress muscle differentiation in proliferating myoblasts in the presence or absence of a sensitizing agent directed toward CDK4/6, a kinase previously established to impede muscle gene expression. We identified 55 kinases whose knockdown promoted myoblast differentiation, either independently or in conjunction with the sensitizer. A number of the hit kinases could be connected to known MRFs, directly or through one interaction node. Focusing on one hit, Mtor, we validated its role to impede differentiation in proliferating myoblasts and carried out mechanistic studies to show that it acts, in part, by a rapamycin-sensitive complex that involves Raptor. Our findings inform our understanding of kinases that can block the transition from lineage commitment to a differentiating state in myoblasts and offer a useful resource for others studying myogenic differentiation.
Collapse
|
22
|
Frasch M. Dedifferentiation, Redifferentiation, and Transdifferentiation of Striated Muscles During Regeneration and Development. Curr Top Dev Biol 2016; 116:331-55. [PMID: 26970627 DOI: 10.1016/bs.ctdb.2015.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
In some rare and striking cases, striated muscle fibers of the skeleton or body wall, which consist of terminally differentiated syncytia with complex ultrastructures, were found to be capable of dedifferentiating and fragmenting into mononucleate cells. Examples of such events will be discussed in which the dedifferentiated cells reenter the cell cycle, proliferate, and rebuilt damaged muscle fibers during limb regeneration or transdifferentiate to generate new types of muscles during normal development.
Collapse
Affiliation(s)
- Manfred Frasch
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
23
|
Sosa-García B, Vázquez-Rivera V, González-Flores JN, Engel BE, Cress WD, Santiago-Cardona PG. The Retinoblastoma Tumor Suppressor Transcriptionally Represses Pak1 in Osteoblasts. PLoS One 2015; 10:e0142406. [PMID: 26555075 PMCID: PMC4640669 DOI: 10.1371/journal.pone.0142406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/21/2015] [Indexed: 12/26/2022] Open
Abstract
We previously characterized the retinoblastoma tumor suppressor protein (Rb) as a regulator of adherens junction assembly and cell-to-cell adhesion in osteoblasts. This is a novel function since Rb is predominantly known as a cell cycle repressor. Herein, we characterized the molecular mechanisms by which Rb performs this function, hypothesizing that Rb controls the activity of known regulators of adherens junction assembly. We found that Rb represses the expression of the p21-activated protein kinase (Pak1), an effector of the small Rho GTPase Rac1. Rac1 is a well-known regulator of adherens junction assembly whose increased activity in cancer is linked to perturbations of intercellular adhesion. Using nuclear run-on and luciferase reporter transcription assays, we found that Pak1 repression by Rb is transcriptional, without affecting Pak1 mRNA and protein stability. Pak1 promoter bioinformatics showed multiple E2F1 binding sites within 155 base pairs of the transcriptional start site, and a Pak1-promoter region containing these E2F sites is susceptible to transcriptional inhibition by Rb. Chromatin immunoprecipitations showed that an Rb-E2F complex binds to the region of the Pak1 promoter containing the E2F1 binding sites, suggesting that Pak1 is an E2F target and that the repressive effect of Rb on Pak1 involves blocking the trans-activating capacity of E2F. A bioinformatics analysis showed elevated Pak1 expression in several solid tumors relative to adjacent normal tissue, with both Pak1 and E2F increased relative to normal tissue in breast cancer, supporting a cancer etiology for Pak1 up-regulation. Therefore, we propose that by repressing Pak1 expression, Rb prevents Rac1 hyperactivity usually associated with cancer and related to cytoskeletal derangements that disrupt cell adhesion, consequently enhancing cancer cell migratory capacity. This de-regulation of cell adhesion due to Rb loss could be part of the molecular events associated with cancer progression and metastasis.
Collapse
Affiliation(s)
- Bernadette Sosa-García
- Department of Basic Sciences, Biochemistry Division, Ponce Health Science University, Ponce, Puerto Rico
| | - Viviana Vázquez-Rivera
- Department of Basic Sciences, Biochemistry Division, Ponce Health Science University, Ponce, Puerto Rico
| | | | - Brienne E. Engel
- Molecular Oncology and Thoracic Oncology Departments, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States of America
| | - W. Douglas Cress
- Molecular Oncology and Thoracic Oncology Departments, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States of America
| | - Pedro G. Santiago-Cardona
- Department of Basic Sciences, Biochemistry Division, Ponce Health Science University, Ponce, Puerto Rico
- * E-mail:
| |
Collapse
|
24
|
An S, Chen Y, Gao C, Qin B, Du X, Meng F, Qi Y. Inactivation of INK4a and ARF induces myocardial proliferation and improves cardiac repair following ischemia‑reperfusion. Mol Med Rep 2015; 12:5911-6. [PMID: 26239104 DOI: 10.3892/mmr.2015.4133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/10/2015] [Indexed: 11/05/2022] Open
Abstract
The growth of the heart during mammalian embryonic development is primarily dependent on an increase in the number of cardiomyocytes (CM). However, shortly following birth, CMs cease proliferating and further growth of the myocardium is achieved via hypertrophic expansion of the existing CM population. The cyclin-dependent kinase inhibitor 2A (Cdkn2a) locus encodes overlapping genes for two tumor suppressor proteins, p16INK4a and p19 alternative reading frame (ARF). To determine whether decreased Cdkn2a gene expression results in improved cardiac regeneration in vitro and in vivo following cardiac injury, the proliferation of CMs isolated from Cdkn2a knockout (KO) and wild‑type (WT) mice in vitro and in vivo were evaluated following generation of ischemia reperfusion (IR) injury. The KO mice demonstrated enhanced CM proliferation not only in vitro, but also in vivo. Furthermore, heart function was improved and scar size was decreased in the KO mice compared with that of the WT mice. The results also indicated that microRNA (miR)‑1 and miR‑195 expression levels associated with cell proliferation were reduced following IR injury in KO mice compared with those of WT mice. These results suggested that the inactivation of INK4a and ARF stimulated CM proliferation and promoted cardiac repair.
Collapse
Affiliation(s)
- Songtao An
- Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Yan Chen
- Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Chuanyu Gao
- Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Bingyu Qin
- Department of Anesthesia, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Xianhui Du
- Department of Anesthesia, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Fanmin Meng
- Department of Anesthesia, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Yanyan Qi
- Department of Anesthesia, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
25
|
Abstract
DNA damage is induced in many types of cells by internal and external cell stress. When DNA is damaged, DNA Damage Response (DDR) programs are activated to repair the DNA lesions in order to preserve genomic integrity and suppress subsequent malignant transformation. Among these programs is cell cycle checkpoint that ensures cell cycle arrest and subsequent repair of the damaged DNA, apoptosis and senescence in various phases of the cell cycle. Moreover, recent studies have established the cell differentiation checkpoint, the other type of the checkpoint that is specifically activated in the course of differentiation. We will discuss the evidences that support the link between DNA damage proteins and C2C12 cell differentiation.
