1
|
Koit S, Tamberg N, Reinapae A, Peil L, Kristjuhan A, Ilves I. A conserved phosphorylation mechanism for regulating the interaction between the CMG replicative helicase and its forked DNA substrate. J Biol Chem 2025:108408. [PMID: 40090586 DOI: 10.1016/j.jbc.2025.108408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025] Open
Abstract
The CMG helicase is a crucial enzyme complex that plays a vital role in the replication of genomic DNA in eukaryotes. Besides unwinding the DNA template and coordinating the replisome's structure, it is also a key target for signaling pathways that regulate the replication process. We show that a specific serine/threonine residue in the MCM3 subunit of CMG, which has been previously linked to phosphorylation-dependent control mechanisms of genomic DNA replication in human cells, is a conserved phosphorylation site for Chk1 and potentially other protein kinases. This suggests a conserved regulatory mechanism associated with it in metazoans and several other eukaryotes, including budding yeast. Our in vitro analysis links this mechanism directly to the modulation of the CMG helicase activity by impacting its interactions with the forked DNA substrate. Further supporting its conserved role in regulation, we found that phosphomimetic substitution with aspartic acid and alanine knock-out of this conserved residue lead to opposite phenotypic defects in the growth of budding yeast cells. These findings outline a candidate conserved phosphorylation pathway for regulating genomic DNA replication in eukaryotes, which adjusts the interactions between the replicative helicase complex and its DNA substrate according to the specific needs of various physiological conditions.
Collapse
Affiliation(s)
- Sandra Koit
- Institute of Technology, University of Tartu; Nooruse 1, Tartu 50411, Estonia
| | - Nele Tamberg
- Institute of Technology, University of Tartu; Nooruse 1, Tartu 50411, Estonia
| | - Allan Reinapae
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia
| | - Lauri Peil
- Institute of Technology, University of Tartu; Nooruse 1, Tartu 50411, Estonia
| | - Arnold Kristjuhan
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia
| | - Ivar Ilves
- Institute of Technology, University of Tartu; Nooruse 1, Tartu 50411, Estonia.
| |
Collapse
|
2
|
van der Horst SC, Kollenstart L, Batté A, Keizer S, Vreeken K, Pandey P, Chabes A, van Attikum H. Replication-IDentifier links epigenetic and metabolic pathways to the replication stress response. Nat Commun 2025; 16:1416. [PMID: 39915438 PMCID: PMC11802883 DOI: 10.1038/s41467-025-56561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
Perturbation of DNA replication, for instance by hydroxyurea-dependent dNTP exhaustion, often leads to stalling or collapse of replication forks. This triggers a replication stress response that stabilizes these forks, activates cell cycle checkpoints, and induces expression of DNA damage response genes. While several factors are known to act in this response, the full repertoire of proteins involved remains largely elusive. Here, we develop Replication-IDentifier (Repli-ID), which allows for genome-wide identification of regulators of DNA replication in Saccharomyces cerevisiae. During Repli-ID, the replicative polymerase epsilon (Pol ε) is tracked at a barcoded origin of replication by chromatin immunoprecipitation (ChIP) coupled to next-generation sequencing of the barcode in thousands of hydroxyurea-treated yeast mutants. Using this approach, 423 genes that promote Pol ε binding at replication forks were uncovered, including LGE1 and ROX1. Mechanistically, we show that Lge1 affects replication initiation and/or fork stability by promoting Bre1-dependent H2B mono-ubiquitylation. Rox1 affects replication fork progression by regulating S-phase entry and checkpoint activation, hinging on cellular ceramide levels via transcriptional repression of SUR2. Thus, Repli-ID provides a unique resource for the identification and further characterization of factors and pathways involved in the cellular response to DNA replication perturbation.
Collapse
Affiliation(s)
| | - Leonie Kollenstart
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
| | - Amandine Batté
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Keizer
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees Vreeken
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Praveen Pandey
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
3
|
Sato M, Rana V, Suda Y, Mizuno T, Irie K. The RNA-binding protein Puf5 and the HMGB protein Ixr1 regulate cell cycle-specific expression of CLB1 and CLB2 in Saccharomyces cerevisiae. PLoS One 2025; 20:e0316433. [PMID: 39899527 PMCID: PMC11790140 DOI: 10.1371/journal.pone.0316433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/10/2024] [Indexed: 02/05/2025] Open
Abstract
Clb1 and Clb2 are functionally redundant B-type cyclins, and the clb1Δ clb2Δ double mutant is lethal. In normal mitotic growth, Clb2 plays the central role in the G2-M progression. We previously demonstrated that the RNA-binding protein Puf5 positively regulates CLB1 expression by downregulating expression of the repressor Ixr1. The decreased expression of CLB1 by the puf5Δ mutation caused a severe growth defect of the puf5Δ clb2Δ double mutant. On the contrary, CLB2 expression was unchanged between wild-type strain and puf5Δ mutant in unsynchronized cultures, and the puf5Δ clb1Δ double mutant did not show growth retardation. Therefore, we assumed that CLB1 is the main target of Puf5 in the previous study. However, considering that CLB1 and CLB2 reportedly undergo a similar expression pattern during the cell cycle, we re-examined CLB2 expression in the puf5Δ mutant in cell cycle-synchronized cultures and found that CLB2 expression was decreased in the puf5Δ mutant strain. Deletion of IXR1 restored the decreased expression of CLB2 caused by the puf5Δ mutation. Moreover, we clarified that the decreased expression of CLB2 caused by the puf5Δ mutation resulted in the growth defect in the S-phase cyclin deficient condition: the puf5Δ clb1Δ clb5Δ clb6Δ quadruple mutant grew worse than clb1Δ clb5Δ clb6Δ triple mutant, and the slow growth of the puf5Δ clb1Δ clb5Δ clb6Δ quadruple mutant was suppressed by CLB2 overexpression. Moreover, the ixr1Δ mutation is known to be synthetically lethal with deletion of the DUN1 gene encoding the checkpoint kinase. We found that the clb2Δ mutation restored the lethality of ixr1Δ dun1Δ double mutant. Our results suggest that Puf5 and Ixr1 regulate the cell cycle-specific expression of both CLB1 and CLB2, that Clb5 and Clb6 have overlapping roles with Clb1 and Clb2, and that the regulation of CLB1 and CLB2 expression by Puf5 and Ixr1 is related to the function of Dun1 kinase.
Collapse
Affiliation(s)
- Megumi Sato
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Varsha Rana
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Doctoral Program in Human Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yasuyuki Suda
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Tomoaki Mizuno
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kenji Irie
- Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
4
|
Nagar S, Mehta R, Kaur P, Sadia FZ, Reddy S, Olorunnimbe OR, Vancurova I, Vancura A. The yeast checkpoint kinase Dun1p represses transcription of RNR genes independently of catalytic activity or Rad53p during respiratory growth. J Biol Chem 2025; 301:108232. [PMID: 39880091 PMCID: PMC11914510 DOI: 10.1016/j.jbc.2025.108232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
One of the key events in DNA damage response is activation of checkpoint kinases leading to activation of ribonucleotide reductase (RNR) and increased synthesis of deoxyribonucleotide triphosphates (dNTPs) required for DNA repair. Among other mechanisms, the activation of dNTP synthesis is driven by derepression of genes encoding RNR subunits RNR2, RNR3, and RNR4, following checkpoint activation and checkpoint kinase Dun1p-mediated phosphorylation and inactivation of transcriptional repressor Crt1p. We report here that in the absence of genotoxic stress during respiratory growth on nonfermentable carbon source acetate, inactivation of checkpoint kinases results in significant growth defect and alters transcriptional regulation of RNR2-4 genes and genes encoding enzymes of the tricarboxylic acid and glyoxylate cycles and gluconeogenesis. Dun1p, independently of its kinase activity or signaling from the upstream checkpoint kinase Rad53p, represses RNR2, RNR3, and RNR4 genes by maintaining Crt1p occupancy in the corresponding promoters. Consistently with the role of dNTPs in the regulation of mitochondrial DNA copy number, DUN1 inactivation elevates mitochondrial DNA copy number in acetate-grown cells. Together, our data reveal an unexpected role for Dun1p in transcriptional regulation of RNR2-4 and metabolic genes during growth on nonfermentable carbon source and suggest that Dun1p contributes to transcription regulation independently of its kinase activity as a structural component by binding to protein(s) involved in gene regulation.
Collapse
Affiliation(s)
- Shreya Nagar
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Riddhi Mehta
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Pritpal Kaur
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Fatema Zohra Sadia
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Suprataptha Reddy
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | | | - Ivana Vancurova
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Ales Vancura
- Department of Biological Sciences, St John's University, Queens, New York, USA.
| |
Collapse
|
5
|
Zhou FY, Waterman DP, Ashton M, Caban-Penix S, Memisoglu G, Eapen VV, Haber JE. Prolonged cell cycle arrest in response to DNA damage in yeast requires the maintenance of DNA damage signaling and the spindle assembly checkpoint. eLife 2024; 13:RP94334. [PMID: 39656839 PMCID: PMC11630823 DOI: 10.7554/elife.94334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Cells evoke the DNA damage checkpoint (DDC) to inhibit mitosis in the presence of DNA double-strand breaks (DSBs) to allow more time for DNA repair. In budding yeast, a single irreparable DSB is sufficient to activate the DDC and induce cell cycle arrest prior to anaphase for about 12-15 hr, after which cells 'adapt' to the damage by extinguishing the DDC and resuming the cell cycle. While activation of the DNA damage-dependent cell cycle arrest is well understood, how it is maintained remains unclear. To address this, we conditionally depleted key DDC proteins after the DDC was fully activated and monitored changes in the maintenance of cell cycle arrest. Degradation of Ddc2ATRIP, Rad9, Rad24, or Rad53CHK2 results in premature resumption of the cell cycle, indicating that these DDC factors are required both to establish and maintain the arrest. Dun1 is required for the establishment, but not the maintenance, of arrest, whereas Chk1 is required for prolonged maintenance but not for initial establishment of the mitotic arrest. When the cells are challenged with two persistent DSBs, they remain permanently arrested. This permanent arrest is initially dependent on the continuous presence of Ddc2, Rad9, and Rad53; however, after 15 hr these proteins become dispensable. Instead, the continued mitotic arrest is sustained by spindle assembly checkpoint (SAC) proteins Mad1, Mad2, and Bub2 but not by Bub2's binding partner Bfa1. These data suggest that prolonged cell cycle arrest in response to 2 DSBs is achieved by a handoff from the DDC to specific components of the SAC. Furthermore, the establishment and maintenance of DNA damage-induced cell cycle arrest require overlapping but different sets of factors.
