1
|
Morita H, Hoshiga M. Fibroblast Growth Factors in Cardiovascular Disease. J Atheroscler Thromb 2024; 31:1496-1511. [PMID: 39168622 PMCID: PMC11537794 DOI: 10.5551/jat.rv22025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024] Open
Abstract
Despite advancements in managing traditional cardiovascular risk factors, many cardiovascular diseases (CVDs) persist. Fibroblast growth factors (FGFs) have emerged as potential diagnostic markers and therapeutic targets for CVDs. FGF1, FGF2, and FGF4 are primarily used for therapeutic angiogenesis. Clinical applications are being explored based on animal studies using approaches such as recombinant protein administration and adenovirus-mediated gene delivery, targeting patients with coronary artery disease and lower extremity arterial disease. Although promising results have been observed in animal models and early-stage clinical trials, further studies are required to assess their therapeutic potential. The FGF19 subfamily, consisting of FGF19, FGF21, and FGF23, act via endocrine signaling in various organs. FGF19, primarily expressed in the small intestine, plays important roles in glucose, lipid, and bile acid metabolism and has therapeutic potential for metabolic disorders. FGF21, found in various tissues, improves glucose metabolism and insulin sensitivity, suggesting potential for treating obesity and diabetes. FGF23, primarily secreted by osteocytes, regulates vitamin D and phosphate metabolism and serves as an important biomarker for chronic kidney disease and CVDs. Thus, FGFs holds promise for both therapeutic and diagnostic applications in metabolic and cardiovascular diseases. Understanding the mechanisms of FGF may pave the way for novel strategies to prevent and manage CVDs, potentially addressing the limitations of current treatments. This review explores the roles of FGF1, FGF2, FGF4, and the FGF19 subfamily in maintaining cardiovascular health. Further research and clinical trials are crucial to fully understand the therapeutic potential of FGFs in managing cardiovascular health.
Collapse
Affiliation(s)
- Hideaki Morita
- Department of Cardiology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Masaaki Hoshiga
- Department of Cardiology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
2
|
Chen MM, Zhao Y, Yu K, Xu XL, Zhang XS, Zhang JL, Wu SJ, Liu ZM, Yuan YM, Guo XF, Qi SY, Yi G, Wang SQ, Li HX, Wu AW, Liu GS, Deng SL, Han HB, Lv FH, Lian D, Lian ZX. A MSTNDel73C mutation with FGF5 knockout sheep by CRISPR/Cas9 promotes skeletal muscle myofiber hyperplasia. eLife 2024; 12:RP86827. [PMID: 39365728 PMCID: PMC11452178 DOI: 10.7554/elife.86827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
Mutations in the well-known Myostatin (MSTN) produce a 'double-muscle' phenotype, which makes it commercially invaluable for improving livestock meat production and providing high-quality protein for humans. However, mutations at different loci of the MSTN often produce a variety of different phenotypes. In the current study, we increased the delivery ratio of Cas9 mRNA to sgRNA from the traditional 1:2 to 1:10, which improves the efficiency of the homozygous mutation of biallelic gene. Here, a MSTNDel73C mutation with FGF5 knockout sheep, in which the MSTN and FGF5 dual-gene biallelic homozygous mutations were produced via the deletion of 3-base pairs of AGC in the third exon of MSTN, resulting in cysteine-depleted at amino acid position 73, and the FGF5 double allele mutation led to inactivation of FGF5 gene. The MSTNDel73C mutation with FGF5 knockout sheep highlights a dominant 'double-muscle' phenotype, which can be stably inherited. Both F0 and F1 generation mutants highlight the excellent trait of high-yield meat with a smaller cross-sectional area and higher number of muscle fibers per unit area. Mechanistically, the MSTNDel73C mutation with FGF5 knockout mediated the activation of FOSL1 via the MEK-ERK-FOSL1 axis. The activated FOSL1 promotes skeletal muscle satellite cell proliferation and inhibits myogenic differentiation by inhibiting the expression of MyoD1, and resulting in smaller myotubes. In addition, activated ERK1/2 may inhibit the secondary fusion of myotubes by Ca2+-dependent CaMKII activation pathway, leading to myoblasts fusion to form smaller myotubes.
Collapse
Affiliation(s)
- Ming-Ming Chen
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Yue Zhao
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Kun Yu
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Xue-Ling Xu
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Xiao-Sheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural SciencesTianjinChina
| | - Jin-Long Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural SciencesTianjinChina
| | - Su-Jun Wu
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Zhi-Mei Liu
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Yi-Ming Yuan
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Xiao-Fei Guo
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural SciencesTianjinChina
| | - Shi-Yu Qi
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Guang Yi
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Shu-Qi Wang
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Huang-Xiang Li
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Ao-Wu Wu
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Guo-Shi Liu
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Shou-Long Deng
- National Center of Technology Innovation for animal model, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical CollegeBeijingChina
| | - Hong-Bing Han
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Feng-Hua Lv
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| | - Di Lian
- College of Pulmonary and Critical Care Medicine, Chinese PLA General HospitalBeijingChina
| | - Zheng-Xing Lian
- State Key Laboratory of Animal Biotech Breeding, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural UniversityBeijingChina
| |
Collapse
|
3
|
Carrion EA, Moses MM, Behringer RR. FGF5. Differentiation 2024; 139:100736. [PMID: 37957094 DOI: 10.1016/j.diff.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
FGF5 functions as a negative regulator of the hair cycle in mammals. It is expressed in the outer root sheath of hair follicles during the late anagen phase of the hair cycle. It functions as a signaling molecule, mediating the transition of the anagen growth phase to catagen regression phase of the hair cycle. Spontaneous and engineered FGF5 mutations in mammalian animal models result in long hair phenotypes. In humans, inherited FGF5 mutations result in trichomegaly (long eyelashes). Knockdown of fgf5 in zebrafish embryos results in inner ear alterations. Alterations in FGF5 expression are also associated with various human pathologies.
Collapse
Affiliation(s)
- Evelyn A Carrion
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Malcolm M Moses
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States.
| |
Collapse
|
4
|
Chen M, Li Y, Xu X, Wang S, Liu Z, Qi S, Si D, Man Z, Deng S, Liu G, Zhao Y, Yu K, Lian Z. Metabolic differences in MSTN and FGF5 dual-gene edited sheep muscle cells during myogenesis. BMC Genomics 2024; 25:637. [PMID: 38926663 PMCID: PMC11202357 DOI: 10.1186/s12864-024-10494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Dynamic metabolic reprogramming occurs at different stages of myogenesis and contributes to the fate determination of skeletal muscle satellite cells (MuSCs). Accumulating evidence suggests that mutations in myostatin (MSTN) have a vital role in regulating muscle energy metabolism. Here, we explored the metabolic reprogramming in MuSCs and myotube cells in MSTN and FGF5 dual-gene edited sheep models prepared previously, and also focused on the metabolic alterations during myogenic differentiation of MuSCs. Our study revealed that the pathways of nucleotide metabolism, pantothenate and CoA biosynthesis were weakened, while the unsaturated fatty acids biosynthesis were strengthened during myogenic differentiation of sheep MuSCs. The MSTN and FGF5 dual-gene editing mainly inhibited nucleotide metabolism and biosynthesis of unsaturated fatty acids in sheep MuSCs, reduced the number of lipid droplets in per satellite cell, and promoted the pentose phosphate pathway, and the interconversion of pentose and glucuronate. The MSTN and FGF5 dual-gene editing also resulted in the inhibition of nucleotide metabolism and TCA cycle pathway in differentiated myotube cells. The differential metabolites we identified can be characterized as biomarkers of different cellular states, and providing a new reference for MSTN and FGF5 dual-gene editing in regulation of muscle development. It may also provide a reference for the development of muscle regeneration drugs targeting biomarkers.
Collapse
Affiliation(s)
- Mingming Chen
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yan Li
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, 100071, China
| | - Xueling Xu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shuqi Wang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhimei Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shiyu Qi
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | | | - Zhuo Man
- SCIEX China, Beijing, 100015, China
| | - Shoulong Deng
- National Center of Technology Innovation for animal model, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Guoshi Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yue Zhao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Xu XL, Wu SJ, Qi SY, Chen MM, Liu ZM, Zhang R, Zhao Y, Liu SQ, Zhou WD, Zhang JL, Zhang XS, Deng SL, Yu K, Li Y, Lian ZX. Increasing GSH-Px Activity and Activating Wnt Pathway Promote Fine Wool Growth in FGF5-Edited Sheep. Cells 2024; 13:985. [PMID: 38891117 PMCID: PMC11172217 DOI: 10.3390/cells13110985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Fibroblast growth factor 5 (FGF5) plays key roles in promoting the transition from the anagen to catagen during the hair follicle cycle. The sheep serves as an excellent model for studying hair growth and is frequently utilized in various research processes related to human skin diseases. We used the CRISPR/Cas9 system to generate four FGF5-edited Dorper sheep and only low levels of FGF5 were detected in the edited sheep. The density of fine wool in GE sheep was markedly increased, and the proportion of fine wool with a diameter of 14.4-20.0 μm was significantly higher. The proliferation signal in the skin of gene-edited (GE) sheep was stronger than in wild-type (WT) sheep. FGF5 editing decreased cortisol concentration in the skin, further activated the activity of antioxidant enzymes such as Glutathione peroxidase (GSH-Px), and regulated the expression of Wnt signaling pathways containing Wnt agonists (Rspondins, Rspos) and antagonists (Notum) in hair regeneration. We suggest that FGF5 not only mediates the activation of antioxidant pathways by cortisol, which constitutes a highly coordinated microenvironment in hair follicle cells, but also influences key signals of the Wnt pathway to regulate secondary hair follicle (SHF) development. Overall, our findings here demonstrate that FGF5 plays a significant role in regulating SHF growth in sheep and potentially serves as a molecular marker of fine wool growth in sheep breeding.