Collapse
Affiliation(s)
- Sara Cuesta Sancho
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY14263, USA
| | - Toru Ouchi
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY14263, USA
| |
Collapse
|
26
|
Interactions of HIV-1 proteins as targets for developing anti-HIV-1 peptides. Future Med Chem 2015; 7:1055-77. [DOI: 10.4155/fmc.15.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Protein–protein interactions (PPI) are essential in every step of the HIV replication cycle. Mapping the interactions between viral and host proteins is a fundamental target for the design and development of new therapeutics. In this review, we focus on rational development of anti-HIV-1 peptides based on mapping viral–host and viral–viral protein interactions all across the HIV-1 replication cycle. We also discuss the mechanism of action, specificity and stability of these peptides, which are designed to inhibit PPI. Some of these peptides are excellent tools to study the mechanisms of PPI in HIV-1 replication cycle and for the development of anti-HIV-1 drug leads that modulate PPI.
Collapse
|
27
|
Kollu S, Abou-Khalil R, Shen C, Brack AS. The Spindle Assembly Checkpoint Safeguards Genomic Integrity of Skeletal Muscle Satellite Cells. Stem Cell Reports 2015; 4:1061-74. [PMID: 25960061 PMCID: PMC4471836 DOI: 10.1016/j.stemcr.2015.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 01/29/2023] Open
Abstract
To ensure accurate genomic segregation, cells evolved the spindle assembly checkpoint (SAC), whose role in adult stem cells remains unknown. Inducible perturbation of a SAC kinase, Mps1, and its downstream effector, Mad2, in skeletal muscle stem cells shows the SAC to be critical for normal muscle growth, repair, and self-renewal of the stem cell pool. SAC-deficient muscle stem cells arrest in G1 phase of the cell cycle with elevated aneuploidy, resisting differentiation even under inductive conditions. p21(CIP1) is responsible for these SAC-deficient phenotypes. Despite aneuploidy's correlation with aging, we find that aged proliferating muscle stem cells display robust SAC activity without elevated aneuploidy. Thus, muscle stem cells have a two-step mechanism to safeguard their genomic integrity. The SAC prevents chromosome missegregation and, if it fails, p21(CIP1)-dependent G1 arrest limits cellular propagation and tissue integration. These mechanisms ensure that muscle stem cells with compromised genomes do not contribute to tissue homeostasis.
Collapse
Affiliation(s)
- Swapna Kollu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Rana Abou-Khalil
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Carl Shen
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Andrew S Brack
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Julian LM, Blais A. Transcriptional control of stem cell fate by E2Fs and pocket proteins. Front Genet 2015; 6:161. [PMID: 25972892 PMCID: PMC4412126 DOI: 10.3389/fgene.2015.00161] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/08/2015] [Indexed: 01/04/2023] Open
Abstract
E2F transcription factors and their regulatory partners, the pocket proteins (PPs), have emerged as essential regulators of stem cell fate control in a number of lineages. In mammals, this role extends from both pluripotent stem cells to those encompassing all embryonic germ layers, as well as extra-embryonic lineages. E2F/PP-mediated regulation of stem cell decisions is highly evolutionarily conserved, and is likely a pivotal biological mechanism underlying stem cell homeostasis. This has immense implications for organismal development, tissue maintenance, and regeneration. In this article, we discuss the roles of E2F factors and PPs in stem cell populations, focusing on mammalian systems. We discuss emerging findings that position the E2F and PP families as widespread and dynamic epigenetic regulators of cell fate decisions. Additionally, we focus on the ever expanding landscape of E2F/PP target genes, and explore the possibility that E2Fs are not simply regulators of general ‘multi-purpose’ cell fate genes but can execute tissue- and cell type-specific gene regulatory programs.
Collapse
Affiliation(s)
- Lisa M Julian
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON Canada
| | - Alexandre Blais
- Ottawa Institute of Systems Biology, Ottawa, ON Canada ; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
29
|
Hu X, Luo P, Peng X, Song T, Zhou Y, Wei H, Peng J, Jiang S. Molecular cloning, expression pattern analysis of porcine Rb1 gene and its regulatory roles during primary dedifferentiated fat cells adipogenic differentiation. Gen Comp Endocrinol 2015; 214:77-86. [PMID: 25626122 DOI: 10.1016/j.ygcen.2015.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 11/19/2022]
Abstract
Adipocytes are the main constituent of adipose tissue and are considered to be a corner stone in the homeostatic control of whole body metabolism. Recent reports evidenced that retinoblastoma 1 (Rb1) gene plays an important role in fat development and adipogenesis in mice. Here, we cloned the partial cDNA sequences of the porcine Rb1 gene which contains the complete coding sequences (CDS) of 2820bp encoding a protein of 939 amino acids. Bioinformatic analysis revealed that the CDS of porcine Rb1 was highly identical with those of cattle, human and mice. The porcine Rb1 has three typical conserved structural domains, including Rb-A pocket domain, CYCLIN domain and C-terminus domain, and the phylogenetic tree indicates a closer genetic relationship with cattle and human. Tissue distribution analysis showed that Rb1 expression appeared to be ubiquitously in various tissues, being higher in heart, liver, muscle, and stomach. Furthermore, significant downregulation of Rb1 was found at the initial stage of dedifferentiated fat (DFAT) cells adipogenic differentiation. With the knockdown of the Rb1 expression by siRNA, the number of DFAT cells recruited to white rather than brown adipogenesis was promoted, and mRNA levels of adipogenic markers, such as PPARγ, aP2, LPL and adiponectin and protein expression of PPARγ and adiponectin were increased after hormone stimulation. The underlying mechanisms may be that knockdown of Rb1 promotes the mitotic clonal expansion and PPARγ expression by derepressing the transcriptional activity of E2F so as to facilitate the first steps of adipogenesis. In summary, we cloned and characterized an important negative regulator in adipogenic commitment of porcine DFAT cells.