Collapse
Affiliation(s)
- Felix Y Zhou
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWalthamUnited States
| | - David P Waterman
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWalthamUnited States
| | - Marissa Ashton
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWalthamUnited States
| | - Suhaily Caban-Penix
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWalthamUnited States
| | - Gonen Memisoglu
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWalthamUnited States
- Department of Molecular Genetics & Cell Biology, University of ChicagoChicagoUnited States
| | - Vinay V Eapen
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWalthamUnited States
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWalthamUnited States
| |
Collapse
|
6
|
Du Y, Ma C, Moore SA, Xiao W. Zinc finger 4 negatively controls the transcriptional activator Fzf1 in Saccharomyces cerevisiae. MLIFE 2024; 3:391-402. [PMID: 39359679 PMCID: PMC11442136 DOI: 10.1002/mlf2.12141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 10/04/2024]
Abstract
Fzf1 is a Saccharomyces cerevisiae transcription factor containing five zinc fingers (ZFs). It regulates the expression of at least five downstream genes, including SSU1, YHB1, DDI2/3, and YNR064c, by recognizing a consensus sequence, CS2, found in these gene promoters. These gene products are involved in cellular responses to various chemical stresses. For example, SSU1 encodes a sodium sulfite efflux protein that confers sulfite resistance. However, the underlying molecular mechanism through which Fzf1 responds to chemical stress and coordinates target gene activation remains elusive. Interestingly, several mutations in the fourth ZF (ZF4) of Fzf1 have previously been reported to confer either sulfite resistance or elevated basal-level expression of YHB1, indicating that ZF4 negatively impacts Fzf1 activity. Since ZF4 is dispensable for CS2 binding in vitro, we hypothesized that ZF4 is a negative regulator of Fzf1 and that chemically induced Fzf1-regulated gene expression occurs via de-repression. All five genes examined were cross-induced by corresponding chemicals in an Fzf1-dependent manner, and all three ZF4 mutations and a ZF4 deletion conferred increased basal-level expression and SSU1-dependent sulfite resistance. A ZF4 deletion did not alter the target DNA binding, consistent with the observed codominant phenotype. These observations collectively reveal that Fzf1 remains inactive by default at the target promoters and that its activation is at least partially achieved by self-derepression through chemical modification and/or a conformational change.
Collapse
Affiliation(s)
- Ying Du
- Department of Biochemistry, Microbiology and Immunology University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Chaoqun Ma
- Department of Biochemistry, Microbiology and Immunology University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Stanley A Moore
- Department of Biochemistry, Microbiology and Immunology University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Wei Xiao
- Department of Biochemistry, Microbiology and Immunology University of Saskatchewan Saskatoon Saskatchewan Canada
| |
Collapse
|
7
|
Zhou FY, Waterman DP, Ashton M, Caban-Penix S, Memisoglu G, Eapen VV, Haber JE. Prolonged Cell Cycle Arrest in Response to DNA damage in Yeast Requires the Maintenance of DNA Damage Signaling and the Spindle Assembly Checkpoint. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.15.540538. [PMID: 37292675 PMCID: PMC10245577 DOI: 10.1101/2023.05.15.540538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cells evoke the DNA damage checkpoint (DDC) to inhibit mitosis in the presence of DNA double-strand breaks (DSBs) to allow more time for DNA repair. In budding yeast, a single irreparable DSB is sufficient to activate the DDC and induce cell cycle arrest prior to anaphase for about 12 to 15 hours, after which cells "adapt" to the damage by extinguishing the DDC and resuming the cell cycle. While activation of the DNA damage-dependent cell cycle arrest is well-understood, how it is maintained remains unclear. To address this, we conditionally depleted key DDC proteins after the DDC was fully activated and monitored changes in the maintenance of cell cycle arrest. Degradation of Ddc2ATRIP, Rad9, Rad24, or Rad53CHK2 results in premature resumption of the cell cycle, indicating that these DDC factors are required both to establish and to maintain the arrest. Dun1 is required for establishment, but not maintenance of arrest, whereas Chk1 is required for prolonged maintenance but not for initial establishment of the mitotic arrest. When the cells are challenged with 2 persistent DSBs, they remain permanently arrested. This permanent arrest is initially dependent on the continuous presence of Ddc2, Rad9, and Rad53; however, after 15 hours these proteins become dispensable. Instead, the continued mitotic arrest is sustained by spindle-assembly checkpoint (SAC) proteins Mad1, Mad2, and Bub2 but not by Bub2's binding partner Bfa1. These data suggest that prolonged cell cycle arrest in response to 2 DSBs is achieved by a handoff from the DDC to specific components of the SAC. Furthermore, the establishment and maintenance of DNA damage-induced cell cycle arrest requires overlapping but different sets of factors.
Collapse
Affiliation(s)
- Felix Y. Zhou
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
| | - David P. Waterman
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
| | - Marissa Ashton
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
| | - Suhaily Caban-Penix
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
| | - Gonen Memisoglu
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
- Department of Molecular Genetics & Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Vinay V. Eapen
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
8
|
Maclay T, Whalen J, Johnson M, Freudenreich CH. The DNA Replication Checkpoint Targets the Kinetochore for Relocation of Collapsed Forks to the Nuclear Periphery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599319. [PMID: 38948692 PMCID: PMC11212917 DOI: 10.1101/2024.06.17.599319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Hairpin forming expanded CAG/CTG repeats pose significant challenges to DNA replication which can lead to replication fork collapse. Long CAG/CTG repeat tracts relocate to the nuclear pore complex to maintain their integrity. Forks impeded by DNA structures are known to activate the DNA damage checkpoint, thus we asked whether checkpoint proteins play a role in relocation of collapsed forks to the nuclear periphery in S. cerevisiae . We show that relocation of a (CAG/CTG) 130 tract is dependent on activation of the Mrc1/Rad53 replication checkpoint. Further, checkpoint-mediated phosphorylation of the kinetochore protein Cep3 is required for relocation, implicating detachment of the centromere from the spindle pole body. Activation of this pathway leads to DNA damage-induced microtubule recruitment to the repeat. These data suggest a role for the DNA replication checkpoint in facilitating movement of collapsed replication forks to the nuclear periphery by centromere release and microtubule-directed motion. Highlights The DNA replication checkpoint initiates relocation of a structure-forming CAG repeat tract to the nuclear pore complex (NPC)The importance of Mrc1 (hClaspin) implicates fork uncoupling as the initial checkpoint signalPhosphorylation of the Cep3 kinetochore protein by Dun1 kinase allows for centromere release, which is critical for collapsed fork repositioningDamage-inducible nuclear microtubules (DIMs) colocalize with the repeat locus and are required for relocation to the NPCEstablishes a new role for the DNA replication and DNA damage checkpoint response to trigger repositioning of collapsed forks within the nucleus.
Collapse
|
9
|
Yates LA, Zhang X. Phosphoregulation of the checkpoint kinase Mec1 ATR. DNA Repair (Amst) 2023; 129:103543. [PMID: 37480741 DOI: 10.1016/j.dnarep.2023.103543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
Yeast Mec1, and its mammalian ortholog, Ataxia-Telangiectasia and Rad3-related, are giant protein kinases central to replication stress and double strand DNA break repair. Mec1ATR, in complex with Ddc2ATRIP, is a 'sensor' of single stranded DNA, and phosphorylates numerous cell cycle and DNA repair factors to enforce cell cycle arrest and facilitate repair. Over the last several years, new techniques - particularly in structural biology - have provided molecular mechanisms for Mec1ATR function. It is becoming increasingly clear how post-translational modification of Mec1ATR and its interaction partners modulates the DNA damage checkpoint. In this review, we summarise the most recent work unravelling Mec1ATR function in the DNA damage checkpoint and provide a molecular context for its regulation by phosphorylation.
Collapse
Affiliation(s)
- Luke A Yates
- Section of Structural, Department of Infectious Disease, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, UK; DNA processing machines laboratory, Francis Crick Institute, London NW1 1AT, UK.
| | - Xiaodong Zhang
- Section of Structural, Department of Infectious Disease, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ, UK; DNA processing machines laboratory, Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
10
|
Vanderwaeren L, Dok R, Voordeckers K, Nuyts S, Verstrepen KJ. Saccharomyces cerevisiae as a Model System for Eukaryotic Cell Biology, from Cell Cycle Control to DNA Damage Response. Int J Mol Sci 2022; 23:11665. [PMID: 36232965 PMCID: PMC9570374 DOI: 10.3390/ijms231911665] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has been used for bread making and beer brewing for thousands of years. In addition, its ease of manipulation, well-annotated genome, expansive molecular toolbox, and its strong conservation of basic eukaryotic biology also make it a prime model for eukaryotic cell biology and genetics. In this review, we discuss the characteristics that made yeast such an extensively used model organism and specifically focus on the DNA damage response pathway as a prime example of how research in S. cerevisiae helped elucidate a highly conserved biological process. In addition, we also highlight differences in the DNA damage response of S. cerevisiae and humans and discuss the challenges of using S. cerevisiae as a model system.
Collapse
Affiliation(s)
- Laura Vanderwaeren
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, Department M2S, KU Leuven, 3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Karin Voordeckers
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, Department M2S, KU Leuven, 3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Kevin J. Verstrepen
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, Department M2S, KU Leuven, 3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| |
Collapse
|
11
|
Chen H, Zheng Y, Wang M, Wu Y, Yao M. Gene-Regulated Release of Distinctive Volatile Organic Compounds from Stressed Living Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9546-9555. [PMID: 35729728 DOI: 10.1021/acs.est.2c01774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Breath-borne volatile organic compounds (VOCs) have been increasingly studied as non-invasive biomarkers in both medical diagnosis and environmental health research. Recently, changes in breath-borne VOC fingerprints were demonstrated in rats and humans following pollutant exposures. In this study, the eukaryotic model Saccharomyces cerevisiae was used to study the release of cellular VOCs resulting from toxicant exposures (i.e., O3, H2O2, and CO2) and its underlying biological mechanism. Our results showed that different toxicant exposures caused the release of distinctive VOC profiles of yeast cells. The levels of ethyl acetate and ethyl n-propionate were altered in response to all the toxicants used in this study and could thus be targeted for future environmental toxicity monitoring. The RNA-seq results revealed significant changes in the metabolic or signaling pathways related to the ribosome, carbohydrate, and amino acid metabolisms after exposures. Notably, the shift from glycolysis to the pentose phosphate pathway of carbohydrate metabolism and the inhabitation of the aspartate pathway in the lysine synthesis was essential to the cellular antioxidation by providing reduced nicotinamide adenine dinucleotide phosphate (NADPH). The reprogrammed metabolisms could have resulted in the observed changes of VOCs released, e.g., the production of ethyl acetate for detoxification from yeast cells. This study provides further evidence that VOCs released from living organisms could be used to monitor and guard against toxic exposures while providing better mechanistic insights of the changes in breath-borne VOCs previously observed in rats and humans exposed to air toxicants.