Collapse
Affiliation(s)
- Xue-Ling Xu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.-L.X.); (S.-J.W.); (S.-Y.Q.); (M.-M.C.); (Z.-M.L.); (Y.Z.); (S.-Q.L.); (W.-D.Z.)
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Su-Jun Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.-L.X.); (S.-J.W.); (S.-Y.Q.); (M.-M.C.); (Z.-M.L.); (Y.Z.); (S.-Q.L.); (W.-D.Z.)
| | - Shi-Yu Qi
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.-L.X.); (S.-J.W.); (S.-Y.Q.); (M.-M.C.); (Z.-M.L.); (Y.Z.); (S.-Q.L.); (W.-D.Z.)
| | - Ming-Ming Chen
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.-L.X.); (S.-J.W.); (S.-Y.Q.); (M.-M.C.); (Z.-M.L.); (Y.Z.); (S.-Q.L.); (W.-D.Z.)
| | - Zhi-Mei Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.-L.X.); (S.-J.W.); (S.-Y.Q.); (M.-M.C.); (Z.-M.L.); (Y.Z.); (S.-Q.L.); (W.-D.Z.)
| | - Rui Zhang
- Academy of Military Medical Sciences, Beijing 100071, China;
| | - Yue Zhao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.-L.X.); (S.-J.W.); (S.-Y.Q.); (M.-M.C.); (Z.-M.L.); (Y.Z.); (S.-Q.L.); (W.-D.Z.)
| | - Shun-Qi Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.-L.X.); (S.-J.W.); (S.-Y.Q.); (M.-M.C.); (Z.-M.L.); (Y.Z.); (S.-Q.L.); (W.-D.Z.)
| | - Wen-Di Zhou
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.-L.X.); (S.-J.W.); (S.-Y.Q.); (M.-M.C.); (Z.-M.L.); (Y.Z.); (S.-Q.L.); (W.-D.Z.)
| | - Jin-Long Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (J.-L.Z.); (X.-S.Z.)
| | - Xiao-Sheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (J.-L.Z.); (X.-S.Z.)
| | - Shou-Long Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100005, China;
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.-L.X.); (S.-J.W.); (S.-Y.Q.); (M.-M.C.); (Z.-M.L.); (Y.Z.); (S.-Q.L.); (W.-D.Z.)
| | - Yan Li
- Academy of Military Medical Sciences, Beijing 100071, China;
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.-L.X.); (S.-J.W.); (S.-Y.Q.); (M.-M.C.); (Z.-M.L.); (Y.Z.); (S.-Q.L.); (W.-D.Z.)
| |
Collapse
|
6
|
Zhao Q, Huang C, Chen Q, Su Y, Zhang Y, Wang R, Su R, Xu H, Liu S, Ma Y, Zhao Q, Ye S. Genomic Inbreeding and Runs of Homozygosity Analysis of Cashmere Goat. Animals (Basel) 2024; 14:1246. [PMID: 38672394 PMCID: PMC11047310 DOI: 10.3390/ani14081246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Cashmere goats are valuable genetic resources which are famous worldwide for their high-quality fiber. Runs of homozygosity (ROHs) have been identified as an efficient tool to assess inbreeding level and identify related genes under selection. However, there is limited research on ROHs in cashmere goats. Therefore, we investigated the ROH pattern, assessed genomic inbreeding levels and examined the candidate genes associated with the cashmere trait using whole-genome resequencing data from 123 goats. Herein, the Inner Mongolia cashmere goat presented the lowest inbreeding coefficient of 0.0263. In total, we identified 57,224 ROHs. Seventy-four ROH islands containing 50 genes were detected. Certain identified genes were related to meat, fiber and milk production (FGF1, PTPRM, RERE, GRID2, RARA); fertility (BIRC6, ECE2, CDH23, PAK1); disease or cold resistance and adaptability (PDCD1LG2, SVIL, PRDM16, RFX4, SH3BP2); and body size and growth (TMEM63C, SYN3, SDC1, STRBP, SMG6). 135 consensus ROHs were identified, and we found candidate genes (FGF5, DVL3, NRAS, KIT) were associated with fiber length or color. These findings enhance our comprehension of inbreeding levels in cashmere goats and the genetic foundations of traits influenced by selective breeding. This research contributes significantly to the future breeding, reservation and use of cashmere goats and other goat breeds.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Animal Breeding and Reproduction, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (C.H.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Chang Huang
- Department of Animal Breeding and Reproduction, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (C.H.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Qian Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Yingxiao Su
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Z.); (R.W.); (R.S.)
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Z.); (R.W.); (R.S.)
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Z.); (R.W.); (R.S.)
| | - Huijuan Xu
- Chifeng Hanshan White Cashmere Goat Breeding Farm, Chifeng 024506, China; (H.X.); (S.L.)
| | - Shucai Liu
- Chifeng Hanshan White Cashmere Goat Breeding Farm, Chifeng 024506, China; (H.X.); (S.L.)
| | - Yuehui Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Qianjun Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Shaohui Ye
- Department of Animal Breeding and Reproduction, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (C.H.)
| |
Collapse
|
7
|
Sun S, Zhao B, Li J, Zhang X, Yao S, Bao Z, Cai J, Yang J, Chen Y, Wu X. Regulation of Hair Follicle Growth and Development by Different Alternative Spliceosomes of FGF5 in Rabbits. Genes (Basel) 2024; 15:409. [PMID: 38674344 PMCID: PMC11049220 DOI: 10.3390/genes15040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
This study investigated the regulatory effect of alternative spliceosomes of the fibroblast growth factor 5 (FGF5) gene on hair follicle (HF) growth and development in rabbits. The FGF5 alternative spliceosomes (called FGF5-X1, FGF5-X2, FGF5-X3) were cloned. The overexpression vector and siRNA of spliceosomes were transfected into dermal papilla cells (DPCs) to analyze the regulatory effect on DPCs. The results revealed that FGF5-X2 and FGF5-X3 overexpression significantly decreased LEF1 mRNA expression (p < 0.01). FGF5-X1 overexpression significantly reduced CCND1 expression (p < 0.01). FGF5-X1 and FGF5-X2 possibly downregulated the expression level of FGF2 mRNA (p < 0.05), and FGF5-X3 significantly downregulated the expression level of FGF2 mRNA (p < 0.01). The FGF5 alternative spliceosomes significantly downregulated the BCL2 mRNA expression level in both cases (p < 0.01). FGF5-X1 and FGF5-X2 significantly increased TGFβ mRNA expression (p < 0.01). All three FGF5 alternative spliceosomes inhibited DPC proliferation. In conclusion, the expression profile of HF growth and development-related genes can be regulated by FGF5 alternative spliceosomes, inhibiting the proliferation of DPCs and has an influence on the regulation of HF growth in rabbits. This study provides insights to further investigate the mechanism of HF development in rabbits via FGF5 regulation.
Collapse
Affiliation(s)
- Shaoning Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Xiyu Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Shuyu Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Jiawei Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Jie Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Cuevas-Diaz Duran R, Martinez-Ledesma E, Garcia-Garcia M, Bajo Gauzin D, Sarro-Ramírez A, Gonzalez-Carrillo C, Rodríguez-Sardin D, Fuentes A, Cardenas-Lopez A. The Biology and Genomics of Human Hair Follicles: A Focus on Androgenetic Alopecia. Int J Mol Sci 2024; 25:2542. [PMID: 38473791 DOI: 10.3390/ijms25052542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Androgenetic alopecia is a highly prevalent condition mainly affecting men. This complex trait is related to aging and genetics; however, multiple other factors, for example, lifestyle, are also involved. Despite its prevalence, the underlying biology of androgenetic alopecia remains elusive, and thus advances in its treatment have been hindered. Herein, we review the functional anatomy of hair follicles and the cell signaling events that play a role in follicle cycling. We also discuss the pathology of androgenetic alopecia and the known molecular mechanisms underlying this condition. Additionally, we describe studies comparing the transcriptional differences in hair follicles between balding and non-balding scalp regions. Given the genetic contribution, we also discuss the most significant risk variants found to be associated with androgenetic alopecia. A more comprehensive understanding of this pathology may be generated through using multi-omics approaches.