Collapse
Affiliation(s)
- Xiaoming Hu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, People's Republic of China
| | - Pei Luo
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xuewu Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Tongxing Song
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, People's Republic of China.
| | - Siwen Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, People's Republic of China.
| |
Collapse
|
30
|
Nagano H, Yamagishi N, Tomida C, Yano C, Aibara K, Kohno S, Abe T, Ohno A, Hirasaka K, Okumura Y, Mills EM, Nikawa T, Teshima-Kondo S. A novel myogenic function residing in the 5' non-coding region of Insulin receptor substrate-1 (Irs-1) transcript. BMC Cell Biol 2015; 16:8. [PMID: 25887310 PMCID: PMC4373113 DOI: 10.1186/s12860-015-0054-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/16/2015] [Indexed: 11/20/2022] Open
Abstract
Background There is evidence that several messenger RNAs (mRNAs) are bifunctional RNAs, i.e. RNA transcript carrying both protein-coding capacity and activity as functional non-coding RNA via 5′ and 3′ untranslated regions (UTRs). Results In this study, we identified a novel bifunctional RNA that is transcribed from insulin receptor substrate-1 (Irs-1) gene with full-length 5′UTR sequence (FL-Irs-1 mRNA). FL-Irs-1 mRNA was highly expressed only in skeletal muscle tissue. In cultured skeletal muscle C2C12 cells, the FL-Irs-1 transcript functioned as a bifunctional mRNA. The FL-Irs-1 transcript produced IRS-1 protein during differentiation of myoblasts into myotubes; however, this transcript functioned as a regulatory RNA in proliferating myoblasts. The FL-Irs-1 5′UTR contains a partial complementary sequence to Rb mRNA, which is a critical factor for myogenic differentiation. The overexpression of the 5′UTR markedly reduced Rb mRNA expression, and this reduction was fully dependent on the complementary element and was not compensated by IRS-1 protein. Conversely, knockdown of FL-Irs-1 mRNA increased Rb mRNA expression and enhanced myoblast differentiation into myotubes. Conclusions Our findings suggest that the FL-Irs-1 transcript regulates myogenic differentiation as a regulatory RNA in myoblasts. Electronic supplementary material The online version of this article (doi:10.1186/s12860-015-0054-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hikaru Nagano
- Department of Nutritional Physiology, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan. .,Facalty of Nutritional Science, Sagami Women's University, Sagamihara, 252-0383, Japan.
| | - Naoko Yamagishi
- Department of Nutritional Physiology, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| | - Chisato Tomida
- Department of Nutritional Physiology, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| | - Chiaki Yano
- Department of Nutritional Physiology, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| | - Kana Aibara
- Department of Nutritional Physiology, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| | - Shohei Kohno
- Department of Nutritional Physiology, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| | - Tomoki Abe
- Department of Nutritional Physiology, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| | - Ayako Ohno
- Department of Nutritional Physiology, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| | - Katsuya Hirasaka
- Graduate school of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki, 852-8521, Japan.
| | - Yuushi Okumura
- Facalty of Nutritional Science, Sagami Women's University, Sagamihara, 252-0383, Japan.
| | - Edward M Mills
- Division of Pharmacology/Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas.
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| | - Shigetada Teshima-Kondo
- Department of Nutritional Physiology, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| |
Collapse
|
31
|
Kim M, Sung B, Kang YJ, Kim DH, Lee Y, Hwang SY, Yoon JH, Yoo MA, Kim CM, Chung HY, Kim ND. The combination of ursolic acid and leucine potentiates the differentiation of C2C12 murine myoblasts through the mTOR signaling pathway. Int J Mol Med 2015; 35:755-62. [PMID: 25529824 DOI: 10.3892/ijmm.2014.2046] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/08/2014] [Indexed: 11/06/2022] Open
Abstract
Aging causes phenotypic changes in skeletal muscle progenitor cells that lead to the progressive loss of myogenic differentiation and thus a decrease in muscle mass. The naturally occurring triterpene, ursolic acid, has been reported to be an effective agent for the prevention of muscle loss by suppressing degenerative muscular dystrophy. Leucine, a branched-chain amino acid, and its metabolite, β-hydroxy-β-methylbutyric acid, have been reported to enhance protein synthesis in skeletal muscle. Therefore, the aim of the present study was to investigate whether the combination of ursolic acid and leucine promotes greater myogenic differentiation compared to either agent alone in C2C12 murine myoblasts. Morphological changes were observed and creatine kinase (CK) activity analysis was performed to determine the conditions through which the combination of ursolic acid and leucine would exert the most prominent effects on muscle cell differentiation. The effect of the combination of ursolic acid and leucine on the expression of myogenic differentiation marker genes was examined by RT-PCR and western blot analysis. The combination of ursolic acid (0.5 µM) and leucine (10 µM) proved to be the most effective in promoting myogenic differentiation. The combination of ursolic acid and leucine significantly increased CK activity than treatment with either agent alone. The level of myosin heavy chain, a myogenic differentiation marker protein, was also enhanced by the combination of ursolic acid and leucine. The combination of ursolic acid and leucine significantly induced the expression of myogenic differentiation marker genes, such as myogenic differentiation 1 (MyoD) and myogenin, at both the mRNA and protein level. In addition, the number of myotubes and the fusion index were increased. These findings indicate that the combination of ursolic acid and leucine promotes muscle cell differentiation, thus suggesting that this combination of agents may prove to be beneficial in increasing muscle mass.
Collapse
Affiliation(s)
- Minjung Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| | - Bokyung Sung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| | - Yong Jung Kang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| | - Dong Hwan Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| | - Yujin Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| | - Seong Yeon Hwang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| | - Jeong-Hyun Yoon
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| | - Mi-Ae Yoo
- Department of Molecular Biology, Pusan National University, Busan 609‑735, Republic of Korea
| | - Cheol Min Kim
- Research Center for Anti‑Aging Technology Development, Pusan National University, Busan 609‑735, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609‑735, Republic of Korea
| |
Collapse
|
32
|
Rocheteau P, Vinet M, Chretien F. Dormancy and quiescence of skeletal muscle stem cells. Results Probl Cell Differ 2015; 56:215-35. [PMID: 25344673 DOI: 10.1007/978-3-662-44608-9_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The skeletal muscle of vertebrates has a huge regenerative capacity. When destroyed after different types of injury, this organ can regenerate very quickly (less than 20 days following myotoxin injection in the mouse) ad integrum and repeatedly. The cell responsible for this regeneration is the so-called satellite cell, the muscle stem cell that lies on top of the muscle fibre, a giant, multinucleated cell that contains the contractile material. When injected in the muscle, satellite cells can efficiently differentiate into contractile muscle fibres. The satellite cell shows great therapeutic potential; and its regenerative capacity has triggered particular interest in the field of muscular degeneration. In this review we will focus on one particular property of the satellite cell: its quiescence and dormancy. Indeed adult satellite cells are quiescent; they lie between the basal lamina and the basement membrane of the muscle fibre, ready to proliferate, and fuse in order to regenerate myofibers upon injury. It has recently been shown that a subpopulation of satellite cells is able to enter dormancy in human and mice cadavers. Dormancy is defined by a low metabolic state, low mobility, and a long lag before division when plated in vitro, compared to quiescent cells. This definition is also based on current knowledge about long-term hematopoietic stem cells, a subpopulation of stem cells that are described as dormant based on the same criteria (rare division and low metabolism when compared to progeny which are dividing more often). In the first part of this review, we will provide a description of satellite cells which addresses their quiescent state. We will then focus on the uneven distribution of satellite cells in the muscle and describe evidence that suggests that their dormancy differs from one muscle to the next and that one should be cautious when making generalisations regarding this cellular state. In a second part, we will discuss the transition between active dividing cells in developing animals to quiescence. This mechanism could be used or amplified in the switch from quiescence to dormancy. In a third part, we will review the signals and dynamics that actively maintain the satellite cell quiescent. The in-depth understanding of these mechanisms is key to describing how dormancy relies on quiescent state of the cells. In a fourth part, we will deal with dormancy per se: how dormant satellite cells can be obtained, their characteristics, their metabolic profile, and their molecular signature as compared to quiescent cells. Here, we will highlight one of the most important recent findings: that quiescence is a prerequisite for the entry of the satellite cell into dormancy. Since dormancy is a newly discovered phenomenon, we will review the mechanisms responsible for quiescence and activation, as these two cellular states are better known and key to understanding satellite cell dormancy. This will allow us to describe dormancy and its prerequisites.