Collapse
Affiliation(s)
- Haoxuan Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yunhao Zheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Joshi I, Peng J, Alvino G, Kwan E, Feng W. Exceptional origin activation revealed by comparative analysis in two laboratory yeast strains. PLoS One 2022; 17:e0263569. [PMID: 35157703 PMCID: PMC8843211 DOI: 10.1371/journal.pone.0263569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 01/21/2022] [Indexed: 11/18/2022] Open
Abstract
We performed a comparative analysis of replication origin activation by genome-wide single-stranded DNA mapping in two yeast strains challenged by hydroxyurea, an inhibitor of the ribonucleotide reductase. We gained understanding of the impact on origin activation by three factors: S-phase checkpoint control, DNA sequence polymorphisms, and relative positioning of origin and transcription unit. Wild type W303 showed a significant reduction of fork progression accompanied by an elevated level of Rad53 phosphorylation as well as physical presence at origins compared to A364a. Moreover, a rad53K227A mutant in W303 activated more origins, accompanied by global reduction of ssDNA across all origins, compared to A364a. Sequence polymorphism in the consensus motifs of origins plays a minor role in determining strain-specific activity. Finally, we identified a new class of origins only active in checkpoint-proficient cells, which we named “Rad53-dependent origins”. Our study presents a comprehensive list of differentially used origins and provide new insights into the mechanisms of origin activation.
Collapse
Affiliation(s)
- Ishita Joshi
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Jie Peng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Gina Alvino
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Elizabeth Kwan
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Yeast Stn1 promotes MCM to circumvent Rad53 control of the S phase checkpoint. Curr Genet 2022; 68:165-179. [PMID: 35150303 PMCID: PMC8976814 DOI: 10.1007/s00294-022-01228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022]
Abstract
Treating yeast cells with the replication inhibitor hydroxyurea activates the S phase checkpoint kinase Rad53, eliciting responses that block DNA replication origin firing, stabilize replication forks, and prevent premature extension of the mitotic spindle. We previously found overproduction of Stn1, a subunit of the telomere-binding Cdc13–Stn1–Ten1 complex, circumvents Rad53 checkpoint functions in hydroxyurea, inducing late origin firing and premature spindle extension even though Rad53 is activated normally. Here, we show Stn1 overproduction acts through remarkably similar pathways compared to loss of RAD53, converging on the MCM complex that initiates origin firing and forms the catalytic core of the replicative DNA helicase. First, mutations affecting Mcm2 and Mcm5 block the ability of Stn1 overproduction to disrupt the S phase checkpoint. Second, loss of function stn1 mutations compensate rad53 S phase checkpoint defects. Third Stn1 overproduction suppresses a mutation in Mcm7. Fourth, stn1 mutants accumulate single-stranded DNA at non-telomeric genome locations, imposing a requirement for post-replication DNA repair. We discuss these interactions in terms of a model in which Stn1 acts as an accessory replication factor that facilitates MCM activation at ORIs and potentially also maintains MCM activity at replication forks advancing through challenging templates.
Collapse
|
14
|
Funada C, Tanino N, Fukaya M, Mikajiri Y, Nishiguchi M, Otake M, Nakasuji H, Kawahito R, Abe F. SOD1 mutations cause hypersensitivity to high-pressure-induced oxidative stress in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2022; 1866:130049. [PMID: 34728328 DOI: 10.1016/j.bbagen.2021.130049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 12/27/2022]
Abstract
Living organisms are subject to various mechanical stressors, such as high hydrostatic pressure. Empirical evidence shows that under high pressure, the oxidative stress response is activated in Saccharomyces cerevisiae. However, the mechanisms involved in its antioxidant systems are unclear. Here, we demonstrate that superoxide dismutase 1 (Sod1) plays a role in resisting high pressure for cell growth. Mutants lacking Sod1 or Ccs1, the copper chaperone for Sod1, displayed growth defects under 25 MPa. Of the various SOD1 mutations associated with familial amyotrophic lateral sclerosis, H46Q and S134N substitutions diminished SOD activity to levels comparable to those of catalytically deficient H63A and null mutants. When these mutant cells were cultured under 25 MPa, their intracellular O2•- levels increased while sod1∆ mutant genome stability was unaffected. The high-pressure sensitive sod1 mutants were also susceptible to sublethal levels of the O2•- generator paraquat. The sod1∆ mutant is known to exhibit methionine and lysine auxotrophy. However, excess methionine addition or overexpression of the lysine permease gene LYP1 did not counteract high-pressure sensitivity in the sod1 mutants, suggesting that their amino acid availability might be intact under 25 MPa. Interestingly, an exclusive localization of Sco2-Sod1 to the intermembrane space (IMS) of mitochondria appeared to partially restore the high-pressure growth ability in the sod1 mutants. Taken these results together, we suggest that high pressure enhances O2•- production and Sod1 within the IMS plays a role in scavenging O2•- allowing the cells to grow under high pressure. BACKGROUND Empirical evidence shows that under high hydrostatic pressure, the oxidative stress response is activated in Saccharomyces cerevisiae. However, the mechanisms involved in its antioxidant systems are unclear. In the current study, we aimed to explore the role of superoxide dismutase 1 (Sod1) in yeast able to grow under high pressure. METHODS Wild type and sod1 mutant cells were cultured in high-pressure chambers under 25 MPa (~250 kg/cm2). The SOD activity in whole cell extracts and 6His-tagged Sod1 recombinant proteins was analyzed using an SOD assay kit. The O2•- generation in cells was estimated by fluorescence staining. RESULTS Mutants lacking Sod1 or Ccs1, the copper chaperone for Sod1, displayed growth defects under 25 MPa. Of the various SOD1 mutations associated with familial amyotrophic lateral sclerosis, H46Q and S134N substitutions diminished SOD activity to levels comparable to those of catalytically deficient H63A and null mutants. The high-pressure sensitive sod1 mutants were also susceptible to sublethal levels of the O2•- generator paraquat. Exclusive localization of Sco2-Sod1 to the intermembrane space (IMS) of mitochondria partially restored the high-pressure growth ability in the sod1 mutants. CONCLUSIONS High pressure enhances O2•- production and Sod1 within the IMS plays a role in scavenging O2•- allowing the cells to grow under high pressure. GENERAL SIGNIFICANCE Unlike external free radical-generating compounds, high-pressure treatment appeared to increase endogenous O2•- levels in yeast cells. Our experimental system offers a unique approach to investigating the physiological responses to mechanical and oxidative stresses in human body.
Collapse
Affiliation(s)
- Chisako Funada
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Nanami Tanino
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Miina Fukaya
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yu Mikajiri
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Masayoshi Nishiguchi
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Masato Otake
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Hiroko Nakasuji
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Reika Kawahito
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan.
| |
Collapse
|
15
|
Moreno AD, González-Fernández C, Tomás-Pejó E. Insights into cell robustness against lignocellulosic inhibitors and insoluble solids in bioethanol production processes. Sci Rep 2022; 12:557. [PMID: 35017613 PMCID: PMC8752620 DOI: 10.1038/s41598-021-04554-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/24/2021] [Indexed: 11/28/2022] Open
Abstract
Increasing yeast robustness against lignocellulosic-derived inhibitors and insoluble solids in bioethanol production is essential for the transition to a bio-based economy. This work evaluates the effect exerted by insoluble solids on yeast tolerance to inhibitory compounds, which is crucial in high gravity processes. Adaptive laboratory evolution (ALE) was applied on a xylose-fermenting Saccharomyces cerevisiae strain to simultaneously increase the tolerance to lignocellulosic inhibitors and insoluble solids. The evolved strain gave rise to a fivefold increase in bioethanol yield in fermentation experiments with high concentration of inhibitors and 10% (w/v) of water insoluble solids. This strain also produced 5% (P > 0.01) more ethanol than the parental in simultaneous saccharification and fermentation of steam-exploded wheat straw, mainly due to an increased xylose consumption. In response to the stress conditions (solids and inhibitors) imposed in ALE, cells induced the expression of genes related to cell wall integrity (SRL1, CWP2, WSC2 and WSC4) and general stress response (e.g., CDC5, DUN1, CTT1, GRE1), simultaneously repressing genes related to protein synthesis and iron transport and homeostasis (e.g., FTR1, ARN1, FRE1), ultimately leading to the improved phenotype. These results contribute towards understanding molecular mechanisms that cells might use to convert lignocellulosic substrates effectively.
Collapse
Affiliation(s)
- Antonio D Moreno
- Advanced Biofuels and Bioproducts Unit, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain
| | - Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain.
| |
Collapse
|
16
|
Sun H, Lu Z, Singh A, Zhou Y, Zheng E, Zhou M, Wang J, Wu X, Hu Z, Gu Z, Campbell JL, Zheng L, Shen B. Error-prone, stress-induced 3' flap-based Okazaki fragment maturation supports cell survival. Science 2021; 374:1252-1258. [PMID: 34855483 PMCID: PMC8852821 DOI: 10.1126/science.abj1013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
How cells with DNA replication defects acquire mutations that allow them to escape apoptosis under environmental stress is a long-standing question. Here, we report that an error-prone Okazaki fragment maturation (OFM) pathway is activated at restrictive temperatures in rad27Δ yeast cells. Restrictive temperature stress activated Dun1, facilitating transformation of unprocessed 5′ flaps into 3′ flaps, which were removed by 3′ nucleases, including DNA polymerase δ (Polδ). However, at certain regions, 3′ flaps formed secondary structures that facilitated 3′ end extension rather than degradation, producing alternative duplications with short spacer sequences, such as pol3 internal tandem duplications. Consequently, little 5′ flap was formed, suppressing rad27Δ-induced lethality at restrictive temperatures. We define a stress-induced, error-prone OFM pathway that generates mutations that counteract replication defects and drive cellular evolution and survival.