Collapse
Affiliation(s)
- Raquel Cuevas-Diaz Duran
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, NL, Mexico
- CapilarFix®, Monterrey 66220, NL, Mexico
| | - Emmanuel Martinez-Ledesma
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, NL, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey 64849, NL, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Zheng Q, Ye N, Bao P, Wang T, Ma C, Chu M, Wu X, Kong S, Guo X, Liang C, Pan H, Yan P. Interpretation of the Yak Skin Single-Cell Transcriptome Landscape. Animals (Basel) 2023; 13:3818. [PMID: 38136855 PMCID: PMC10741061 DOI: 10.3390/ani13243818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The morphogenesis of hair follicle structure is accompanied by the differentiation of skin tissue. Mammalian coats are produced by hair follicles. The formation of hair follicles requires signal transmission between the epidermis and dermis. However, knowledge of the transcriptional regulatory mechanism is still lacking. We used single-cell RNA sequencing to obtain 26,573 single cells from the scapular skin of yaks at hair follicle telogen and anagen stages. With the help of known reference marker genes, 11 main cell types were identified. In addition, we further analyzed the DP cell and dermal fibroblast lineages, drew a single-cell map of the DP cell and dermal fibroblast lineages, and elaborated the key genes, signals, and functions involved in cell fate decision making. The results of this study provide a very valuable resource for the analysis of the heterogeneity of DP cells and dermal fibroblasts in the skin and provide a powerful theoretical reference for further exploring the diversity of hair follicle cell types and hair follicle morphogenesis.
Collapse
Affiliation(s)
- Qingbo Zheng
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Na Ye
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tong Wang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chaofan Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Siyuan Kong
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Heping Pan
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
10
|
Tarasova EI, Frolov AN, Lebedev SV, Romanov MN. Landmark native breed of the Orenburg goats: progress in its breeding and genetics and future prospects. Anim Biotechnol 2023; 34:5139-5154. [PMID: 36495096 DOI: 10.1080/10495398.2022.2154221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This paper reviews information about a unique and iconic breed of the Orenburg Oblast, the homeland and the only place where the best herds of Orenburg down-hair goats in Russia are concentrated. Three types of these small ruminant animals are widespread on the territory of the region: Orenburg purebred gray goats, Orenburg purebred white goats, as well as crossbred white goats of F1 White Don × White Orenburg. Currently, at the farms of the Orenburg region, animals are selected according to their phenotype, with selected traits being color, weight and length of down hair. In recent years, the Orenburg goat breed has become an object of genetic research using various marker systems including immunogenetic, microsatellite, mtDNA and SNP markers. Overall, these studies evidence about the uniqueness of the allele pool in the landmark native breed of the Orenburg goats, which is a complex dynamic genetic system, prioritizing its further in-depth genome research and breeding applications.
Collapse
Affiliation(s)
- Ekaterina I Tarasova
- Federal Research Center for Biological Systems and Agrotechnologies, Orenburg, Russia
| | - Alexey N Frolov
- Federal Research Center for Biological Systems and Agrotechnologies, Orenburg, Russia
| | - Svyatoslav V Lebedev
- Federal Research Center for Biological Systems and Agrotechnologies, Orenburg, Russia
| | | |
Collapse
|
11
|
Joko Y, Yamamoto Y, Kato S, Takemoto T, Abe M, Matsumoto T, Fukumoto S, Sawatsubashi S. VDR is an essential regulator of hair follicle regression through the progression of cell death. Life Sci Alliance 2023; 6:e202302014. [PMID: 37673445 PMCID: PMC10485823 DOI: 10.26508/lsa.202302014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023] Open
Abstract
Vitamin D receptor (VDR) is essential for hair follicle homeostasis as its deficiency induces hair loss, although the mechanism involved remains unknown. Our research shows that, in Vdr-knockout mice, the hair cycle is halted during the catagen stage, preceding alopecia. In addition, in Vdr-knockout hair follicles, epithelial strands that normally regress during the catagen phase persist as "surviving epithelial strands." Single-cell RNA sequencing analysis suggests that these surviving epithelial strands are formed by cells in the lower part of the hair follicle. These findings emphasize the importance of the regression phase in hair follicle regeneration and establish VDR as a regulator of the catagen stage.
Collapse
Affiliation(s)
- Yudai Joko
- Department of Molecular Endocrinology, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yoko Yamamoto
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Shigeaki Kato
- Graduate School of Life Science and Technology, Iryo Sosei University, Fukushima, Japan
| | - Tatsuya Takemoto
- Laboratory for Embryology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshio Matsumoto
- Department of Molecular Endocrinology, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Seiji Fukumoto
- Department of Molecular Endocrinology, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Shun Sawatsubashi
- Department of Molecular Endocrinology, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Research and Innovation Liaison Office, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
- Laboratory of Integrative Nuclear Dynamics, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
12
|
Sun M, Jiang H, Lin S, Qin H, Ding X, Lai Y, Liu S, Liu M. Effects of photobiomodulation at various irradiances on normal and dihydrotestosterone-treated human hair dermal papilla cells in vitro. JOURNAL OF BIOPHOTONICS 2023; 16:e202300087. [PMID: 37418658 DOI: 10.1002/jbio.202300087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Androgenetic alopecia (AGA) is the most common type of hair loss caused by dihydrotestosterone (DHT) binding to androgen receptors in dermal papilla cells (DPCs). Photobiomodulation (PBM) is a promising treatment for AGA but suffers from inconsistent outcomes and inconsistent effective light parameters. This study investigated the impact of red light at various irradiances on normal and DHT-treated DPCs. Our results suggested that red light at 8 mW/cm2 was most effective in promoting DPCs growth. Furthermore, a range of irradiances from 2 to 64 mW/cm2 modulated key signaling pathways, including Wnt, FGF, and TGF, in normal and DHT-treated DPCs. Interestingly, 8 mW/cm2 had a greater impact on these pathways in DHT-treated DPCs and altered the Shh pathway, suggesting that the effect of PBM varies with the cellular environment. This study highlights specific factors that influence PBM effectiveness and provides insight into the need for personalized PBM treatment approaches.
Collapse
Affiliation(s)
- Miao Sun
- Department of Light Source and Illuminating Engineering, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong, China
| | - Hui Jiang
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong, China
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Shangfei Lin
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong, China
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Haokuan Qin
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong, China
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Xiaolei Ding
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
| | - Yongxian Lai
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Muqing Liu
- Department of Light Source and Illuminating Engineering, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong, China
- Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Wiggenhorn AL, Abuzaid HZ, Coassolo L, Li VL, Tanzo JT, Wei W, Lyu X, Svensson KJ, Long JZ. A class of secreted mammalian peptides with potential to expand cell-cell communication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543503. [PMID: 37333131 PMCID: PMC10274650 DOI: 10.1101/2023.06.02.543503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Peptide hormones and neuropeptides are fundamental signaling molecules that control diverse aspects of mammalian homeostasis and physiology. Here we demonstrate the endogenous presence of a sequence diverse class of orphan, blood-borne peptides that we call "capped peptides." Capped peptides are fragments of secreted proteins and defined by the presence of two post-translational modifications - N-terminal pyroglutamylation and C-terminal amidation - which function as chemical "caps" of the intervening sequence. Capped peptides share many regulatory characteristics in common with that of other signaling peptides, including dynamic regulation in blood plasma by diverse environmental and physiologic stimuli. One capped peptide, CAP-TAC1, is a tachykinin neuropeptide-like molecule and a nanomolar agonist of multiple mammalian tachykinin receptors. A second capped peptide, CAP-GDF15, is a 12-mer peptide that reduces food intake and body weight. Capped peptides therefore define a largely unexplored class of circulating molecules with potential to regulate cell-cell communication in mammalian physiology.
Collapse
Affiliation(s)
- Amanda L. Wiggenhorn
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Hind Z. Abuzaid
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Laetitia Coassolo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Veronica L. Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Julia T. Tanzo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Xuchao Lyu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Katrin J. Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Jonathan Z. Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| |
Collapse
|
14
|
Fatima N, Jia L, Liu B, Li L, Bai L, Wang W, Zhao S, Wang R, Liu E. A homozygous missense mutation in the fibroblast growth factor 5 gene is associated with the long-hair trait in Angora rabbits. BMC Genomics 2023; 24:298. [PMID: 37268908 DOI: 10.1186/s12864-023-09405-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/24/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Rabbits are well-domesticated animals. As a crucial economic animal, rabbit has been successfully bred into wool-use, meat-use and fur-use breeds. Hair length is one of the most economically important traits affecting profitability in wool rabbits. In this study, to identify selection signatures with the long-hair trait, whole-genomic resequencing of long-haired rabbits (Angora rabbits) and short-haired rabbits (Rex and New Zealand rabbits) was performed. RESULTS By genome-wide selective sweeping analysis based on population comparison, we identified a total of 5.85 Mb regions (containing 174 candidate genes) with strong selection signals. Six of these genes (Dusp1, Ihh, Fam134a, Map3k1, Spata16, and Fgf5) were enriched in the MAPK signalling and Hedgehog signalling pathways, both of which are closely associated with hair growth regulation. Among these genes, Fgf5 encodes the FGF5 protein, which is a well-established regulator of hair growth. There was a nonsynonymous nucleotide substitution (T19234C) in the Fgf5 gene. At this locus, the C allele was present in all of the tested Angora rabbits, while the T allele was dominant in New Zealand and Rex rabbits. We further confirmed that the C allele was conserved in Angora rabbits by screening an additional 135 rabbits. Moreover, the results of functional predictions and co-immunoprecipitation revealed that the T19234C mutation impaired the binding capacity of FGF5 to its receptor FGFR1. CONCLUSIONS We discovered that the homozygous missense mutation T19234C within Fgf5 might contribute to the long-hair trait of Angora rabbits by reducing its receptor binding capacity. This finding will provide new insights into the genetic basis underlying the genetic improvement of Angora rabbits and benefit the improvement of rabbit breeding in the future.