Collapse
Affiliation(s)
- Pierre Rocheteau
- Human histopathology and animal models, Institut Pasteur, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | | | | |
Collapse
|
33
|
Flowers S, Patel PJ, Gleicher S, Amer K, Himelman E, Goel S, Moran E. p107-Dependent recruitment of SWI/SNF to the alkaline phosphatase promoter during osteoblast differentiation. Bone 2014; 69:47-54. [PMID: 25182511 PMCID: PMC5222550 DOI: 10.1016/j.bone.2014.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/11/2014] [Accepted: 08/16/2014] [Indexed: 12/28/2022]
Abstract
The retinoblastoma protein family is intimately involved in the regulation of tissue specific gene expression during mesenchymal stem cell differentiation. The role of the following proteins, pRB, p107 and p130, is particularly significant in differentiation to the osteoblast lineage, as human germ-line mutations of RB1 greatly increase susceptibility to osteosarcoma. During differentiation, pRB directly targets certain osteogenic genes for activation, including the alkaline phosphatase-encoding gene Alpl. Chromatin immunoprecipitation (ChIP) assays indicate that Alpl is targeted by p107 in differentiating osteoblasts selectively during activation with the same dynamics as pRB, which suggests that p107 helps promote Alpl activation. Mouse models indicate overlapping roles for pRB and p107 in bone and cartilage formation, but very little is known about direct tissue-specific gene targets of p107, or the consequences of targeting by p107. Here, the roles of p107 and pRB were compared using shRNA-mediated knockdown genetics in an osteoblast progenitor model, MC3T3-E1 cells. The results show that p107 has a distinct role along with pRB in induction of Alpl. Deficiency of p107 does not impede recruitment of transcription factors recognized as pRB co-activation partners at the promoter; however, p107 is required for the efficient recruitment of an activating SWI/SNF chromatin-remodeling complex, an essential event in Alpl induction.
Collapse
Affiliation(s)
- Stephen Flowers
- Department of Orthopaedics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07103, USA
| | - Parth J Patel
- Department of Orthopaedics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07103, USA
| | - Stephanie Gleicher
- Department of Orthopaedics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07103, USA
| | - Kamal Amer
- Department of Orthopaedics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07103, USA
| | - Eric Himelman
- Department of Orthopaedics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07103, USA
| | - Shruti Goel
- Department of Orthopaedics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07103, USA
| | - Elizabeth Moran
- Department of Orthopaedics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
34
|
Popov B, Petrov N. pRb-E2F signaling in life of mesenchymal stem cells: Cell cycle, cell fate, and cell differentiation. Genes Dis 2014; 1:174-187. [PMID: 30258863 PMCID: PMC6150080 DOI: 10.1016/j.gendis.2014.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/14/2014] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into various mesodermal lines forming fat, muscle, bone, and other lineages of connective tissue. MSCs possess plasticity and under special metabolic conditions may transform into cells of unusual phenotypes originating from ecto- and endoderm. After transplantation, MSCs release the humoral factors promoting regeneration of the damaged tissue. During last five years, the numbers of registered clinical trials of MSCs have increased about 10 folds. This gives evidence that MSCs present a new promising resource for cell therapy of the most dangerous diseases. The efficacy of the MSCs therapy is limited by low possibilities to regulate their conversion into cells of damaged tissues that is implemented by the pRb-E2F signaling. The widely accepted viewpoint addresses pRb as ubiquitous regulator of cell cycle and tumor suppressor. However, current publications suggest that basic function of the pRb-E2F signaling in development is to regulate cell fate and differentiation. Through facultative and constitutive chromatin modifications, pRb-E2F signaling promotes transient and stable cells quiescence, cell fate choice to differentiate, to senesce, or to die. Loss of pRb is associated with cancer cell fate. pRb regulates cell fate by retaining quiescence of one cell population in favor of commitment of another or by suppression of genes of different cell phenotype. pRb is the founder member of the "pocket protein" family possessing functional redundancy. Critical increase in the efficacy of the MSCs based cell therapy will depend on precise understanding of various aspects of the pRb-E2F signaling.
Collapse
Affiliation(s)
- Boris Popov
- Institute of Cytology, Russian Academy of Sciences, St.Petersburg, 4, Tikhoretsky Av., 194064, Russia
| | | |
Collapse
|
35
|
Wen M, Gao Y, Wang L, Ran L, Li J, Luo K. Split-Cre complementation restores combination activity on transgene excision in hair roots of transgenic tobacco. PLoS One 2014; 9:e110290. [PMID: 25329460 PMCID: PMC4201524 DOI: 10.1371/journal.pone.0110290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/10/2014] [Indexed: 12/03/2022] Open
Abstract
The Cre/loxP system is increasingly exploited for genetic manipulation of DNA in vitro and in vivo. It was previously reported that inactive ''split-Cre'' fragments could restore Cre activity in transgenic mice when overlapping co-expression was controlled by two different promoters. In this study, we analyzed recombination activities of split-Cre proteins, and found that no recombinase activity was detected in the in vitro recombination reaction in which only the N-terminal domain (NCre) of split-Cre protein was expressed, whereas recombination activity was obtained when the C-terminal (CCre) or both NCre and CCre fragments were supplied. We have also determined the recombination efficiency of split-Cre proteins which were co-expressed in hair roots of transgenic tobacco. No Cre recombination event was observed in hair roots of transgenic tobacco when the NCre or CCre genes were expressed alone. In contrast, an efficient recombination event was found in transgenic hairy roots co-expressing both inactive split-Cre genes. Moreover, the restored recombination efficiency of split-Cre proteins fused with the nuclear localization sequence (NLS) was higher than that of intact Cre in transgenic lines. Thus, DNA recombination mediated by split-Cre proteins provides an alternative method for spatial and temporal regulation of gene expression in transgenic plants.