Collapse
Affiliation(s)
- Haitao Sun
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Zhaoning Lu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Amanpreet Singh
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Yajing Zhou
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Eric Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106
| | - Mian Zhou
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Jinhui Wang
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Zunsong Hu
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Zhaohui Gu
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Judith L. Campbell
- Divisions of Chemistry and Chemical Engineering and Biology and Biological Engineering California Institute of Technology, Pasadena, CA 91125, USA
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| |
Collapse
|
17
|
Endosomal trafficking and DNA damage checkpoint kinases dictate survival to replication stress by regulating amino acid uptake and protein synthesis. Dev Cell 2021; 56:2607-2622.e6. [PMID: 34534458 DOI: 10.1016/j.devcel.2021.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/11/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022]
Abstract
Atg6Beclin 1 mediates autophagy and endosomal trafficking. We investigated how Atg6 influences replication stress. Combining genetic, genomic, metabolomic, and proteomic approaches, we found that the Vps34-Vps15-Atg6Beclin 1-Vps38UVRAG-phosphatydilinositol-3 phosphate (PtdIns(3)P) axis sensitizes cells to replication stress by favoring the degradation of plasma membrane amino acid (AA) transporters via endosomal trafficking and ESCRT proteins, while the PtdIns(3)P phosphatases Ymr1 and Inp53 promote survival to replication stress by reversing this process. An impaired AA uptake triggers activation of Gcn2, which attenuates protein synthesis by phosphorylating eIF2α. Mec1Atr-Rad53Chk1/Chk2 activation during replication stress further hinders translation efficiency by counteracting eIF2α dephosphorylation through Glc7PP1. AA shortage-induced hyperphosphorylation of eIF2α inhibits the synthesis of 65 stress response proteins, thus resulting in cell sensitization to replication stress, while TORC1 promotes cell survival. Our findings reveal an integrated network mediated by endosomal trafficking, translational control pathways, and checkpoint kinases linking AA availability to the response to replication stress.
Collapse
|
18
|
Davis J, Cetto A, Campbell M, Scoggins S, Stultz L, Hanson P. DMSO reduces the cytotoxicity of anticancer ruthenium complex KP1019 in yeast. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000436. [PMID: 34377963 PMCID: PMC8339913 DOI: 10.17912/micropub.biology.000436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022]
Abstract
Low solubility in aqueous solutions is a significant limitation of the otherwise promising anticancer ruthenium complex KP1019. In laboratory studies, this challenge is often overcome by using DMSO to help drive the drug into solution. Since DMSO was previously shown to alter the bioactivity of platinum-based chemotherapeutics, here we examine DMSO's effects on KP1019. Using Saccharomyces cerevisiae as a model organism, we apply multiple measures of growth inhibition to demonstrate that DMSO reduces the drug's toxicity. This reduction in bioactivity correlates with spectrophotometric changes consistent with DMSO-dependent increases in the stability of the KP1019 pro-drug. The impact of DMSO on the biology and chemistry of KP1019 suggests this solvent should not be used in studies of this and similar anticancer ruthenium complexes.
Collapse
Affiliation(s)
- Jonathan Davis
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | - Anne Cetto
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Mary Campbell
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Seth Scoggins
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Laura Stultz
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Pamela Hanson
- Department of Biology, Furman University, Greenville, SC 29613, USA,
Correspondence to: Pamela Hanson ()
| |
Collapse
|
19
|
Evstyukhina TA, Alekseeva EA, Fedorov DV, Peshekhonov VT, Korolev VG. Genetic Analysis of the Hsm3 Protein Function in Yeast Saccharomyces cerevisiae NuB4 Complex. Genes (Basel) 2021; 12:1083. [PMID: 34356099 PMCID: PMC8307810 DOI: 10.3390/genes12071083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
In the nuclear compartment of yeast, NuB4 core complex consists of three proteins, Hat1, Hat2, and Hif1, and interacts with a number of other factors. In particular, it was shown that NuB4 complex physically interacts with Hsm3p. Early we demonstrated that the gene HSM3 participates in the control of replicative and reparative spontaneous mutagenesis, and that hsm3Δ mutants increase the frequency of mutations induced by different mutagens. It was previously believed that the HSM3 gene controlled only some minor repair processes in the cell, but later it was suggested that it had a chaperone function with its participation in proteasome assembly. In this work, we analyzed the properties of three hsm3Δ, hif1Δ, and hat1Δ mutants. The results obtained showed that the Hsm3 protein may be a functional subunit of NuB4 complex. It has been shown that hsm3- and hif1-dependent UV-induced mutagenesis is completely suppressed by inactivation of the Polη polymerase. We showed a significant role of Polη for hsm3-dependent mutagenesis at non-bipyrimidine sites (NBP sites). The efficiency of expression of RNR (RiboNucleotid Reducase) genes after UV irradiation in hsm3Δ and hif1Δ mutants was several times lower than in wild-type cells. Thus, we have presented evidence that significant increase in the dNTP levels suppress hsm3- and hif1-dependent mutagenesis and Polη is responsible for hsm3- and hif1-dependent mutagenesis.
Collapse
Affiliation(s)
- Tatiyana A. Evstyukhina
- Laboratory of Eukaryotic Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia; (T.A.E.); (D.V.F.); (V.T.P.); (V.G.K.)
- Laboratory of Molecular Genetic and Recombination Technologies, Kurchatov Genome Center—Petersburg Nuclear Physics Institute, mkr. Orlova Roscha 1, Leningrad District, 188300 Gatchina, Russia
| | - Elena A. Alekseeva
- Laboratory of Eukaryotic Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia; (T.A.E.); (D.V.F.); (V.T.P.); (V.G.K.)
- Laboratory of Molecular Genetic and Recombination Technologies, Kurchatov Genome Center—Petersburg Nuclear Physics Institute, mkr. Orlova Roscha 1, Leningrad District, 188300 Gatchina, Russia
| | - Dmitriy V. Fedorov
- Laboratory of Eukaryotic Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia; (T.A.E.); (D.V.F.); (V.T.P.); (V.G.K.)
| | - Vyacheslav T. Peshekhonov
- Laboratory of Eukaryotic Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia; (T.A.E.); (D.V.F.); (V.T.P.); (V.G.K.)
- Laboratory of Molecular Genetic and Recombination Technologies, Kurchatov Genome Center—Petersburg Nuclear Physics Institute, mkr. Orlova Roscha 1, Leningrad District, 188300 Gatchina, Russia
| | - Vladimir G. Korolev
- Laboratory of Eukaryotic Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia; (T.A.E.); (D.V.F.); (V.T.P.); (V.G.K.)
- Laboratory of Molecular Genetic and Recombination Technologies, Kurchatov Genome Center—Petersburg Nuclear Physics Institute, mkr. Orlova Roscha 1, Leningrad District, 188300 Gatchina, Russia
| |
Collapse
|
20
|
Gershon L, Kupiec M. Histones on fire: the effect of Dun1 and Mrc1 on origin firing and replication of hyper-acetylated genomes. Curr Genet 2021; 67:501-510. [PMID: 33715066 DOI: 10.1007/s00294-021-01175-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/30/2022]
Abstract
As cells replicate their DNA, there is a need to synthesize new histones with which to wrap it. Newly synthesized H3 histones that are incorporated into the assembling chromatin behind the replication fork are acetylated at lysine 56. The acetylation is removed by two deacetylases, Hst3 and Hst4. This process is tightly regulated and any perturbation leads to genomic instability and replicative stress. We recently showed that Dun1, a kinase implicated mainly in the regulation of dNTPs, is vital in cells with hyper-acetylation, to counteract Rad53's inhibition on late-firing origins of replication. Our work showed that ∆hst3 ∆hst4 cells depend on late origin firing for survival, and are unable to prevent Rad53's inhibition when Dun1 is inactive. Thus, our work describes a role for Dun1 that is independent on its known function as a regulator of dNTP levels. Here we show that Mrc1 (Claspin in mammals), a protein that moves with the replicating fork and participates in both replication and checkpoint functions, plays also an essential role in the absence of H3K56Ac deacetylation. The sum of the results shown here and in our recent publication suggests that dormant origins are also utilized in these cells, making Mrc1, which regulates firing from these origins, also essential when histone H3 is hyper-acetylated. Thus, cells suffering from hyper-acetylation of H3K56 experience replication stress caused by a combination of prone-to-collapse forks and limited replication tracts. This combination makes both Dun1 and Mrc1, each acting on different targets, essential for viability.
Collapse
Affiliation(s)
- Lihi Gershon
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel.
| |
Collapse
|
21
|
The activity of yeast Apn2 AP endonuclease at uracil-derived AP sites is dependent on the major carbon source. Curr Genet 2021; 67:283-294. [PMID: 33386486 DOI: 10.1007/s00294-020-01141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/16/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
Yeast Apn2 is an AP endonuclease and DNA 3'-diesterase that belongs to the Exo III family with homology to the E. coli exonuclease III, Schizosaccharomyces pombe eth1, and human AP endonucleases APEX1 and APEX2. In the absence of Apn1, the major AP endonuclease in yeast, Apn2 can cleave the DNA backbone at an AP lesion initiating the base excision repair pathway. To study the role and relative contribution of Apn2, we took advantage of a reporter system that was previously used to delineate how uracil-derived AP sites are repaired. At this reporter, disruption of the Apn1-initiated base excision repair pathway led to a significant elevation of A:T to C:G transversions. Here we show that such highly elevated A:T to C:G transversion mutations associated with uracil residues in DNA are abolished when apn1∆ yeast cells are grown in glucose as the primary carbon source. We also show that the disruption of Apn2, either by the complete gene deletion or by the mutation of a catalytic residue, results in a similarly reduced rate of the uracil-associated mutations. Overall, our results indicate that Apn2 activity is regulated by the glucose repression pathway in yeast.