Collapse
Affiliation(s)
- Nazira Fatima
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Linying Jia
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Baoning Liu
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Lu Li
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Liang Bai
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Weirong Wang
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Sihai Zhao
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Rong Wang
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Enqi Liu
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
15
|
Ma S, Long L, Huang X, Tian K, Tian Y, Wu C, Zhao Z. Transcriptome analysis reveals genes associated with wool fineness in merinos. PeerJ 2023; 11:e15327. [PMID: 37250719 PMCID: PMC10215774 DOI: 10.7717/peerj.15327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
Hair/wool usually plays an important role in maintaining animal physiological activities, and the economic value of wool cannot be ignored. At present, people set higher demands on wool fineness. Hence, improving wool fineness is the concern of fine wool sheep breeding. Using RNA-Seq to screen the potential candidate genes that associate with wool fineness can provide theoretical references for fine-wool sheep breeding, and also provide us new ideas for further understand the molecular regulation mechanism of hair growth. In this study, we compared the expression pattern difference of genome-wide genes between the skin transcriptomes of Subo and Chinese Merinos. The results showed that, 16 candidate differentially expressed genes (DEGs) (Included: CACNA1S, GP5, LOC101102392, HSF5, SLITRK2, LOC101104661, CREB3L4, COL1A1, PTPRR, SFRP4, LOC443220, COL6A6, COL6A5, LAMA1, LOC114115342 and LOC101116863 genes) that may associate with wool fineness were screened, and these genes were located in signaling pathways that regulate hair follicle development, cycle or hair growth. It is worth noting that, among the 16 DEGs, COL1A1 gene has the highest expression level in Merino skins, and the fold change of LOC101116863 gene is the highest, and the structures of these two genes are both highly conserved in different species. In conclusion, we speculate that these two genes may play a key role in regulating wool fineness and respectively have similar and conserved functions in different species.
Collapse
Affiliation(s)
- Shengchao Ma
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Li Long
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuezhen Tian
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool Sheep and Cashmere-Goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Cuiling Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool Sheep and Cashmere-Goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Zhiwen Zhao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
16
|
Polymorphisms and mRNA Expression Levels of IGF-1, FGF5, and KAP 1.4 in Tibetan Cashmere Goats. Genes (Basel) 2023; 14:genes14030711. [PMID: 36980983 PMCID: PMC10048045 DOI: 10.3390/genes14030711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
The Tibetan cashmere goat is a precious breed in China and its cashmere is widely used in clothing and textiles. The genes IGF-1, FGF5, and KAP 1.4 have been shown to be crucial regulators of cashmere growth. In this study, we examined mRNA expression levels of these three genes and detected IGF-1, FGF5, and KAP 1.4 SNP loci in the Tibetan cashmere goat. After amplification and sequence alignment of the genes IGF-1, FGF5, and KAP 1.4 among 206 Tibetan cashmere goats, two new SNP loci were detected in gene KAP 1.4, while no SNP loci were found in amplified fragments of genes IGF-1 and FGF5. The expression levels of gene IGF-1 in Baingoin and Nyima counties were significantly higher than in other counties (p < 0.05). Moreover, the expression level of gene FGF5 in Gêrzê was significantly higher than in Rutog. The expression levels of mRNA in KAP 1.4 showed significant variation among seven counties. There were no significant differences in mRNA expression levels of IGF-1, FGF5, and KAP 1.4 in Tibetan cashmere goats when analysed by sex. The gene IGF-1 was slightly up-regulated in one to five-year-old cashmere goats, except in those that were 4 years old. The mRNA expression levels of FGF5 in one and two-year-old cashmere goats was lower compared with those in three to five-year-old cashmere goats. KAP 1.4 was up-regulated across one to five-year-old cashmere goats. In this study, SNP detection and mRNA expression analysis of IGF-1, FGF5, and KAP 1.4 genes was able to add data to genetic evolutionary analysis. Further studies should be carried out in SNPs to detect other fragments in genes IGF-1 and FGF5, as well as signal pathways and gene functions in protein levels of genes IGF-1, FGF5, and KAP 1.4 in the Tibetan cashmere goat.
Collapse
|
17
|
Progenitor-derived endothelin controls dermal sheath contraction for hair follicle regression. Nat Cell Biol 2023; 25:222-234. [PMID: 36717629 PMCID: PMC9931655 DOI: 10.1038/s41556-022-01065-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/28/2022] [Indexed: 02/01/2023]
Abstract
Substantial follicle remodelling during the regression phase of the hair growth cycle is coordinated by the contraction of the dermal sheath smooth muscle, but how dermal-sheath-generated forces are regulated is unclear. Here, we identify spatiotemporally controlled endothelin signalling-a potent vasoconstriction-regulating pathway-as the key activating mechanism of dermal sheath contraction. Pharmacological blocking or genetic ablation of both endothelin receptors, ETA and ETB, impedes dermal sheath contraction and halts follicle regression. Epithelial progenitors at the club hair-epithelial strand bottleneck produce the endothelin ligand ET-1, which is required for follicle regression. ET signalling in dermal sheath cells and downstream contraction is dynamically regulated by cytoplasmic Ca2+ levels through cell membrane and sarcoplasmic reticulum calcium channels. Together, these findings illuminate an epithelial-mesenchymal interaction paradigm in which progenitors-destined to undergo programmed cell death-control the contraction of the surrounding sheath smooth muscle to orchestrate homeostatic tissue regression and reorganization for the next stem cell activation and regeneration cycle.
Collapse
|
18
|
Wang H, Lan X, Noman M, Wang Z, Zhang J. Recombinant Oil-Body-Expressed Oleosin-hFGF5 in Arabidopsis thaliana Regulates Hair Growth. Genes (Basel) 2022; 14:genes14010021. [PMID: 36672762 PMCID: PMC9858518 DOI: 10.3390/genes14010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
FGF5 (Fibroblast Growth Factor) is a member of the fibroblast growth factor family, which not only regulates growth and development but also inhibits hair regeneration. The oil-body expression vector pOTB-hFGF5 was constructed by the genetic engineering method and it was transformed into Arabidopsis by flora dip. T3 homozygous transgenic Arabidopsis was obtained after screening and propagation by the PCR and Western blot methods. The recombinant oil-body-expressed oleosin-hFGF5 can inhibit the proliferation of hair follicle epithelial cells and it exhibits the pharmacological activity of inhibiting hair regeneration in vivo by protein hybridization and imunohistochemistry. At the same time, the potential mechanism of recombinant oil-body-expressed oleosin-hFGF5 inhibiting hair growth was also revealed by RNA-Seq. This implies that the recombinant oil-body-expressed oleosin-hFGF5 has a good effect on inhibiting hair growth.
Collapse
Affiliation(s)
- Hongyu Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Changchun 130118, China
| | - Xinxin Lan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Muhammad Noman
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Correspondence:
| | - Ze Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
19
|
Takahashi R, Takahashi G, Kameyama Y, Sato M, Ohtsuka M, Wada K. Gender-Difference in Hair Length as Revealed by Crispr-Based Production of Long-Haired Mice with Dysfunctional FGF5 Mutations. Int J Mol Sci 2022; 23:ijms231911855. [PMID: 36233155 PMCID: PMC9569730 DOI: 10.3390/ijms231911855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Fibroblast growth factor 5 (FGF5) is an important molecule required for the transition from anagen to catagen phase of the mammalian hair cycle. We previously reported that Syrian hamsters harboring a 1-bp deletion in the Fgf5 gene exhibit excessive hair growth in males. Herein, we generated Fgf5 mutant mice using genome editing via oviductal nucleic acid delivery (GONAD)/improved GONAD (i-GONAD), an in vivo genome editing system used to target early embryos present in the oviductal lumen, to study gender differences in hair length in mutant mice. The two lines (Fgf5go-malc), one with a 2-bp deletion (c.552_553del) and the other with a 1-bp insertion (c.552_553insA) in exon 3 of Fgf5, were successfully established. Each mutation was predicted to disrupt a part of the FGF domain through frameshift mutation (p.Glu184ValfsX128 or p.Glu184ArgfsX128). Fgf5go-malc1 mice had heterogeneously distributed longer hairs than wild-type mice (C57BL/6J). Notably, this change was more evident in males than in females (p < 0.0001). Immunohistochemical analysis revealed the presence of FGF5 protein in the dermal papilla and outer root sheath of the hair follicles from C57BL/6J and Fgf5go-malc1 mice. Histological analysis revealed that the prolonged anagen phase might be the cause of accelerated hair growth in Fgf5go-malc1 mice.