Collapse
Affiliation(s)
- Mengling Wen
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Transgenic Plant and Safety Control, Southwest University, Chongqing, China
| | - Yuan Gao
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Transgenic Plant and Safety Control, Southwest University, Chongqing, China
| | - Lijun Wang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Transgenic Plant and Safety Control, Southwest University, Chongqing, China
| | - Lingyu Ran
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Transgenic Plant and Safety Control, Southwest University, Chongqing, China
| | - Jiahui Li
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Transgenic Plant and Safety Control, Southwest University, Chongqing, China
| | - Keming Luo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Transgenic Plant and Safety Control, Southwest University, Chongqing, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
36
|
Matos JL, Lau OS, Hachez C, Cruz-Ramírez A, Scheres B, Bergmann DC. Irreversible fate commitment in the Arabidopsis stomatal lineage requires a FAMA and RETINOBLASTOMA-RELATED module. eLife 2014; 3. [PMID: 25303364 PMCID: PMC4225492 DOI: 10.7554/elife.03271] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 10/09/2014] [Indexed: 12/17/2022] Open
Abstract
The presumed totipotency of plant cells leads to questions about how specific stem cell lineages and terminal fates could be established. In the Arabidopsis stomatal lineage, a transient self-renewing phase creates precursors that differentiate into one of two epidermal cell types, guard cells or pavement cells. We found that irreversible differentiation of guard cells involves RETINOBLASTOMA-RELATED (RBR) recruitment to regulatory regions of master regulators of stomatal initiation, facilitated through interaction with a terminal stomatal lineage transcription factor, FAMA. Disrupting physical interactions between FAMA and RBR preferentially reveals the role of RBR in enforcing fate commitment over its role in cell-cycle control in this developmental context. Analysis of the phenotypes linked to the modulation of FAMA and RBR sheds new light on the way iterative divisions and terminal differentiation are coordinately regulated in a plant stem-cell lineage. DOI:http://dx.doi.org/10.7554/eLife.03271.001 Stem cells in animals and plants help to make and replenish the tissues of the body by dividing and becoming specialized types of cells. Once specialized for a certain function, it is important that a cell keeps that function. In plant leaves, one type of stem cell makes two different types of specialized cells: pavement cells and stomatal guard cells. Pavement cells lock together to form a waterproof barrier to the outside, while guard cells surround the small pores that open and close to allow the plant to exchange water, oxygen and carbon dioxide with the atmosphere. Once a cell becomes a pavement cell or a guard cell, it does not change its identity again. However, if a single cell is removed from a plant, it can revert to a stem cell and a whole new plant can be grown from it. This poses the question of how, in intact plants, specialized cells like pavement cells and guard cells are prevented from reverting to stem cells. In Arabidopsis thaliana, a small flowering plant that is widely used as a model organism in research, a protein called FAMA is responsible for controlling a set of genes that turn stem cells into guard cells. Matos et al. have now found that FAMA needs to bind to another protein called RBR to control this process. It seems that these two proteins make the transition from stem cell to guard cell permanent by changing the structure of DNA in regions that control stem cell genes. RBR is similar to a human protein called Retinoblastoma that helps prevent tumors and regulate stem cells, but how it actually performs these functions in humans is still debated. Because stem cells and guard cells are displayed on the surface of plant leaves and leave behind clues of their past, Matos et al. were able to watch stem cells grow up to be mature guard cells. When the partnership between FAMA and RBR was broken, it was possible to watch those same guard cells revert backwards into stem cells. Seeing development ‘rewind’ could provide useful insights into the way in which cell identity is controlled in both plants and animals. DOI:http://dx.doi.org/10.7554/eLife.03271.002
Collapse
Affiliation(s)
- Juliana L Matos
- Department of Biology, Stanford University, Stanford, United States
| | - On Sun Lau
- Department of Biology, Stanford University, Stanford, United States
| | - Charles Hachez
- Department of Biology, Stanford University, Stanford, United States
| | | | - Ben Scheres
- Department of Molecular Genetics, Utrecht University, Utrecht, Netherlands
| | | |
Collapse
|
37
|
Nakai N, Fujita R, Kawano F, Takahashi K, Ohira T, Shibaguchi T, Nakata K, Ohira Y. Retardation of C2C12 myoblast cell proliferation by exposure to low-temperature atmospheric plasma. J Physiol Sci 2014; 64:365-75. [PMID: 25034108 PMCID: PMC10717780 DOI: 10.1007/s12576-014-0328-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022]
Abstract
As the first step in evaluating the possibility of low-temperature atmospheric plasma for clinical applications in the treatment of rhabdomyosarcoma (RMS), we determined the effects of plasma exposure on C2C12 myoblasts. The low-temperature atmospheric plasma was generated through an electrical discharge in argon gas. One minute of plasma exposure every 24 h inhibited the cell proliferation, whereas myoblast differentiation was not affected. Plasma exposure increased the phosphorylation of ERK and JNK at 30 min after the exposure, but the phosphorylation of both was decreased to less than control levels at 1 and 4 h after the exposure. Plasma exposure increased the percentage of cells in the G2/M phase at 8 h after the exposure. In conclusion, plasma exposure retarded the proliferation of C2C12 myoblasts by G2/M arrest. Therefore, plasma exposure can be a possible treatment for the anti-proliferative effects of malignant tumors, such as RMS, without affecting differentiated skeletal muscle cells.