Collapse
|
22
|
Stultz LK, Hunsucker A, Middleton S, Grovenstein E, O'Leary J, Blatt E, Miller M, Mobley J, Hanson PK. Proteomic analysis of the S. cerevisiae response to the anticancer ruthenium complex KP1019. Metallomics 2020; 12:876-890. [PMID: 32329475 PMCID: PMC7362344 DOI: 10.1039/d0mt00008f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Like platinum-based chemotherapeutics, the anticancer ruthenium complex indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(iii)], or KP1019, damages DNA, induces apoptosis, and causes tumor regression in animal models. Unlike platinum-based drugs, KP1019 showed no dose-limiting toxicity in a phase I clinical trial. Despite these advances, the mechanism(s) and target(s) of KP1019 remain unclear. For example, the drug may damage DNA directly or by causing oxidative stress. Likewise, KP1019 binds cytosolic proteins, suggesting DNA is not the sole target. Here we use the budding yeast Saccharomyces cerevisiae as a model in a proteomic study of the cellular response to KP1019. Mapping protein level changes onto metabolic pathways revealed patterns consistent with elevated synthesis and/or cycling of the antioxidant glutathione, suggesting KP1019 induces oxidative stress. This result was supported by increased fluorescence of the redox-sensitive dye DCFH-DA and increased KP1019 sensitivity of yeast lacking Yap1, a master regulator of the oxidative stress response. In addition to oxidative and DNA stress, bioinformatic analysis revealed drug-dependent increases in proteins involved ribosome biogenesis, translation, and protein (re)folding. Consistent with proteotoxic effects, KP1019 increased expression of a heat-shock element (HSE) lacZ reporter. KP1019 pre-treatment also sensitized yeast to oxaliplatin, paralleling prior research showing that cancer cell lines with elevated levels of translation machinery are hypersensitive to oxaliplatin. Combined, these data suggest that one of KP1019's many targets may be protein metabolism, which opens up intriguing possibilities for combination therapy.
Collapse
Affiliation(s)
- Laura K Stultz
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Alexandra Hunsucker
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Sydney Middleton
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Evan Grovenstein
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Jacob O'Leary
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Eliot Blatt
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| | - Mary Miller
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| | - James Mobley
- Department of Surgery, University of Alabama at Birmingham, School of Medicine, Birmingham, AL 35294, USA
| | - Pamela K Hanson
- Department of Biology, Furman University, Greenville, SC 29613, USA.
| |
Collapse
|
23
|
Yam CQX, Chia DB, Shi I, Lim HH, Surana U. Dun1, a Chk2-related kinase, is the central regulator of securin-separase dynamics during DNA damage signaling. Nucleic Acids Res 2020; 48:6092-6107. [PMID: 32402080 PMCID: PMC7293041 DOI: 10.1093/nar/gkaa355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 01/26/2023] Open
Abstract
The DNA damage checkpoint halts cell cycle progression in G2 in response to genotoxic insults. Central to the execution of cell cycle arrest is the checkpoint-induced stabilization of securin-separase complex (yeast Pds1-Esp1). The checkpoint kinases Chk1 and Chk2 (yeast Chk1 and Rad53) are thought to critically contribute to the stability of securin-separase complex by phosphorylation of securin, rendering it resistant to proteolytic destruction by the anaphase promoting complex (APC). Dun1, a Rad53 paralog related to Chk2, is also essential for checkpoint-imposed arrest. Dun1 is required for the DNA damage-induced transcription of DNA repair genes; however, its role in the execution of cell cycle arrest remains unknown. Here, we show that Dun1′s role in checkpoint arrest is independent of its involvement in the transcription of repair genes. Instead, Dun1 is necessary to prevent Pds1 destruction during DNA damage in that the Dun1-deficient cells degrade Pds1, escape G2 arrest and undergo mitosis despite the presence of checkpoint-active Chk1 and Rad53. Interestingly, proteolytic degradation of Pds1 in the absence of Dun1 is mediated not by APC but by the HECT domain-containing E3 ligase Rsp5. Our results suggest a regulatory scheme in which Dun1 prevents chromosome segregation during DNA damage by inhibiting Rsp5-mediated proteolytic degradation of securin Pds1.
Collapse
Affiliation(s)
- Candice Qiu Xia Yam
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore.,Bioprocessing Technology Institute, A*STAR, Singapore
| | - David Boy Chia
- Biotransformation Innovation Platform, A*STAR, Singapore
| | - Idina Shi
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore
| | - Hong Hwa Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore.,Bioprocessing Technology Institute, A*STAR, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore.,Bioprocessing Technology Institute, A*STAR, Singapore.,Biotransformation Innovation Platform, A*STAR, Singapore.,Department of Pharmacology, National University of Singapore, Singapore
| |
Collapse
|
24
|
Morafraile EC, Bugallo A, Carreira R, Fernández M, Martín-Castellanos C, Blanco MG, Segurado M. Exo1 phosphorylation inhibits exonuclease activity and prevents fork collapse in rad53 mutants independently of the 14-3-3 proteins. Nucleic Acids Res 2020; 48:3053-3070. [PMID: 32020204 PMCID: PMC7102976 DOI: 10.1093/nar/gkaa054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 01/04/2023] Open
Abstract
The S phase checkpoint is crucial to maintain genome stability under conditions that threaten DNA replication. One of its critical functions is to prevent Exo1-dependent fork degradation, and Exo1 is phosphorylated in response to different genotoxic agents. Exo1 seemed to be regulated by several post-translational modifications in the presence of replicative stress, but the specific contribution of checkpoint-dependent phosphorylation to Exo1 control and fork stability is not clear. We show here that Exo1 phosphorylation is Dun1-independent and Rad53-dependent in response to DNA damage or dNTP depletion, and in both situations Exo1 is similarly phosphorylated at multiple sites. To investigate the correlation between Exo1 phosphorylation and fork stability, we have generated phospho-mimic exo1 alleles that rescue fork collapse in rad53 mutants as efficiently as exo1-nuclease dead mutants or the absence of Exo1, arguing that Rad53-dependent phosphorylation is the mayor requirement to preserve fork stability. We have also shown that this rescue is Bmh1–2 independent, arguing that the 14-3-3 proteins are dispensable for fork stabilization, at least when Exo1 is downregulated. Importantly, our results indicated that phosphorylation specifically inhibits the 5' to 3'exo-nuclease activity, suggesting that this activity of Exo1 and not the flap-endonuclease, is the enzymatic activity responsible of the collapse of stalled replication forks in checkpoint mutants.
Collapse
Affiliation(s)
- Esther C Morafraile
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | - Alberto Bugallo
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | - Raquel Carreira
- Departamento de Bioquímica y Biología Molecular, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) - Instituto de Investigación Sanitaria (IDIS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María Fernández
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | | | - Miguel G Blanco
- Departamento de Bioquímica y Biología Molecular, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) - Instituto de Investigación Sanitaria (IDIS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mónica Segurado
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain.,Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, Salamanca 37007, Spain
| |
Collapse
|
25
|
Functional interplay between the oxidative stress response and DNA damage checkpoint signaling for genome maintenance in aerobic organisms. J Microbiol 2019; 58:81-91. [DOI: 10.1007/s12275-020-9520-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
|
26
|
Cussiol JRR, Soares BL, Oliveira FMBD. From yeast to humans: Understanding the biology of DNA Damage Response (DDR) kinases. Genet Mol Biol 2019; 43:e20190071. [PMID: 31930279 PMCID: PMC7198005 DOI: 10.1590/1678-4685-gmb-2019-0071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022] Open
Abstract
The DNA Damage Response (DDR) is a complex network of biological processes that protect cells from accumulating aberrant DNA structures, thereby maintaining genomic stability and, as a consequence, preventing the development of cancer and other diseases. The DDR pathway is coordinated by a signaling cascade mediated by the PI3K-like kinases (PIKK) ATM and ATR and by their downstream kinases CHK2 and CHK1, respectively. Together, these kinases regulate several aspects of the cellular program in response to genomic stress. Much of our understanding of these kinases came from studies performed in the 1990s using yeast as a model organism. The purpose of this review is to present a historical perspective on the discovery of the DDR kinases in yeast and the importance of this model for the identification and functional understanding of their mammalian orthologues.
Collapse
Affiliation(s)
| | - Bárbara Luísa Soares
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
27
|
Affiliation(s)
- Nerea Sanvisens Delgado
- UCSF Helen Diller Comprehensive Cancer Center, Univerisity of Califorinia, San Francisco, California, United States of America
| | - David P. Toczyski
- UCSF Helen Diller Comprehensive Cancer Center, Univerisity of Califorinia, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Winczura A, Appanah R, Tatham MH, Hay RT, De Piccoli G. The S phase checkpoint promotes the Smc5/6 complex dependent SUMOylation of Pol2, the catalytic subunit of DNA polymerase ε. PLoS Genet 2019; 15:e1008427. [PMID: 31765407 PMCID: PMC6876773 DOI: 10.1371/journal.pgen.1008427] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022] Open
Abstract
Replication fork stalling and accumulation of single-stranded DNA trigger the S phase checkpoint, a signalling cascade that, in budding yeast, leads to the activation of the Rad53 kinase. Rad53 is essential in maintaining cell viability, but its targets of regulation are still partially unknown. Here we show that Rad53 drives the hyper-SUMOylation of Pol2, the catalytic subunit of DNA polymerase ε, principally following replication forks stalling induced by nucleotide depletion. Pol2 is the main target of SUMOylation within the replisome and its modification requires the SUMO-ligase Mms21, a subunit of the Smc5/6 complex. Moreover, the Smc5/6 complex co-purifies with Pol ε, independently of other replisome components. Finally, we map Pol2 SUMOylation to a single site within the N-terminal catalytic domain and identify a SUMO-interacting motif at the C-terminus of Pol2. These data suggest that the S phase checkpoint regulate Pol ε during replication stress through Pol2 SUMOylation and SUMO-binding ability.
Collapse
Affiliation(s)
- Alicja Winczura
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Rowin Appanah
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Michael H. Tatham
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, United Kingdom
| | - Ronald T. Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, United Kingdom
| | | |
Collapse
|
29
|
Julius J, Peng J, McCulley A, Caridi C, Arnak R, See C, Nugent CI, Feng W, Bachant J. Inhibition of spindle extension through the yeast S phase checkpoint is coupled to replication fork stability and the integrity of centromeric DNA. Mol Biol Cell 2019; 30:2771-2789. [PMID: 31509480 PMCID: PMC6789157 DOI: 10.1091/mbc.e19-03-0156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Budding yeast treated with hydroxyurea (HU) activate the S phase checkpoint kinase Rad53, which prevents DNA replication forks from undergoing aberrant structural transitions and nuclease processing. Rad53 is also required to prevent premature extension of the mitotic spindle that assembles during a HU-extended S phase. Here we present evidence that checkpoint restraint of spindle extension is directly coupled to Rad53 control of replication fork stability. In budding yeast, centromeres are flanked by replication origins that fire in early S phase. Mutations affecting the Zn2+-finger of Dbf4, an origin activator, preferentially reduce centromere-proximal origin firing in HU, corresponding with suppression of rad53 spindle extension. Inactivating Exo1 nuclease or displacing centromeres from origins provides a similar suppression. Conversely, short-circuiting Rad53 targeting of Dbf4, Sld3, and Dun1, substrates contributing to fork stability, induces spindle extension. These results reveal spindle extension in HU-treated rad53 mutants is a consequence of replication fork catastrophes at centromeres. When such catastrophes occur, centromeres become susceptible to nucleases, disrupting kinetochore function and spindle force balancing mechanisms. At the same time, our data indicate centromere duplication is not required to stabilize S phase spindle structure, leading us to propose a model for how monopolar kinetochore-spindle attachments may contribute to spindle force balance in HU.