Collapse
Affiliation(s)
- Ryo Takahashi
- Graduate School of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493, Japan
| | - Gou Takahashi
- Regenerative Medicine Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yuichi Kameyama
- Graduate School of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493, Japan
| | - Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, Isehara 259-1193, Japan
| | - Kenta Wada
- Graduate School of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493, Japan
- Correspondence: ; Tel.: +81-152-48-3827
| |
Collapse
|
20
|
Chwastek J, Kędziora M, Borczyk M, Korostyński M, Starowicz K. Inflammation-Driven Secretion Potential Is Upregulated in Osteoarthritic Fibroblast-Like Synoviocytes. Int J Mol Sci 2022; 23:ijms231911817. [PMID: 36233118 PMCID: PMC9570304 DOI: 10.3390/ijms231911817] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common joint pathologies and a major cause of disability among the population of developed countries. It manifests as a gradual degeneration of the cartilage and subchondral part of the bone, leading to joint damage. Recent studies indicate that not only the cells that make up the articular cartilage but also the synoviocytes, which build the membrane surrounding the joint, contribute to the development of OA. Therefore, the aim of the study was to determine the response to inflammatory factors of osteoarthritic synoviocytes and to identify proteins secreted by them that may influence the progression of OA. This study demonstrated that fibroblast-like synoviocytes of OA patients (FLS-OA) respond more strongly to pro-inflammatory stimulation than cells obtained from control patients (FLS). These changes were observed at the transcriptome level and subsequently confirmed by protein analysis. FLS-OA stimulated by pro-inflammatory factors [such as lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) were shown to secrete significantly more chemokines (CXCL6, CXCL10, and CXCL16) and growth factors [angiopoietin-like protein 1 (ANGPTL1), fibroblast growth factor 5 (FGF5), and insulin-like growth factor 2 (IGF2)] than control cells. Moreover, the translation of proteolytic enzymes [matrix metalloprotease 3 (MMP3), cathepsin K (CTSK), and cathepsin S (CTSS)] by FLS-OA is increased under inflammatory conditions. Our data indicate that the FLS of OA patients are functionally altered, resulting in an enhanced response to the presence of pro-inflammatory factors in the environment, manifested by the increased production of the previously mentioned proteins, which may promote further disease progression.
Collapse
Affiliation(s)
- Jakub Chwastek
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Marta Kędziora
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Małgorzata Borczyk
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Michał Korostyński
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
- Correspondence:
| |
Collapse
|
21
|
Li Y, Cui S, Wu B, Gao J, Li M, Zhang F, Xia H. FGF5 alleviated acute lung injury via AKT signal pathway in endothelial cells. Biochem Biophys Res Commun 2022; 634:152-158. [PMID: 36244113 PMCID: PMC9527228 DOI: 10.1016/j.bbrc.2022.09.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022]
Abstract
Acute lung injury (ALI), with high morbidity and mortality, is mainly resulted by infectious or non-infectious inflammatory stimulators, and it will further evolve into acute respiratory distress syndrome if not controlled. Fibroblast growth factors (FGFs) consist of more than 23 kinds of members, which are involved in various pathophysiological processes of body. However, the effect of FGF5, one member of FGFs, is still not certain in lipopolysaccharide (LPS)-induced ALI. In this study, we explored the possible impacts of FGF5 in LPS-induced ALI and primarily focused on endothelial cell, which was one of the most vulnerable cells in septic ALI. In the mouse group of FGF5 overexpression, LPS-induced lung injuries were mitigated, as well as the pyroptosis levels of pulmonary vascular endothelial cells. Additionally, in vitro human umbilical vein endothelial cells (HUVECs), our results showed that the level of cell pyroptosis was ameliorated with FGF5 overexpression, and AKT signal was activated with the overexpression of FGF5, whereas after administration of MK2206, an inhibitor of AKT signal, the protection of FGF5 was inhibited. Therefore, these results suggested that FGF5 exerted protective effects in endothelial cells exposed to LPS, and this protection of FGF5 could be attributed to activated AKT signal.
Collapse
Affiliation(s)
- Yuhua Li
- Intensive Care Unit, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jixian Gao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ming Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Furong Zhang
- Intensive Care Unit, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
22
|
FGF5 protects heart from sepsis injury by attenuating cardiomyocyte pyroptosis through inhibiting CaMKII/NFκB signaling. Biochem Biophys Res Commun 2022; 636:104-112. [DOI: 10.1016/j.bbrc.2022.10.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 11/30/2022]
|
23
|
Kalds P, Zhou S, Gao Y, Cai B, Huang S, Chen Y, Wang X. Genetics of the phenotypic evolution in sheep: a molecular look at diversity-driving genes. Genet Sel Evol 2022; 54:61. [PMID: 36085023 PMCID: PMC9463822 DOI: 10.1186/s12711-022-00753-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/29/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND After domestication, the evolution of phenotypically-varied sheep breeds has generated rich biodiversity. This wide phenotypic variation arises as a result of hidden genomic changes that range from a single nucleotide to several thousands of nucleotides. Thus, it is of interest and significance to reveal and understand the genomic changes underlying the phenotypic variation of sheep breeds in order to drive selection towards economically important traits. REVIEW Various traits contribute to the emergence of variation in sheep phenotypic characteristics, including coat color, horns, tail, wool, ears, udder, vertebrae, among others. The genes that determine most of these phenotypic traits have been investigated, which has generated knowledge regarding the genetic determinism of several agriculturally-relevant traits in sheep. In this review, we discuss the genomic knowledge that has emerged in the past few decades regarding the phenotypic traits in sheep, and our ultimate aim is to encourage its practical application in sheep breeding. In addition, in order to expand the current understanding of the sheep genome, we shed light on research gaps that require further investigation. CONCLUSIONS Although significant research efforts have been conducted in the past few decades, several aspects of the sheep genome remain unexplored. For the full utilization of the current knowledge of the sheep genome, a wide practical application is still required in order to boost sheep productive performance and contribute to the generation of improved sheep breeds. The accumulated knowledge on the sheep genome will help advance and strengthen sheep breeding programs to face future challenges in the sector, such as climate change, global human population growth, and the increasing demand for products of animal origin.
Collapse
Affiliation(s)
- Peter Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, 45511 Egypt
| | - Shiwei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Yawei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Bei Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Shuhong Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs, Yangling, 712100 China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs, Yangling, 712100 China
| |
Collapse
|
24
|
Endoh M, Niwa H. Stepwise pluripotency transitions in mouse stem cells. EMBO Rep 2022; 23:e55010. [PMID: 35903955 PMCID: PMC9442314 DOI: 10.15252/embr.202255010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 07/31/2023] Open
Abstract
Pluripotent cells in mouse embryos, which first emerge in the inner cell mass of the blastocyst, undergo gradual transition marked by changes in gene expression, developmental potential, polarity, and morphology as they develop from the pre-implantation until post-implantation gastrula stage. Recent studies of cultured mouse pluripotent stem cells (PSCs) have clarified the presence of intermediate pluripotent stages between the naïve pluripotent state represented by embryonic stem cells (ESCs-equivalent to the pre-implantation epiblast) and the primed pluripotent state represented by epiblast stem cells (EpiSCs-equivalent to the late post-implantation gastrula epiblast). In this review, we discuss these recent findings in light of our knowledge on peri-implantation mouse development and consider the implications of these new PSCs to understand their temporal sequence and the feasibility of using them as model system for pluripotency.
Collapse
Affiliation(s)
- Mitsuhiro Endoh
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG)Kumamoto UniversityKumamotoJapan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG)Kumamoto UniversityKumamotoJapan
| |
Collapse
|
25
|
Woo J, Suh W, Sung JH. Hair Growth Regulation by Fibroblast Growth Factor 12 (FGF12). Int J Mol Sci 2022; 23:ijms23169467. [PMID: 36012732 PMCID: PMC9409131 DOI: 10.3390/ijms23169467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The fibroblast growth factor (FGF) family has various biological functions, including cell growth, tissue regeneration, embryonic development, metabolism, and angiogenesis. In the case of hair growth, several members of the FGF family, such as FGF1 and FGF2, are involved in hair growth, while FGF5 has the opposite effect. In this study, the regulation of the hair growth cycle by FGF12 was investigated. To observe its effect, the expression of FGF12 was downregulated in mice and outer root sheath (ORS) by siRNA transfection, while FGF12 overexpression was carried out using FGF12 adenovirus. For the results, FGF12 was primarily expressed in ORS cells with a high expression during the anagen phase of hair follicles. Knockdown of FGF12 delayed telogen-to-anagen transition in mice and decreased the hair length in vibrissae hair follicles. It also inhibited the proliferation and migration of ORS cells. On the contrary, FGF12 overexpression increased the migration of ORS cells. FGF12-overexpressed ORS cells induced the telogen-to-anagen transition in the animal model. In addition, FGF12 overexpression regulated the expression of PDGF-CC, MDK, and HB-EGF, and treatment of these factors exhibited hair growth promotion. Altogether, FGF12 promoted hair growth by inducing the anagen phase of hair follicles, suggesting the potential for hair loss therapy.