Collapse
Affiliation(s)
- Naoya Nakai
- Department of Health and Sports Sciences, Graduate School of Medicine, Osaka University, 1-17 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Specific pattern of cell cycle during limb fetal myogenesis. Dev Biol 2014; 392:308-23. [DOI: 10.1016/j.ydbio.2014.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/24/2014] [Accepted: 05/21/2014] [Indexed: 01/20/2023]
|
39
|
Rajabi HN, Takahashi C, Ewen ME. Retinoblastoma protein and MyoD function together to effect the repression of Fra-1 and in turn cyclin D1 during terminal cell cycle arrest associated with myogenesis. J Biol Chem 2014; 289:23417-27. [PMID: 25006242 DOI: 10.1074/jbc.m113.532572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The acquisition of skeletal muscle-specific function and terminal cell cycle arrest represent two important features of the myogenic differentiation program. These cellular processes are distinct and can be separated genetically. The lineage-specific transcription factor MyoD and the retinoblastoma protein pRb participate in both of these cellular events. Whether and how MyoD and pRb work together to effect terminal cell cycle arrest is uncertain. To address this question, we focused on cyclin D1, whose stable repression is required for terminal cell cycle arrest and execution of myogenesis. MyoD and pRb are both required for the repression of cyclin D1; their actions, however, were found not to be direct. Rather, they operate to regulate the immediate early gene Fra-1, a critical player in mitogen-dependent induction of cyclin D1. Two conserved MyoD-binding sites were identified in an intronic enhancer of Fra-1 and shown to be required for the stable repression of Fra-1 and, in turn, cyclin D1. Localization of MyoD alone to the intronic enhancer of Fra-1 in the absence of pRb was not sufficient to elicit a block to Fra-1 induction; pRb was also recruited to the intronic enhancer in a MyoD-dependent manner. These observations suggest that MyoD and pRb work together cooperatively at the level of the intronic enhancer of Fra-1 during terminal cell cycle arrest. This work reveals a previously unappreciated link between a lineage-specific transcription factor, a tumor suppressor, and a proto-oncogene in the control of an important facet of myogenic differentiation.
Collapse
Affiliation(s)
- Hasan N Rajabi
- From the Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Chiaki Takahashi
- From the Dana-Farber Cancer Institute, Boston, Massachusetts 02215, the Cancer Research Institute of Kanazawa University, 13-1 Takara-machi, Kanazawa 920-0934, Japan, and
| | - Mark E Ewen
- From the Dana-Farber Cancer Institute, Boston, Massachusetts 02215, the Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| |
Collapse
|
40
|
Narasimha AM, Kaulich M, Shapiro GS, Choi YJ, Sicinski P, Dowdy SF. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. eLife 2014; 3. [PMID: 24876129 PMCID: PMC4076869 DOI: 10.7554/elife.02872] [Citation(s) in RCA: 300] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 05/22/2014] [Indexed: 11/30/2022] Open
Abstract
The widely accepted model of G1 cell cycle progression proposes that cyclin D:Cdk4/6 inactivates the Rb tumor suppressor during early G1 phase by progressive multi-phosphorylation, termed hypo-phosphorylation, to release E2F transcription factors. However, this model remains unproven biochemically and the biologically active form(s) of Rb remains unknown. In this study, we find that Rb is exclusively mono-phosphorylated in early G1 phase by cyclin D:Cdk4/6. Mono-phosphorylated Rb is composed of 14 independent isoforms that are all targeted by the E1a oncoprotein, but show preferential E2F binding patterns. At the late G1 Restriction Point, cyclin E:Cdk2 inactivates Rb by quantum hyper-phosphorylation. Cells undergoing a DNA damage response activate cyclin D:Cdk4/6 to generate mono-phosphorylated Rb that regulates global transcription, whereas cells undergoing differentiation utilize un-phosphorylated Rb. These observations fundamentally change our understanding of G1 cell cycle progression and show that mono-phosphorylated Rb, generated by cyclin D:Cdk4/6, is the only Rb isoform in early G1 phase. DOI:http://dx.doi.org/10.7554/eLife.02872.001 Cells go through a tightly controlled, multi-step procedure before they divide. This cell division program—the cell cycle—is necessary for preventing unrestrained cellular growth, which may lead to cancer. Proteins called cyclins control the progression through each of the phases of the cell cycle, with different cyclins working during different phases. During the G1 phase of the cell cycle, cells grow in size and produce the proteins that are required to copy DNA. Once a cell passes a checkpoint called the 'restriction point' at the end of the G1 phase, it is committed to dividing. It is therefore particularly important to keep events during G1 phase in check. The Retinoblastoma tumor suppresor protein (Rb) is a key player in regulating the G1 phase. Rb sequesters transcription factors that are essential for the cell cycle to progress. Previously, it was thought that a complex called cyclin D added more and more phosphates to the Rb protein during the G1 phase. This process predicted a slow release of transcription factors, which attach to DNA and start the process of DNA replication. While many studies have presented data that is consistent with this model, direct biochemical evidence of these events is lacking. Narasimha, Kaulich, Shapiro et al. now present biochemical analyses of Rb proteins that show—completely unexpectedly—that the cyclin D complex adds just one phosphate group to Rb during the G1 phase, although this group can be added to one of fourteen different sites. The resulting 'mono-phosphorylated' Rb varieties can each sequester different transcription factors and stop them working. At the restriction point, many more phosphate groups are then rapidly added, and the Rb protein is inactivated by a different cyclin. This cyclin—called Cyclin E—then drives cells into the next phase of the cell cycle. Establishing how cyclin E is activated is a priority for future research. DOI:http://dx.doi.org/10.7554/eLife.02872.002
Collapse
Affiliation(s)
- Anil M Narasimha
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, United States
| | - Manuel Kaulich
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, United States
| | - Gary S Shapiro
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, United States
| | - Yoon J Choi
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Piotr Sicinski
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Steven F Dowdy
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, United States
| |
Collapse
|
41
|
Ajioka I. Coordination of proliferation and neuronal differentiation by the retinoblastoma protein family. Dev Growth Differ 2014; 56:324-34. [PMID: 24697649 DOI: 10.1111/dgd.12127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/13/2014] [Accepted: 02/16/2014] [Indexed: 12/23/2022]
Abstract
Once neurons enter the post-mitotic G0 phase during central nervous system (CNS) development, they lose their proliferative potential. When neurons re-enter the cell cycle during pathological situations such as neurodegeneration, they undergo cell death after S phase progression. Thus, the regulatory networks that drive cell proliferation and maintain neuronal differentiation are highly coordinated. In this review, the coordination of cell cycle control and neuronal differentiation during development are discussed, focusing on regulation by the Rb family of tumor suppressors (including p107 and p130), and the Cip/Kip family of cyclin dependent kinase (Cdk) inhibitors. Based on recent findings suggesting roles for these families in regulating neurogenesis and neuronal differentiation, I propose that the Rb family is essential for daughter cells of neuronal progenitors to enter the post-mitotic G0 phase without affecting the initiation of neuronal differentiation in most cases, while the Cip/Kip family regulates the timing of neuronal progenitor cell cycle exit and the initiation of neuronal differentiation at least in the progenitor cells of the cerebral cortex and the retina. Rb's lack of involvement in regulating the initiation of neuronal differentiation may explain why Rb family-deficient retinoblastomas characteristically exhibit neuronal features.