Collapse
Affiliation(s)
- Jeff Julius
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Jie Peng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Andrew McCulley
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Chris Caridi
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Remigiusz Arnak
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Colby See
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Constance I Nugent
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Jeff Bachant
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| |
Collapse
|
30
|
Schmidt TT, Sharma S, Reyes GX, Gries K, Gross M, Zhao B, Yuan JH, Wade R, Chabes A, Hombauer H. A genetic screen pinpoints ribonucleotide reductase residues that sustain dNTP homeostasis and specifies a highly mutagenic type of dNTP imbalance. Nucleic Acids Res 2019; 47:237-252. [PMID: 30462295 PMCID: PMC6326808 DOI: 10.1093/nar/gky1154] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
The balance and the overall concentration of intracellular deoxyribonucleoside triphosphates (dNTPs) are important determinants of faithful DNA replication. Despite the established fact that changes in dNTP pools negatively influence DNA replication fidelity, it is not clear why certain dNTP pool alterations are more mutagenic than others. As intracellular dNTP pools are mainly controlled by ribonucleotide reductase (RNR), and given the limited number of eukaryotic RNR mutations characterized so far, we screened for RNR1 mutations causing mutator phenotypes in Saccharomyces cerevisiae. We identified 24 rnr1 mutant alleles resulting in diverse mutator phenotypes linked in most cases to imbalanced dNTPs. Among the identified rnr1 alleles the strongest mutators presented a dNTP imbalance in which three out of the four dNTPs were elevated (dCTP, dTTP and dGTP), particularly if dGTP levels were highly increased. These rnr1 alleles caused growth defects/lethality in DNA replication fidelity-compromised backgrounds, and caused strong mutator phenotypes even in the presence of functional DNA polymerases and mismatch repair. In summary, this study pinpoints key residues that contribute to allosteric regulation of RNR’s overall activity or substrate specificity. We propose a model that distinguishes between different dNTP pool alterations and provides a mechanistic explanation why certain dNTP imbalances are particularly detrimental.
Collapse
Affiliation(s)
- Tobias T Schmidt
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany.,Faculty of Bioscience, Heidelberg University, Heidelberg D-69120, Germany
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-901 87 Sweden
| | - Gloria X Reyes
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany
| | - Kerstin Gries
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany
| | - Maike Gross
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany
| | - Boyu Zhao
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany.,Faculty of Bioscience, Heidelberg University, Heidelberg D-69120, Germany
| | - Jui-Hung Yuan
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg D-69118, Germany
| | - Rebecca Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg D-69118, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg D-69120, Germany.,Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg D-69120, Germany
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-901 87 Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå SE-901 87, Sweden
| | - Hans Hombauer
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany
| |
Collapse
|
31
|
Li X, Jin X, Sharma S, Liu X, Zhang J, Niu Y, Li J, Li Z, Zhang J, Cao Q, Hou W, Du LL, Liu B, Lou H. Mck1 defines a key S-phase checkpoint effector in response to various degrees of replication threats. PLoS Genet 2019; 15:e1008136. [PMID: 31381575 PMCID: PMC6695201 DOI: 10.1371/journal.pgen.1008136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/15/2019] [Accepted: 07/19/2019] [Indexed: 01/23/2023] Open
Abstract
The S-phase checkpoint plays an essential role in regulation of the ribonucleotide reductase (RNR) activity to maintain the dNTP pools. How eukaryotic cells respond appropriately to different levels of replication threats remains elusive. Here, we have identified that a conserved GSK-3 kinase Mck1 cooperates with Dun1 in regulating this process. Deleting MCK1 sensitizes dun1Δ to hydroxyurea (HU) reminiscent of mec1Δ or rad53Δ. While Mck1 is downstream of Rad53, it does not participate in the post-translational regulation of RNR as Dun1 does. Mck1 phosphorylates and releases the Crt1 repressor from the promoters of DNA damage-inducible genes as RNR2-4 and HUG1. Hug1, an Rnr2 inhibitor normally silenced, is induced as a counterweight to excessive RNR. When cells suffer a more severe threat, Mck1 inhibits HUG1 transcription. Consistently, only a combined deletion of HUG1 and CRT1, confers a dramatic boost of dNTP levels and the survival of mck1Δdun1Δ or mec1Δ cells assaulted by a lethal dose of HU. These findings reveal the division-of-labor between Mck1 and Dun1 at the S-phase checkpoint pathway to fine-tune dNTP homeostasis.
Collapse
Affiliation(s)
- Xiaoli Li
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan, Gothenburg, Sweden
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Xiaojing Liu
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Jiaxin Zhang
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Yanling Niu
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Jiani Li
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Zhen Li
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Jingjing Zhang
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Qinhong Cao
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Wenya Hou
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan, Gothenburg, Sweden
- * E-mail: (BL); (HL)
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
- * E-mail: (BL); (HL)
| |
Collapse
|
32
|
Corcoles-Saez I, Ferat JL, Costanzo M, Boone CM, Cha RS. Functional link between mitochondria and Rnr3, the minor catalytic subunit of yeast ribonucleotide reductase. MICROBIAL CELL 2019; 6:286-294. [PMID: 31172013 PMCID: PMC6545439 DOI: 10.15698/mic2019.06.680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ribonucleotide reductase (RNR) is an essential holoenzyme required for de novo synthesis of dNTPs. The Saccharomyces cerevisiae genome encodes for two catalytic subunits, Rnr1 and Rnr3. While Rnr1 is required for DNA replication and DNA damage repair, the function(s) of Rnr3 is unknown. Here, we show that carbon source, an essential nutrient, impacts Rnr1 and Rnr3 abundance: Non-fermentable carbon sources or limiting concentrations of glucose down regulate Rnr1 and induce Rnr3 expression. Oppositely, abundant glucose induces Rnr1 expression and down regulates Rnr3. The carbon source dependent regulation of Rnr3 is mediated by Mec1, the budding yeast ATM/ATR checkpoint response kinase. Unexpectedly, this regulation is independent of all currently known components of the Mec1 DNA damage response network, including Rad53, Dun1, and Tel1, implicating a novel Mec1 signalling axis. rnr3Δ leads to growth defects under respiratory conditions and rescues temperature sensitivity conferred by the absence of Tom6, a component of the mitochondrial TOM (translocase of outer membrane) complex responsible for mitochondrial protein import. Together, these results unveil involvement of Rnr3 in mitochondrial functions and Mec1 in mediating the carbon source dependent regulation of Rnr3.
Collapse
Affiliation(s)
- Isaac Corcoles-Saez
- School of Medical Sciences, North West Cancer Research Institute, Bangor University, Deniol Road, Bangor, LL57 2UW, United Kingdom
| | - Jean-Luc Ferat
- Institute of Integrative Biology of the Cell (I2BC), Avenue de la Terrasse, Paris, France
| | - Michael Costanzo
- University of Toronto, Donnelly Centre, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Charles M Boone
- University of Toronto, Donnelly Centre, 160 College Street, Toronto, Ontario, M5S 3E1, Canada
| | - Rita S Cha
- School of Medical Sciences, North West Cancer Research Institute, Bangor University, Deniol Road, Bangor, LL57 2UW, United Kingdom
| |
Collapse
|
33
|
Gier S, Simon M, Nordström K, Khalifa S, Schulz MH, Schmitt MJ, Breinig F. Transcriptome Kinetics of Saccharomyces cerevisiae in Response to Viral Killer Toxin K1. Front Microbiol 2019; 10:1102. [PMID: 31156606 PMCID: PMC6531845 DOI: 10.3389/fmicb.2019.01102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/30/2019] [Indexed: 11/29/2022] Open
Abstract
The K1 A/B toxin secreted by virus-infected Saccharomyces cerevisiae strains kills sensitive cells via disturbance of cytoplasmic membrane functions. Despite decades of research, the mechanisms underlying K1 toxicity and immunity have not been elucidated yet. In a novel approach, this study aimed to characterize transcriptome changes in K1-treated sensitive yeast cells in a time-dependent manner. Global transcriptional profiling revealed substantial cellular adaptations in target cells resulting in 1,189 differentially expressed genes in total. Killer toxin K1 induced oxidative, cell wall and hyperosmotic stress responses as well as rapid down-regulation of transcription and translation. Essential pathways regulating energy metabolism were also significantly affected by the toxin. Remarkably, a futile cycle of the osmolytes trehalose and glycogen was identified probably representing a critical feature of K1 intoxication. In silico analysis suggested several transcription factors involved in toxin-triggered signal transduction. The identified transcriptome changes provide valuable hints to illuminate the still unknown molecular events leading to K1 toxicity and immunity implicating an evolutionarily conserved response at least initially counteracting ionophoric toxin action.