Collapse
Affiliation(s)
- Jiwon Woo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
| | - Wonhee Suh
- Department of Global Innovative Drug, The Graduate School of Chung-Ang University, Seoul 06974, Korea
- Correspondence: (W.S.); (J.-H.S.)
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
- Epi Biotech Co., Ltd., Incheon 21983, Korea
- Correspondence: (W.S.); (J.-H.S.)
| |
Collapse
|
26
|
Zhao B, Li J, Liu M, Yang N, Bao Z, Zhang X, Dai Y, Cai J, Chen Y, Wu X. DNA Methylation Mediates lncRNA2919 Regulation of Hair Follicle Regeneration. Int J Mol Sci 2022; 23:9481. [PMID: 36012763 PMCID: PMC9408817 DOI: 10.3390/ijms23169481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 11/20/2022] Open
Abstract
Hair follicles (HFs) are organs that periodically regenerate during the growth and development of mammals. Long non-coding RNAs (lncRNAs) are non-coding RNAs with crucial roles in many biological processes. Our previous study identified that lncRNA2919 is highly expressed in catagen during the HF cycle. In this study, the in vivo rabbit model was established using intradermal injection of adenovirus-mediated lncRNA2919. The results showed that lncRNA2919 decreased HF depth and density and contributed to HF regrowth, thereby indicating that lncRNA2919 plays a negative role in HF regeneration. Moreover, methylation levels of the lncRNA2919 promoter at different HF cycle stages were detected through bisulfite sequencing. The key CpG site that negatively correlates with lncRNA2919 expression during the HF cycle was identified. 5-Aza-dc-induced demethylation upregulated lncRNA2919 expression, and the core promoter region of lncRNA2919 was verified on the basis of luciferase activity. Furthermore, we found that DNA methylation could prevent the binding of EGR1 to the lncRNA2919 promoter region, thereby affecting the transcriptional expression of lncRNA2919. Collectively, DNA methylation inhibits the transcriptional expression of lncRNA2919, which plays a vital role in the HF cycle and HF regrowth. These findings contribute to the basic theory of epigenetics in HF biology and provide references for further research in HF disease treatment and animal wool production.
Collapse
Affiliation(s)
- Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ming Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiyu Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingying Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiawei Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
27
|
Li S, Liu G, Liu L, Li F. Methionine can subside hair follicle development prejudice of heat-stressed rex rabbits. FASEB J 2022; 36:e22464. [PMID: 35881391 DOI: 10.1096/fj.202200520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/11/2022] [Indexed: 11/11/2022]
Abstract
In the present experiment, we study the function of methionine on hair follicle development in heat-stressed Rex Rabbits and its potential molecular mechanism. Rex rabbits were randomly divided into 5 groups (30 replicates per group): control group (20-25°C, fed basic diet), heat stress group (30-34°C, fed basic diet), heat stress + methionine group (30-34°C, fed 0.15% methionine in addition to the basic diet). fed basic diet (control), heat stress + methionine group (30-34°C, fed 0.3% methionine in addition to the basic diet), heat stress + methionine group (30-34°C, fed 0.45% methionine in addition to the basic diet). The results show that heat stress decreases the hair follicle density of Rex rabbits, and the diet methionine addition significantly increases the hair follicle density of heat-stressed Rabbits (p < .05). Heat stress increased serum HSP70 concentration and skin HSP70 gene expression, 0.15%-0.3% methionine but not 0.45% addition alleviated the effect of heat stress. Dietary 0.15% methionine addition significantly increases the gene expression of Wnt10b, β-catenin, LEF, FZD4, LRP6, Shh, HGF, EGF, and Noggin in heat-stressed Rex rabbits and observably decreases the gene expression of BMP2/4 and TGFb. There was no significant effect of methionine on the expression of IGF1 and FGF5/7 gene expression. In conclusion, methionine maybe promotes hair follicle development via TGFβ-BMP/Shh-Noggin, Wnt10b/β-catenin, EGF, and HGF signaling pathways in heat-stressed rabbits.
Collapse
Affiliation(s)
- Shu Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agriculture University, Taian, China
| | - Gongyan Liu
- Shandong Academy of Agricultural Sciences Institute of Animal Husbandry and Veterinary Medicine, Jinan, China
| | - Lei Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agriculture University, Taian, China
| | - Fuchang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agriculture University, Taian, China
| |
Collapse
|
28
|
Signaling Pathways Associated with Chronic Wound Progression: A Systems Biology Approach. Antioxidants (Basel) 2022; 11:antiox11081506. [PMID: 36009225 PMCID: PMC9404828 DOI: 10.3390/antiox11081506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Previously we have shown that several oxidative stress-driven pathways in cutaneous chronic wounds are dysregulated in the first 48 h post-wounding. Here, we performed an RNASeq analysis of tissues collected up to day 20 after wounding, when we have determined full chronicity is established. Weighted Gene Correlation Network Analysis was performed in R segregating the genes into 14 modules. Genes in the modules significantly correlated (p < 0.05) to early and full chronicity were used for pathway analysis using pathfindR. In early chronicity, we observed enrichment of several pathways. Dysregulation of Ephrin/Eph signaling leads to growth cone collapse and impairs neuronal regeneration. Adra2b and Adra2a overexpression in early and full chronicity, respectively, decreased cAMP production and impaired re-epithelialization and granulation tissue formation. Several pathways involving a Smooth-muscle-actin (Acta1) were also enriched with Acta1 overexpression contributing to impaired angiogenesis. During full chronicity, the ‘JAK-STAT’ pathway was suppressed undermining host defenses against infection. Wnt signaling was also suppressed, impairing re-epithelialization and granulation tissue formation. Biomarkers of cancer such as overexpression of SDC1 and constitutive activation of ErbB2/HER2 were also identified. In conclusion, we show that during progression to full chronicity, numerous signaling pathways are dysregulated, including some related to carcinogenesis, suggesting that chronic wounds behave much like cancer. Experimental verification in vivo could identify candidates for treatment of chronic wounds.
Collapse
|
29
|
Li Y, Song S, Zhang Z, Liu X, Zhang Y, E G, Ma Y, Jiang L. A deletion variant within the FGF5 gene in goats is associated with gene expression levels and cashmere growth. Anim Genet 2022; 53:657-664. [PMID: 35843706 DOI: 10.1111/age.13239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 11/01/2022]
Abstract
The FGF5 gene has been associated with the regulation of fibre length in mammals, including cashmere goats. A deletion variant at ~14 kb downstream of the FGF5 gene showed significant divergence between cashmere and non-cashmere goats in previous studies. In this study, we designed specific primers to genotype the deletion variant. The results of gel electrophoresis and Sanger sequencing revealed that a 507-bp deletion mutation is located at 95 454 685-95 455 191 of chromosome 6 in goats. Genotyping data from a large panel of 288 goats showed that the deletion at the FGF5 gene locus appeared to be associated with cashmere length. The deletion variant was close to fixation (frequency 0.97) in cashmere goats. Furthermore, electrophoretic mobility shift assays for evaluating DNA-protein interaction and mRNA expression levels of FGF5 suggested that the deletion variant may serve as a cis-acting element by specifically binding transcription factors to mediate quantitative changes in FGF5 mRNA expression. Our study illustrates how a structural mutation of the FGF5 gene has contributed to the cashmere growth phenotype in domestic goats. The deletion mutation within the FGF5 gene could potentially serve as a molecular marker of cashmere growth in cashmere goat breeding.
Collapse
Affiliation(s)
- Yefang Li
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Shen Song
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,State Key Laboratory of Cardiovascular Disease Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhengkai Zhang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xuexue Liu
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,Centre d'Anthropobiologie et de Genomique de Toulouse, Universite Paul Sabatier, Toulouse, France
| | - Yanli Zhang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Guangxin E
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Yuehui Ma
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lin Jiang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
30
|
Alexandris D, Alevizopoulos N, Palamaris K, Gakiopoulou C, Theocharis S. Pinnae and facial hypertrichosis induced by cetuximab. J Oncol Pharm Pract 2022; 29:731-737. [PMID: 35821579 DOI: 10.1177/10781552221114073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Anti-EGFR targeted anti-cancer treatment is associated with various skin adverse events. Cetuximab is often associated with acneiform papules and skin disorders. Hypertrichosis cited in face pinnae and eyelash trichomegaly are seldom described. CASE REPORT A 72-year-old female cancer patient presented deteriorating facial-pinnae hypertrichosis and eyelash prolongation post cetuximab infusion. MANAGEMENT AND OUTCOME Consecutive cetuximab administration led to exaggerating hairy skin side effects, fully alleviated when the drug was discontinued. DISCUSSION To the best of our knowledge, this is the first reported case of an anti-EGFR-associated diffuse pinnae hypertrichosis presentation in a female patient in literature. This distinct entity can be easily diagnosed and manipulated with early drug withdrawal. An extensive review of relevant basic molecular research is provided to increase physicians' awareness.