Collapse
Affiliation(s)
- Itsuki Ajioka
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo, 113-8510, Japan
| |
Collapse
|
42
|
Kwon B, Kumar P, Lee HK, Zeng L, Walsh K, Fu Q, Barakat A, Querfurth HW. Aberrant cell cycle reentry in human and experimental inclusion body myositis and polymyositis. Hum Mol Genet 2014; 23:3681-94. [PMID: 24556217 DOI: 10.1093/hmg/ddu077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Inclusion body myositis (IBM), a degenerative and inflammatory disorder of skeletal muscle, and Alzheimer's disease share protein derangements and attrition of postmitotic cells. Overexpression of cyclins and proliferating cell nuclear antigen (PCNA) and evidence for DNA replication is reported in Alzheimer's disease brain, possibly contributing to neuronal death. It is unknown whether aberrant cell cycle reentry also occurs in IBM. We examined cell cycle markers in IBM compared with normal control, polymyositis (PM) and non-inflammatory dystrophy sample sets. Next, we tested for evidence of reentry and DNA synthesis in C2C12 myotubes induced to express β-amyloid (Aβ42). We observed increased levels of Ki-67, PCNA and cyclins E/D1 in IBM compared with normals and non-inflammatory conditions. Interestingly, PM samples displayed similar increases. Satellite cell markers did not correlate with Ki-67-affected myofiber nuclei. DNA synthesis and cell cycle markers were induced in Aβ-bearing myotubes. Cell cycle marker and cyclin protein expressions were also induced in an experimental allergic myositis-like model of PM in mice. Levels of p21 (Cip1/WAF1), a cyclin-dependent kinase inhibitor, were decreased in affected myotubes. However, overexpression of p21 did not rescue cells from Aβ-induced toxicity. This is the first report of cell cycle reentry in human myositis. The absence of rescue and evidence for reentry in separate models of myodegeneration and inflammation suggest that new DNA synthesis may be a reactive response to either or both stressors.
Collapse
Affiliation(s)
- Bumsup Kwon
- Department of Neurology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Pravir Kumar
- Department of Biotechnology, Delhi Technological University, New Delhi 110042, India
| | - Han-Kyu Lee
- Department of Neurology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Ling Zeng
- Molecular Cardiology and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02135, USA
| | - Kenneth Walsh
- Molecular Cardiology and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02135, USA
| | - Qinghao Fu
- Department of Neurology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | - Amey Barakat
- Department of Neurology, Caritas St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135, USA
| | - Henry W Querfurth
- Department of Neurology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA Molecular Cardiology and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02135, USA
| |
Collapse
|
43
|
Perilli S, Perez-Perez JM, Di Mambro R, Peris CL, Díaz-Triviño S, Del Bianco M, Pierdonati E, Moubayidin L, Cruz-Ramírez A, Costantino P, Scheres B, Sabatini S. RETINOBLASTOMA-RELATED protein stimulates cell differentiation in the Arabidopsis root meristem by interacting with cytokinin signaling. THE PLANT CELL 2013; 25:4469-78. [PMID: 24285791 PMCID: PMC3875730 DOI: 10.1105/tpc.113.116632] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/04/2013] [Accepted: 11/14/2013] [Indexed: 05/23/2023]
Abstract
Maintenance of mitotic cell clusters such as meristematic cells depends on their capacity to maintain the balance between cell division and cell differentiation necessary to control organ growth. In the Arabidopsis thaliana root meristem, the antagonistic interaction of two hormones, auxin and cytokinin, regulates this balance by positioning the transition zone, where mitotically active cells lose their capacity to divide and initiate their differentiation programs. In animals, a major regulator of both cell division and cell differentiation is the tumor suppressor protein RETINOBLASTOMA. Here, we show that similarly to its homolog in animal systems, the plant RETINOBLASTOMA-RELATED (RBR) protein regulates the differentiation of meristematic cells at the transition zone by allowing mRNA accumulation of AUXIN RESPONSE FACTOR19 (ARF19), a transcription factor involved in cell differentiation. We show that both RBR and the cytokinin-dependent transcription factor ARABIDOPSIS RESPONSE REGULATOR12 are required to activate the transcription of ARF19, which is involved in promoting cell differentiation and thus root growth.
Collapse
Affiliation(s)
- Serena Perilli
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| | - José Manuel Perez-Perez
- Molecular Genetics, Department of Biology, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Riccardo Di Mambro
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| | - Cristina Llavata Peris
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| | - Sara Díaz-Triviño
- Molecular Genetics, Department of Biology, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Marta Del Bianco
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| | - Emanuela Pierdonati
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| | - Laila Moubayidin
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| | - Alfredo Cruz-Ramírez
- Molecular Genetics, Department of Biology, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Paolo Costantino
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| | - Ben Scheres
- Molecular Genetics, Department of Biology, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Sabrina Sabatini
- Department of Biology and Biotechnology, Laboratories of Functional Genomics and Proteomics of Model Systems, University of Rome Sapienza, 00185 Rome, Italy
| |
Collapse
|
44
|
T antigen transformation reveals Tp53/RB-dependent route to PLAC1 transcription activation in primary fibroblasts. Oncogenesis 2013; 2:e67. [PMID: 23999628 PMCID: PMC3816221 DOI: 10.1038/oncsis.2013.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/22/2013] [Indexed: 01/03/2023] Open
Abstract
PLAC1 (placenta-specific 1) is a gene that is placenta specific and transcribed very little, if at all, in any somatic tissue. It is nevertheless expressed in many cancer cell lines. To understand how cancer cells may activate the gene in nonexpressing cells, we found that a model is provided by classical transformation of normal fibroblasts by SV40 T antigen. T antigen derepressed the PLAC1 P1 promoter, with Tp53 and RB exerting critical and opposing actions and nuclear receptors, retinoid X receptor and liver X receptor, sharply increasing the level of expression.
Collapse
|
45
|
Nicolay BN, Dyson NJ. The multiple connections between pRB and cell metabolism. Curr Opin Cell Biol 2013; 25:735-40. [PMID: 23916769 DOI: 10.1016/j.ceb.2013.07.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 02/03/2023]
Abstract
The pRB tumor suppressor is traditionally seen as an important regulator of the cell cycle. pRB represses the transcriptional activation of a diverse set of genes by the E2F transcription factors and prevents inappropriate S-phase entry. Advances in our understanding of pRB have documented roles that extend beyond the cell cycle and this review summarizes recent studies that link pRB to the control of cell metabolism. pRB has been shown to regulate glucose tolerance, mitogenesis, glutathione synthesis, and the expression of genes involved in central carbon metabolism. Several studies have demonstrated that pRB directly targets a set of genes that are crucial for nucleotide metabolism, and this seems likely to represent one of the ways by which pRB influences the G1/S-phase transition and S-phase progression.