Collapse
Affiliation(s)
- Stefanie Gier
- Department of Molecular and Cell Biology, Saarland University, Saarbrücken, Germany.,Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Martin Simon
- Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany.,Molecular Cell Biology and Microbiology, University of Wuppertal, Wuppertal, Germany.,Molecular Cell Dynamics, Saarland University, Saarbrücken, Germany
| | - Karl Nordström
- Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany.,Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Salem Khalifa
- Cluster of Excellence "Multimodal Computing and Interaction", Max Planck Institute for Informatics, Saarland University, Saarbrücken, Germany
| | - Marcel H Schulz
- Cluster of Excellence "Multimodal Computing and Interaction", Max Planck Institute for Informatics, Saarland University, Saarbrücken, Germany
| | - Manfred J Schmitt
- Department of Molecular and Cell Biology, Saarland University, Saarbrücken, Germany.,Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Frank Breinig
- Department of Molecular and Cell Biology, Saarland University, Saarbrücken, Germany.,Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| |
Collapse
|
34
|
Bu P, Nagar S, Bhagwat M, Kaur P, Shah A, Zeng J, Vancurova I, Vancura A. DNA damage response activates respiration and thereby enlarges dNTP pools to promote cell survival in budding yeast. J Biol Chem 2019; 294:9771-9786. [PMID: 31073026 DOI: 10.1074/jbc.ra118.007266] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/30/2019] [Indexed: 12/13/2022] Open
Abstract
The DNA damage response (DDR) is an evolutionarily conserved process essential for cell survival. Previously, we found that decreased histone expression induces mitochondrial respiration, raising the question whether the DDR also stimulates respiration. Here, using oxygen consumption and ATP assays, RT-qPCR and ChIP-qPCR methods, and dNTP analyses, we show that DDR activation in the budding yeast Saccharomyces cerevisiae, either by genetic manipulation or by growth in the presence of genotoxic chemicals, induces respiration. We observed that this induction is conferred by reduced transcription of histone genes and globally decreased DNA nucleosome occupancy. This globally altered chromatin structure increased the expression of genes encoding enzymes of tricarboxylic acid cycle, electron transport chain, oxidative phosphorylation, elevated oxygen consumption, and ATP synthesis. The elevated ATP levels resulting from DDR-stimulated respiration drove enlargement of dNTP pools; cells with a defect in respiration failed to increase dNTP synthesis and exhibited reduced fitness in the presence of DNA damage. Together, our results reveal an unexpected connection between respiration and the DDR and indicate that the benefit of increased dNTP synthesis in the face of DNA damage outweighs possible cellular damage due to increased oxygen metabolism.
Collapse
Affiliation(s)
- Pengli Bu
- From the Departments of Biological Sciences and
| | | | | | | | - Ankita Shah
- Pharmaceutical Sciences, St. John's University, Queens, New York 11439
| | - Joey Zeng
- From the Departments of Biological Sciences and
| | | | | |
Collapse
|
35
|
Daghino S, Di Vietro L, Petiti L, Martino E, Dallabona C, Lodi T, Perotto S. Yeast expression of mammalian Onzin and fungal FCR1 suggests ancestral functions of PLAC8 proteins in mitochondrial metabolism and DNA repair. Sci Rep 2019; 9:6629. [PMID: 31036870 PMCID: PMC6488628 DOI: 10.1038/s41598-019-43136-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/11/2019] [Indexed: 01/07/2023] Open
Abstract
The cysteine-rich PLAC8 domain of unknown function occurs in proteins found in most Eukaryotes. PLAC8-proteins play important yet diverse roles in different organisms, such as control of cell proliferation in animals and plants or heavy metal resistance in plants and fungi. Mammalian Onzin can be either pro-proliferative or pro-apoptotic, depending on the cell type, whereas fungal FCR1 confers cadmium tolerance. Despite their different role in different organisms, we hypothesized common ancestral functions linked to the PLAC8 domain. To address this hypothesis, and to investigate the molecular function of the PLAC8 domain, murine Onzin and fungal FCR1 were expressed in the PLAC8-free yeast Saccharomyces cerevisiae. The two PLAC8-proteins localized in the nucleus and induced almost identical phenotypes and transcriptional changes when exposed to cadmium stress. Like FCR1, Onzin also reduced DNA damage and increased cadmium tolerance by a DUN1-dependent pathway. Both proteins activated transcription of ancient mitochondrial pathways such as leucine and Fe-S cluster biosynthesis, known to regulate cell proliferation and DNA repair in yeast. These results strongly suggest a common ancestral function of PLAC8 proteins and open new perspectives to understand the role of the PLAC8 domain in the cellular biology of Eukaryotes.
Collapse
Affiliation(s)
- Stefania Daghino
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125, Torino, Italy
| | - Luigi Di Vietro
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125, Torino, Italy.,Department of Biochemistry and Biotechnology, Bayer SAS, centre de recherche "la Dargoire" 14, impasse Pierre Baizet CS 99163, 69263, Lyon, CEDEX 09, France
| | - Luca Petiti
- Italian Institute for Genomic Medicine, via Nizza 52, 10126, Torino, Italy
| | - Elena Martino
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125, Torino, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11/A, 43124, Parma, Italy
| | - Tiziana Lodi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11/A, 43124, Parma, Italy
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125, Torino, Italy.
| |
Collapse
|
36
|
Rpd3L Contributes to the DNA Damage Sensitivity of Saccharomyces cerevisiae Checkpoint Mutants. Genetics 2018; 211:503-513. [PMID: 30559326 PMCID: PMC6366903 DOI: 10.1534/genetics.118.301817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/26/2018] [Indexed: 12/26/2022] Open
Abstract
DNA replication forks that are stalled by DNA damage activate an S-phase checkpoint that prevents irreversible fork arrest and cell death. The increased cell death caused by DNA damage in budding yeast cells lacking the Rad53 checkpoint protein kinase is partially suppressed by deletion of the EXO1 gene. Using a whole-genome sequencing approach, we identified two additional genes, RXT2 and RPH1, whose mutation can also partially suppress this DNA damage sensitivity. We provide evidence that RXT2 and RPH1 act in a common pathway, which is distinct from the EXO1 pathway. Analysis of additional mutants indicates that suppression works through the loss of the Rpd3L histone deacetylase complex. Our results suggest that the loss or absence of histone acetylation, perhaps at stalled forks, may contribute to cell death in the absence of a functional checkpoint.
Collapse
|
37
|
Hanson PK. Saccharomyces cerevisiae: A Unicellular Model Genetic Organism of Enduring Importance. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/cpet.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pamela K. Hanson
- Department of Biology, Birmingham-Southern College; Birmingham Alabama
| |
Collapse
|
38
|
Zhang Z, Ren P, Vashisht AA, Wohlschlegel JA, Quintana DG, Zeng F. Cdk1-interacting protein Cip1 is regulated by the S phase checkpoint in response to genotoxic stress. Genes Cells 2017; 22:850-860. [PMID: 28771906 DOI: 10.1111/gtc.12518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022]
Abstract
In eukaryotic cells, a surveillance mechanism, the S phase checkpoint, detects and responds to insults that challenge chromosomal replication, arresting cell cycle progression and triggering appropriate events to prevent genomic instability. In the budding yeast Saccharomyces cerevisiae, Mec1/ATM/ATR, and its downstream kinase, Rad53/Chk2, mediate the response to genotoxic stress. In this study, we place Cip1, a recently identified Cdk1 inhibitor (CKI), under the regulation of Mec1 and Rad53 in response to genotoxic stress. Cip1 accumulates dramatically in a Mec1- and Rad53-dependent manner upon replication stress. This increase requires the activity of MBF, but not the transcriptional activator kinase Dun1. At the protein level, stabilization of replication stress-induced Cip1 requires continued de novo protein synthesis. In addition, Cip1 is phosphorylated at an S/TQ motif in a Mec1-dependent manner. Deletion of Cip1 affects proliferation in hydroxyurea-containing plates. Significantly, the sensitivity is increased when the dosage of the G1 cyclin CLN2 is increased, compatible to a role of Cip1 as a G1-cyclin-dependent kinase inhibitor. In all, our results place Cip1 under the S phase checkpoint response to genotoxic stress. Furthermore, Cip1 plays a significant role to preserve viability in response to insults that threaten chromosome replication.
Collapse
Affiliation(s)
- Ze Zhang
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China.,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, 071001, China
| | - Ping Ren
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Catalonia, 08193, Spain
| | - Ajay A Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - David G Quintana
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Catalonia, 08193, Spain
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China.,Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, 071001, China.,Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autonoma de Barcelona, Bellaterra, Catalonia, 08193, Spain
| |
Collapse
|
39
|
Abstract
The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation.
Collapse
|
40
|
Normally lethal amino acid substitutions suppress an ultramutator DNA Polymerase δ variant. Sci Rep 2017; 7:46535. [PMID: 28417960 PMCID: PMC5394481 DOI: 10.1038/srep46535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/22/2017] [Indexed: 02/06/2023] Open
Abstract
In yeast, the pol3-01,L612M double mutant allele, which causes defects in DNA polymerase delta (Pol δ) proofreading (pol3-01) and nucleotide selectivity (pol3-L612M), confers an “ultramutator” phenotype that rapidly drives extinction of haploid and diploid MMR-proficient cells. Here, we investigate antimutator mutations that encode amino acid substitutions in Pol δ that suppress this lethal phenotype. We find that most of the antimutator mutations individually suppress the pol3-01 and pol3-L612M mutator phenotypes. The locations of many of the amino acid substitutions in Pol δ resemble those of previously identified antimutator substitutions; however, two novel mutations encode substitutions (R674G and Q697R) of amino acids in the fingers domain that coordinate the incoming dNTP. These mutations are lethal without pol3-L612M and markedly change the mutation spectra produced by the pol3-01,L612M mutator allele, suggesting that they alter nucleotide selection to offset the pol3-L612M mutator phenotype. Consistent with this hypothesis, mutations and drug treatments that perturb dNTP pool levels disproportionately influence the viability of pol3-L612M,R674G and pol3-L612M,Q697R cells. Taken together, our findings suggest that mutation rate can evolve through genetic changes that alter the balance of dNTP binding and dissociation from DNA polymerases.
Collapse
|
41
|
Alterations in cellular metabolism triggered by URA7 or GLN3 inactivation cause imbalanced dNTP pools and increased mutagenesis. Proc Natl Acad Sci U S A 2017; 114:E4442-E4451. [PMID: 28416670 DOI: 10.1073/pnas.1618714114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic DNA replication fidelity relies on the concerted action of DNA polymerase nucleotide selectivity, proofreading activity, and DNA mismatch repair (MMR). Nucleotide selectivity and proofreading are affected by the balance and concentration of deoxyribonucleotide (dNTP) pools, which are strictly regulated by ribonucleotide reductase (RNR). Mutations preventing DNA polymerase proofreading activity or MMR function cause mutator phenotypes and consequently increased cancer susceptibility. To identify genes not previously linked to high-fidelity DNA replication, we conducted a genome-wide screen in Saccharomyces cerevisiae using DNA polymerase active-site mutants as a "sensitized mutator background." Among the genes identified in our screen, three metabolism-related genes (GLN3, URA7, and SHM2) have not been previously associated to the suppression of mutations. Loss of either the transcription factor Gln3 or inactivation of the CTP synthetase Ura7 both resulted in the activation of the DNA damage response and imbalanced dNTP pools. Importantly, these dNTP imbalances are strongly mutagenic in genetic backgrounds where DNA polymerase function or MMR activity is partially compromised. Previous reports have shown that dNTP pool imbalances can be caused by mutations altering the allosteric regulation of enzymes involved in dNTP biosynthesis (e.g., RNR or dCMP deaminase). Here, we provide evidence that mutations affecting genes involved in RNR substrate production can cause dNTP imbalances, which cannot be compensated by RNR or other enzymatic activities. Moreover, Gln3 inactivation links nutrient deprivation to increased mutagenesis. Our results suggest that similar genetic interactions could drive mutator phenotypes in cancer cells.