Collapse
Affiliation(s)
| | | | - Kostas Palamaris
- First Department of Pathology, 68989Medical School of University of Athens, Athens, Attica, Greece
| | - Charikleia Gakiopoulou
- First Department of Pathology, 68989Medical School of University of Athens, Athens, Attica, Greece
| | - Stamatios Theocharis
- First Department of Pathology, 68989Medical School of University of Athens, Athens, Attica, Greece
| |
Collapse
|
31
|
Yue Z, Yang F, Zhang J, Li J, Chuong CM. Regulation and dysregulation of hair regeneration: aiming for clinical application. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:22. [PMID: 35773427 PMCID: PMC9247129 DOI: 10.1186/s13619-022-00122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Hair growth and regeneration represents a remarkable example of stem cell function. Recent progress emphasizes the micro- and macro- environment that controls the regeneration process. There is a shift from a stem cell-centered view toward the various layers of regulatory mechanisms that control hair regeneration, which include local growth factors, immune and neuroendocrine signals, and dietary and environmental factors. This is better suited for clinical application in multiple forms of hair disorders: in male pattern hair loss, the stem cells are largely preserved, but androgen signaling diminishes hair growth; in alopecia areata, an immune attack is targeted toward the growing hair follicle without abrogating its regeneration capability. Genome-wide association studies further revealed the genetic bases of these disorders, although the precise pathological mechanisms of the identified loci remain largely unknown. By analyzing the dysregulation of hair regeneration under pathological conditions, we can better address the complex interactions among stem cells, the differentiated progeny, and mesenchymal components, and highlight the critical role of macroenvironment adjustment that is essential for hair growth and regeneration. The poly-genetic origin of these disorders makes the study of hair regeneration an interesting and challenging field.
Collapse
Affiliation(s)
- Zhicao Yue
- Department of Cell Biology and Medical Genetics, International Cancer Center, and Guangdong Key Laboratory for Genome Instability and Disease Prevention, Shenzhen University, A7-455 XiLi Campus, Shenzhen, 518060, Guangdong, China.
| | - Fang Yang
- Department of Dermatology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
32
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
33
|
Abstract
The skin forms a crucial, dynamic barrier between an animal and the external world. In mammals, three stem cell populations possess robust regenerative potential to maintain and repair the body's protective surface: epidermal stem cells, which maintain the stratified epidermis; hair follicle stem cells, which power the cyclic growth of the hair follicle; and melanocyte stem cells, which regenerate pigment-producing melanocytes to color the skin and hair. These stem cells reside in complex microenvironments ("niches") comprising diverse cellular repertoires that enable stem cells to rejuvenate tissues during homeostasis and regenerate them upon injury. Beyond their niches, skin stem cells can also sense and respond to fluctuations in organismal health or changes outside the body. Here, we review these diverse cellular interactions and highlight how far-reaching signals can be transmitted at the local level to enable skin stem cells to tailor their actions to suit the particular occasion and optimize fitness.
Collapse
Affiliation(s)
- Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
34
|
Xin Q, Han Y, Jiang W, Wang J, Luan Y, Ji Q, Sun W. Genetic susceptibility analysis of FGF5 polymorphism to preeclampsia in Chinese Han population. Mol Genet Genomics 2022; 297:791-800. [PMID: 35380267 DOI: 10.1007/s00438-022-01889-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/19/2022] [Indexed: 10/18/2022]
Abstract
Fibroblast growth factor 5 (FGF5), which is a well-established causative factor for blood pressure, has been identified as a susceptibility gene for preeclampsia (PE) in European and Central Asian women. Here, we examined whether polymorphism rs16998073 in FGF5 confer a significant risk to PE in Chinese Han population by case-control association analysis. FGF5 rs16998073 was genotyped by Sanger sequencing in women with preeclampsia (n = 187) and healthy controls (n = 229) of Han Chinese. We found the frequency of rs16998073T allele was significantly higher in PE patients than that in controls. Next, we utilized dual-luciferase reporter assays and electrophoretic mobility shift assay (EMSA) reactions to investigate whether rs16998073 different alleles could affect the transcriptional activity of FGF5. The dual luciferase reporter assay showed that T allele increased the transcriptional efficiency by 1.5-fold compared with the G allele. Similarly, EMSA revealed that the T allele had a strong transcription factor binding strength compared with the G allele. We then examined the mRNA and protein expression levels of FGF5 in placental tissues by real-time PCR and Western blot assays. We found FGF5 were significantly upregulated in placental tissues from PE patients or PE mouse model than their corresponding controls. In addition, in vitro cell experiments confirmed that FGF5 could promote cell apoptosis of HTR8/SVneo and inhibit cell invasion. Taken together, our data provide evidence implicating rs16998073 of FGF5 as a functional genetic risk variant for PE disease and FGF5 might participate in development of PE disease.
Collapse
Affiliation(s)
- Qian Xin
- Central Laboratory, Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, People's Republic of China
| | - Ying Han
- Experimental Animal Center, Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, People's Republic of China
| | - Wen Jiang
- Central Laboratory, Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, People's Republic of China
| | - Jue Wang
- Central Laboratory, Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, People's Republic of China
| | - Yun Luan
- Central Laboratory, Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, People's Republic of China
| | - Qinghong Ji
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Road, Jinan, 250033, Shandong, People's Republic of China
| | - Wenjuan Sun
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Road, Jinan, 250033, Shandong, People's Republic of China.
| |
Collapse
|
35
|
A 90-Day Safety Study of Meat from MSTN and FGF5 Double-Knockout Sheep in Wistar Rats. Life (Basel) 2022; 12:life12020204. [PMID: 35207492 PMCID: PMC8880117 DOI: 10.3390/life12020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 11/21/2022] Open
Abstract
MSTN and FGF5 gene knockout sheep generated by the CRISPR/Cas9 system exhibit the ‘double-muscle’ phenotype, and increased density and length of hairs, providing valuable new breeding material. In a previous study, we obtained MSTN and FGF5 double-knockout sheep of significant breeding value. In this study, we carried out a 90-day feeding study in Wistar rats to assess the safety of genome-edited mutton. Seven rat groups with 10 females and 10 males per group were fed different concentrations (3.75%, 7.5%, and 15%) of double-knockout mutton or wild-type mutton in a conventional commercial diet for 90 days. At the end of the feeding, routine urine and blood tests and measurements of blood biochemical indicators were performed. Furthermore, the major organs of each group of rats were weighed and examined histopathologically. Although there were significant differences among the groups in some parameters, all values were within the normal ranges. Therefore, the 90-day rat feeding study showed that the meat from MSTN and FGF5 double-knockout sheep did not have any long-term adverse effects on rat health. This study also provides valuable reference information for assessing the safety of meat from animals with knockout of multiple genes.
Collapse
|
36
|
Kang M, Ahn B, Youk S, Lee YM, Kim JJ, Ha JH, Park C. Tracing the Origin of the RSPO2 Long-Hair Allele and Epistatic Interaction between FGF5 and RSPO2 in Sapsaree Dog. Genes (Basel) 2022; 13:genes13010102. [PMID: 35052442 PMCID: PMC8775186 DOI: 10.3390/genes13010102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Genetic analysis of the hair-length of Sapsaree dogs, a Korean native dog breed, showed a dominant mode of inheritance for long hair. Genome-Wide Association Study (GWAS) analysis and subsequent Mendelian segregation analysis revealed an association between OXR1, RSPO2, and PKHD1L1 on chromosome 13 (CFA13). We identified the previously reported 167 bp insertion in RSPO2 3’ untranslated region as a causative mutation for hair length variations. The analysis of 118 dog breeds and wolves revealed the selection signature on CFA13 in long-haired breeds. Haplotype analysis showed the association of only a few specific haplotypes to the breeds carrying the 167 bp insertion. The genetic diversity in the neighboring region linked to the insertion was higher in Sapsarees than in other Asian and European dog breeds carrying the same variation, suggesting an older history of its insertion in the Sapsaree genome than in that of the other breeds analyzed in this study. Our results show that the RSPO2 3’ UTR insertion is responsible for not only the furnishing phenotype but also determining the hair length of the entire body depending on the genetic background, suggesting an epistatic interaction between FGF5 and RSPO2 influencing the hair-length phenotype in dogs.
Collapse
Affiliation(s)
- Mingue Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (B.A.); (S.Y.)
| | - Byeongyong Ahn
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (B.A.); (S.Y.)
| | - Seungyeon Youk
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (B.A.); (S.Y.)
| | - Yun-Mi Lee
- Department of Biotechnology, Yeungnam University, Gyeongsan 36461, Korea; (Y.-M.L.); (J.-J.K.)
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 36461, Korea; (Y.-M.L.); (J.-J.K.)
| | - Ji-Hong Ha
- Korean Sapsaree Foundation, Gyeongsan 38412, Korea;
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (B.A.); (S.Y.)