Collapse
Affiliation(s)
- Brandon N Nicolay
- Laboratory of Molecular Oncology, Massachusetts General Hospital Cancer Center, Building 149, 13th Street, Charlestown, MA 02129, USA.
| | | |
Collapse
|
46
|
Abstract
Tumor suppressors are so named because cancers occur in their absence, but these genes also have important functions in development, metabolism and tissue homeostasis. Here, we discuss known and potential functions of tumor suppressor genes during tissue regeneration, focusing on the evolutionarily conserved tumor suppressors pRb1, p53, Pten and Hippo. We propose that their activity is essential for tissue regeneration. This is in contrast to suggestions that tumor suppression is a trade-off for regenerative capacity. We also hypothesize that certain aspects of tumor suppressor pathways inhibit regenerative processes in mammals, and that transient targeted modification of these pathways could be fruitfully exploited to enhance processes that are important to regenerative medicine.
Collapse
Affiliation(s)
- Jason H Pomerantz
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of California, San Francisco, CA 94143, USA.
| | | |
Collapse
|
47
|
Khanjyan MV, Yang J, Kayali R, Caldwell T, Bertoni C. A high-content, high-throughput siRNA screen identifies cyclin D2 as a potent regulator of muscle progenitor cell fusion and a target to enhance muscle regeneration. Hum Mol Genet 2013; 22:3283-95. [PMID: 23612904 DOI: 10.1093/hmg/ddt184] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cell-mediated regenerative approaches using muscle progenitor cells hold promises for the treatment of many forms of muscle disorders. Their applicability in the clinic, however, is hindered by the low levels of regeneration obtained after transplantation and the large number of cells required to achieve an effect. To better understand the mechanisms that regulate the temporal switch of replicating muscle progenitor cells into terminally differentiated cells and to develop new strategies that could enhance muscle regeneration, we have developed and performed a high-throughput screening (HTS) capable of identifying genes that play active roles during myogenesis. Secondary and tertiary screens were used to confirm the effects of RNAi in vitro and in vivo and to select for candidate hits that significantly increase regeneration into skeletal muscles. Downregulation of cyclin D2 (CCND2) was shown to dramatically enhance myogenic differentiation of muscle progenitor cells and to induce a robust regeneration after cell transplantation into skeletal muscles of dystrophin-deficient mice. Protein interaction network and pathway analysis revealed that CCND2 directly interacts with the cyclin-dependent kinase Cdk4 to inhibit phosphorylation of the retinoblastoma protein (pRb), thus blocking the activation of the myogenic switch during fusion. These studies identify CCND2 as a new key regulator of terminal differentiation in muscle progenitor cells and open new possibilities for the treatment of many forms of muscle disorders characterized by impaired regeneration and loss of muscle mass.
Collapse
Affiliation(s)
- Michael V Khanjyan
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
48
|
Gene expression deregulation in postnatal skeletal muscle of TK2 deficient mice reveals a lower pool of proliferating myogenic progenitor cells. PLoS One 2013; 8:e53698. [PMID: 23341978 PMCID: PMC3544874 DOI: 10.1371/journal.pone.0053698] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/03/2012] [Indexed: 01/07/2023] Open
Abstract
Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue.
Collapse
|
49
|
Evidence for autoregulation and cell signaling pathway regulation from genome-wide binding of the Drosophila retinoblastoma protein. G3-GENES GENOMES GENETICS 2012; 2:1459-72. [PMID: 23173097 PMCID: PMC3484676 DOI: 10.1534/g3.112.004424] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/20/2012] [Indexed: 12/24/2022]
Abstract
The retinoblastoma (RB) tumor suppressor protein is a transcriptional cofactor with essential roles in cell cycle and development. Physical and functional targets of RB and its paralogs p107/p130 have been studied largely in cultured cells, but the full biological context of this family of proteins' activities will likely be revealed only in whole organismal studies. To identify direct targets of the major Drosophila RB counterpart in a developmental context, we carried out ChIP-Seq analysis of Rbf1 in the embryo. The association of the protein with promoters is developmentally controlled; early promoter access is globally inhibited, whereas later in development Rbf1 is found to associate with promoter-proximal regions of approximately 2000 genes. In addition to conserved cell-cycle-related genes, a wholly unexpected finding was that Rbf1 targets many components of the insulin, Hippo, JAK/STAT, Notch, and other conserved signaling pathways. Rbf1 may thus directly affect output of these essential growth-control and differentiation pathways by regulation of expression of receptors, kinases and downstream effectors. Rbf1 was also found to target multiple levels of its own regulatory hierarchy. Bioinformatic analysis indicates that different classes of genes exhibit distinct constellations of motifs associated with the Rbf1-bound regions, suggesting that the context of Rbf1 recruitment may vary within the Rbf1 regulon. Many of these targeted genes are bound by Rbf1 homologs in human cells, indicating that a conserved role of RB proteins may be to adjust the set point of interlinked signaling networks essential for growth and development.
Collapse
|
50
|
Zhu Y, Deng D, Long C, Jin G, Zhang Q, Shen H. Abnormal expression of seven myogenesis-related genes in extraocular muscles of patients with concomitant strabismus. Mol Med Rep 2012; 7:217-22. [PMID: 23128899 DOI: 10.3892/mmr.2012.1149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/03/2012] [Indexed: 11/06/2022] Open
Abstract
Hyperplasia or hypoplasia of muscles gradually leads to strabismus. Myogenesis-related genes are involved in extraocular muscle development, including myogenic differentiation 1 (MYOD1), myogenin (MYOG), retinoblastoma 1 (RB1), cyclin-dependent kinase inhibitor 1A (P21), cyclin‑dependent kinase inhibitor 1C (P57), insulin-like growth factor 1 (IGF1) and muscle creatine kinase (MCK). This study evaluated the expression of the above seven myogenesis-related genes by real-time quantitative RT-PCR in 18 resected extrocular muscles of patients with concomitant strabismus and 12 normal control muscle samples from one presumably healthy male 6 h after sudden mortality. We found that although there was a great divergence among the expression levels of 6 myogenesis-related regulatory factors, the relative expression patterns were similar in all the normal muscles, including the synergistic, antagonistic and yoke muscles. However, their expression levels in the 18 diseased extraocular muscles were abnormal; the expression levels of all the genes, with the exception of P57, were reduced in most of the diseased muscle tissues. These results imply that the abnormal expression of these myogenesis-related genes may contribute to concomitant strabismus.
Collapse
Affiliation(s)
- Yujuan Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, PR China
| | | | | | | | | | | |
Collapse
|