Collapse
|
42
|
Wade BO, Liu HW, Samora CP, Uhlmann F, Singleton MR. Structural studies of RFC Ctf18 reveal a novel chromatin recruitment role for Dcc1. EMBO Rep 2017; 18:558-568. [PMID: 28188145 PMCID: PMC5376975 DOI: 10.15252/embr.201642825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 11/10/2022] Open
Abstract
Replication factor C complexes load and unload processivity clamps from DNA and are involved in multiple DNA replication and repair pathways. The RFCCtf18 variant complex is required for activation of the intra-S-phase checkpoint at stalled replication forks and aids the establishment of sister chromatid cohesion. Unlike other RFC complexes, RFCCtf18 contains two non-Rfc subunits, Dcc1 and Ctf8. Here, we present the crystal structure of the Dcc1-Ctf8 heterodimer bound to the C-terminus of Ctf18. We find that the C-terminus of Dcc1 contains three-winged helix domains, which bind to both ssDNA and dsDNA We further show that these domains are required for full recruitment of the complex to chromatin, and correct activation of the replication checkpoint. These findings provide the first structural data on a eukaryotic seven-subunit clamp loader and define a new biochemical activity for Dcc1.
Collapse
Affiliation(s)
- Benjamin O Wade
- Structural Biology of Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Hon Wing Liu
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Catarina P Samora
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Martin R Singleton
- Structural Biology of Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
43
|
A pathway of targeted autophagy is induced by DNA damage in budding yeast. Proc Natl Acad Sci U S A 2017; 114:E1158-E1167. [PMID: 28154131 DOI: 10.1073/pnas.1614364114] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Autophagy plays a central role in the DNA damage response (DDR) by controlling the levels of various DNA repair and checkpoint proteins; however, how the DDR communicates with the autophagy pathway remains unknown. Using budding yeast, we demonstrate that global genotoxic damage or even a single unrepaired double-strand break (DSB) initiates a previously undescribed and selective pathway of autophagy that we term genotoxin-induced targeted autophagy (GTA). GTA requires the action primarily of Mec1/ATR and Rad53/CHEK2 checkpoint kinases, in part via transcriptional up-regulation of central autophagy proteins. GTA is distinct from starvation-induced autophagy. GTA requires Atg11, a central component of the selective autophagy machinery, but is different from previously described autophagy pathways. By screening a collection of ∼6,000 yeast mutants, we identified genes that control GTA but do not significantly affect rapamycin-induced autophagy. Overall, our findings establish a pathway of autophagy specific to the DNA damage response.
Collapse
|
44
|
Evstiukhina TA, Alekseeva EA, Fedorov DV, Peshekhonov VT, Korolev VG. The role of remodeling complexes CHD1 and ISWI in spontaneous and UV-induced mutagenesis control in yeast Saccharomyces cerevisiae. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Dmowski M, Rudzka J, Campbell JL, Jonczyk P, Fijałkowska IJ. Mutations in the Non-Catalytic Subunit Dpb2 of DNA Polymerase Epsilon Affect the Nrm1 Branch of the DNA Replication Checkpoint. PLoS Genet 2017; 13:e1006572. [PMID: 28107343 PMCID: PMC5291541 DOI: 10.1371/journal.pgen.1006572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 02/03/2017] [Accepted: 01/05/2017] [Indexed: 12/14/2022] Open
Abstract
To preserve genome integrity, the S-phase checkpoint senses damaged DNA or nucleotide depletion and when necessary, arrests replication progression and delays cell division. Previous studies, based on two pol2 mutants have suggested the involvement of DNA polymerase epsilon (Pol ε) in sensing DNA replication accuracy in Saccharomyces cerevisiae. Here we have studied the involvement of Pol ε in sensing proper progression of DNA replication, using a mutant in DPB2, the gene coding for a non-catalytic subunit of Pol ε. Under genotoxic conditions, the dpb2-103 cells progress through S phase faster than wild-type cells. Moreover, the Nrm1-dependent branch of the checkpoint, which regulates the expression of many replication checkpoint genes, is impaired in dpb2-103 cells. Finally, deletion of DDC1 in the dpb2-103 mutant is lethal supporting a model of strand-specific activation of the replication checkpoint. This lethality is suppressed by NRM1 deletion. We postulate that improper activation of the Nrm1-branch may explain inefficient replication checkpoint activation in Pol ε mutants. The viability of living organisms depends on the integrity of their genomes. Each cell has to constantly monitor DNA replication and coordinate it with cell division to avoid genomic instability. This is achieved through pathways known as cell cycle checkpoints. Therefore, upon replication perturbation, DNA synthesis slows down and cell division is delayed. For that, a specific signal is induced and propagated through a mechanism that have already been identified but still need investigations. We have isolated a mutated form of Dpb2, the essential subunit of DNA polymerase epsilon (Pol ε) holoenzyme. This mutated form of Pol ε impairs proper activation of the cellular response to replication stress. We show that yeast cells with mutations in the DPB2 gene fail to activate the Nrm1-regulated branch of the checkpoint, which controls numerous genes expressed in response to replication stress. Moreover, our results support the model of parallel activation of replication checkpoint from the leading and lagging DNA strands. This strongly suggests that Pol ε, the leading strand replicase, is involved in replication checkpoint activation from this strand. Our results contribute to the understanding of mechanisms of cellular response to replication stress, which are necessary to preserve genome stability.
Collapse
Affiliation(s)
- Michał Dmowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences Pawińskiego 5a, Warsaw, POLAND
- * E-mail:
| | - Justyna Rudzka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences Pawińskiego 5a, Warsaw, POLAND
| | - Judith L. Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, CA, United States of America
| | - Piotr Jonczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences Pawińskiego 5a, Warsaw, POLAND
| | - Iwona J. Fijałkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences Pawińskiego 5a, Warsaw, POLAND
| |
Collapse
|
46
|
Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks. Proc Natl Acad Sci U S A 2016; 113:E3667-75. [PMID: 27298372 DOI: 10.1073/pnas.1602827113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The DNA damage response (DDR) is regulated by a protein kinase signaling cascade that orchestrates DNA repair and other processes. Identifying the substrate effectors of these kinases is critical for understanding the underlying physiology and mechanism of the response. We have used quantitative mass spectrometry to profile DDR-dependent phosphorylation in budding yeast and genetically explored the dependency of these phosphorylation events on the DDR kinases MEC1, RAD53, CHK1, and DUN1. Based on these screens, a database containing many novel DDR-regulated phosphorylation events has been established. Phosphorylation of many of these proteins has been validated by quantitative peptide phospho-immunoprecipitation and examined for functional relevance to the DDR through large-scale analysis of sensitivity to DNA damage in yeast deletion strains. We reveal a link between DDR signaling and the metabolic pathways of inositol phosphate and phosphatidyl inositol synthesis, which are required for resistance to DNA damage. We also uncover links between the DDR and TOR signaling as well as translation regulation. Taken together, these data shed new light on the organization of DDR signaling in budding yeast.
Collapse
|
47
|
Kozhina TN, Evstiukhina TA, Peshekhonov VT, Chernenkov AY, Korolev VG. Dot1 and Set2 histone methylases control the spontaneous and UV-induced mutagenesis levels in the Saccharomyces cerevisiae yeasts. RUSS J GENET+ 2016. [DOI: 10.1134/s102279541602006x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Sanvisens N, Romero AM, Zhang C, Wu X, An X, Huang M, Puig S. Yeast Dun1 Kinase Regulates Ribonucleotide Reductase Small Subunit Localization in Response to Iron Deficiency. J Biol Chem 2016; 291:9807-17. [PMID: 26970775 DOI: 10.1074/jbc.m116.720862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 12/25/2022] Open
Abstract
Ribonucleotide reductase (RNR) is an essential iron-dependent enzyme that catalyzes deoxyribonucleotide synthesis in eukaryotes. Living organisms have developed multiple strategies to tightly modulate RNR function to avoid inadequate or unbalanced deoxyribonucleotide pools that cause DNA damage and genome instability. Yeast cells activate RNR in response to genotoxic stress and iron deficiency by facilitating redistribution of its small heterodimeric subunit Rnr2-Rnr4 from the nucleus to the cytoplasm, where it forms an active holoenzyme with large Rnr1 subunit. Dif1 protein inhibits RNR by promoting nuclear import of Rnr2-Rnr4. Upon DNA damage, Dif1 phosphorylation by the Dun1 checkpoint kinase and its subsequent degradation enhances RNR function. In this report, we demonstrate that Dun1 kinase triggers Rnr2-Rnr4 redistribution to the cytoplasm in response to iron deficiency. We show that Rnr2-Rnr4 relocalization by low iron requires Dun1 kinase activity and phosphorylation site Thr-380 in the Dun1 activation loop, but not the Dun1 forkhead-associated domain. By using different Dif1 mutant proteins, we uncover that Dun1 phosphorylates Dif1 Ser-104 and Thr-105 residues upon iron scarcity. We observe that the Dif1 phosphorylation pattern differs depending on the stimuli, which suggests different Dun1 activating pathways. Importantly, the Dif1-S104A/T105A mutant exhibits defects in nucleus-to-cytoplasm redistribution of Rnr2-Rnr4 by iron limitation. Taken together, these results reveal that, in response to iron starvation, Dun1 kinase phosphorylates Dif1 to stimulate Rnr2-Rnr4 relocalization to the cytoplasm and promote RNR function.
Collapse
Affiliation(s)
- Nerea Sanvisens
- From the Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia 46980, Spain and
| | - Antonia M Romero
- From the Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia 46980, Spain and
| | - Caiguo Zhang
- the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Xiaorong Wu
- the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Xiuxiang An
- the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Mingxia Huang
- the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Sergi Puig
- From the Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia 46980, Spain and
| |
Collapse
|
49
|
|
50
|
Abstract
This year's Albert Lasker Basic Medical Research Award honors Evelyn Witkin and Stephen J. Elledge, two pioneers in elucidating the DNA damage response, whose contributions span more than 40 years.
Collapse
Affiliation(s)
- James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|