- Correspondence: ; Tel.: +82-10-8826-1363
| |
Collapse
|
37
|
Zhang X, Bao P, Ye N, Zhou X, Zhang Y, Liang C, Guo X, Chu M, Pei J, Yan P. Identification of the Key Genes Associated with the Yak Hair Follicle Cycle. Genes (Basel) 2021; 13:genes13010032. [PMID: 35052373 PMCID: PMC8774716 DOI: 10.3390/genes13010032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
The development of hair follicles in yak shows significant seasonal cycles. In our previous research, transcriptome data including mRNAs and lncRNAs in five stages during the yak hair follicles (HFs) cycle were detected, but their regulation network and the hub genes in different periods are yet to be explored. This study aimed to screen and identify the hub genes during yak HFs cycle by constructing a mRNA-lncRNA co-expression network. A total of 5000 differently expressed mRNA (DEMs) and 729 differently expressed long noncoding RNA (DELs) were used to construct the co-expression network, based on weighted genes co-expression network analysis (WGCNA). Four temporally specific modules were considered to be significantly associated with the HFs cycle of yak. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the modules are enriched into Wnt, EMC-receptor interaction, PI3K-Akt, focal adhesion pathways, and so on. The hub genes, such as FER, ELMO1, PCOLCE, and HOXC13, were screened in different modules. Five hub genes (WNT5A, HOXC13, DLX3, FOXN1, and OVOL1) and part of key lncRNAs were identified for specific expression in skin tissue. Furthermore, immunofluorescence staining and Western blotting results showed that the expression location and abundance of DLX3 and OVOL1 are changed following the process of the HFs cycle, which further demonstrated that these two hub genes may play important roles in HFs development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ping Yan
- Correspondence: ; Tel.: +86-0931-2115288
| |
Collapse
|
38
|
Yue Z, Lei M, Paus R, Chuong CM. The global regulatory logic of organ regeneration: circuitry lessons from skin and its appendages. Biol Rev Camb Philos Soc 2021; 96:2573-2583. [PMID: 34145718 PMCID: PMC10874616 DOI: 10.1111/brv.12767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
In organ regeneration, the regulatory logic at a systems level remains largely unclear. For example, what defines the quantitative threshold to initiate regeneration, and when does the regeneration process come to an end? What leads to the qualitatively different responses of regeneration, which restore the original structure, or to repair which only heals a wound? Here we discuss three examples in skin regeneration: epidermal recovery after radiation damage, hair follicle fate choice after chemotherapy damage, and wound-induced feather regeneration. We propose that the molecular regulatory circuitry is of paramount significance in organ regeneration. It is conceivable that defects in these controlling pathways may lead to failed regeneration and/or organ renewal, and understanding the underlying logic could help to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- ZhiCao Yue
- Department of Cell Biology and Medical Genetics, Carson International Cancer Center, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Mingxing Lei
- 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400038, China
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, U.S.A
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA, 90033, U.S.A
| |
Collapse
|
39
|
Chen J, Fan ZX, Zhu DC, Guo YL, Ye K, Dai D, Guo Z, Hu ZQ, Miao Y, Qu Q. Emerging Role of Dermal White Adipose Tissue in Modulating Hair Follicle Development During Aging. Front Cell Dev Biol 2021; 9:728188. [PMID: 34722509 PMCID: PMC8554130 DOI: 10.3389/fcell.2021.728188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022] Open
Abstract
Hair follicle stem cells are extensively reprogrammed by the aging process, manifesting as diminished self-renewal and delayed responsiveness to activating cues, orchestrated by both intrinsic microenvironmental and extrinsic macroenvironmental regulators. Dermal white adipose tissue (dWAT) is one of the peripheral tissues directly adjacent to hair follicles (HFs) and acts as a critical macroenvironmental niche of HF. dWAT directly contributes to HF aging by paracrine signal secretion. However, the altered interrelationship between dWAT and HF with aging has not been thoroughly understood. Here, through microdissection, we separated dWAT from the skin of aged mice (18 months) and young mice (2 months) in telogen and depilation-induced anagen for transcriptome comparing. Notably, compared with young dWAT, aberrant inflammatory regulators were recapitulated in aging dWAT in telogen, including substantial overexpressed inflammatory cytokines, matrix metalloproteinases, and prostaglandin members. Nonetheless, with anagen initiation, inflammation programs were mostly abolished in aging dWAT, and instead of which, impaired collagen biosynthesis, angiogenesis, and melanin synthesis were identified. Furthermore, we confirmed the inhibitory effect on hair growth of CXCL1, one of the most significantly upregulated inflammation cytokines in aging dWAT. Besides this, we also identified the under-expressed genes related to Wnt signaling fibroblast growth factor family members and increased BMP signaling in aging dWAT, further unraveling the emerging role of dWAT in aging HFs malfunction. Finally, we proved that relieving inflammation of aging dWAT by injecting high-level veratric acid stimulated HF regenerative behavior in aged mice. Concomitantly, significantly decreased TNF-a, CCL2, IL-5, CSF2, and increased IL10 in dWAT was identified. Overall, the results elaborated on the complex physiological cycling changes of dWAT during aging, providing a basis for the potential regulatory effect of dWAT on aging HFs.
Collapse
Affiliation(s)
- Jian Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhe-Xiang Fan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - De-Cong Zhu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yi-Long Guo
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Ke Ye
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Damao Dai
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhi Guo
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhi-Qi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Qian Qu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
40
|
Identification of a novel missense mutation in the fibroblast growth factor 5 gene associated with longhair in the Maine Coon Cat. Hum Genet 2021; 140:1517-1523. [PMID: 34599367 DOI: 10.1007/s00439-021-02373-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Hair length can be a highly variable trait within the Felis catus species, varying between and within different cat breeds. Previous research has demonstrated this variability is due to recessive mutations within the fibroblast growth factor 5 (FGF5) gene. Following a genetic screen, four longhaired Maine Coons were identified that had only one copy of a known FGF5 mutation. We performed DNA sequencing on samples from two of these Maine Coons and identified a missense mutation in FGF5 c.577G > A p.Ala193Thr. Genetic screening via restriction digest was then performed on samples from the other two Maine Coons and an additional 273 cats of various breeds. This screening found that only the two additional Maine Coons were heterozygous for the novel variant. Furthermore, the novel variant was not identified after in silico analysis of 68 whole genome cat sequences from various breeds, demonstrating that this novel mutation is most likely a breed-specific variant for the Maine Coon, contributing to the longhair phenotype in about 3% of these cats.
Collapse
|
41
|
Ren SY, Zhang YN, Wang MJC, Wen BR, Xia CY, Li X, Wang HQ, Zhang RP, Zhang Y, Wang ZZ, Chen NH. Hair growth predicts a depression-like phenotype in rats as a mirror of stress traceability. Neurochem Int 2021; 148:105110. [PMID: 34166749 DOI: 10.1016/j.neuint.2021.105110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/09/2021] [Accepted: 06/20/2021] [Indexed: 10/21/2022]
Abstract
As a subjective mood-related disorder with an unclear mechanism, depression has many problems in its diagnosis, which offers great space and value for research. At present, the methods commonly used to judge whether an animal model of depression has been established are mainly by biochemical index detection and behavioral tests, both of which inevitably cause stress in animals. Stress-induced hair growth inhibition has been widely reported in humans and animals. The simplicity of collecting hair samples and the observable state of hair growth has significant advantages; we tried to explore whether the parameters related to hair growth could be used as auxiliary indicators to evaluate a depression model in animals. The length and weight of the hair were calculated. Correlation analysis was conducted between the depressive behavioral results and the glucocorticoid levels in hair and serum. Learned helplessness combined with chronic restraint stress, and chronic unpredictable stress in the animal were detectable by superficial observation, weight ratio, and length of hair, and follicular development scores were significantly reduced compared to the control. The hair growth parameters of rats with depression, the rise in corticosterone, and the corresponding changes in behavioral parameters were significantly correlated. The neurotrophic factors, glucocorticoid-receptor (GR), brain-derived neurotrophic factor (BDNF), fibroblast growth factor 2 (FGF2), and fibroblast growth factor 5 (FGF5), are associated with depression and hair growth. Significant differences were detected between the stress and control groups, suggesting that the mechanism underlying the stress-phenomenon inhibition of hair growth may be related to growth factor mediation.
Collapse
Affiliation(s)
- Si-Yu Ren
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Hunan University of Chinese Medicine, Changsha Hunan, 410208, China.
| | - Ya-Ni Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Man-Jiang-Cuo Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Bi-Rui Wen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Hunan University of Chinese Medicine, Changsha Hunan, 410208, China.
| | - Cong-Yuan Xia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Xun Li
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Hunan University of Chinese Medicine, Changsha Hunan, 410208, China.
| | - Hui-Qin Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Hunan University of Chinese Medicine, Changsha Hunan, 410208, China.
| | - Rui-Ping Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Hunan University of Chinese Medicine, Changsha Hunan, 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
42
|
Ateya AI, Hendam BM, Radwan HA, Abo Elfadl EA, Al-Sharif MM. Using Linear Discriminant Analysis to Characterize Novel Single Nucleotide Polymorphisms and Expression Profile Changes in Genes of Three Breeds of Rabbit ( Oryctolagus cuniculus). Comp Med 2021; 71:222-234. [PMID: 34034856 DOI: 10.30802/aalas-cm-20-000103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The objectives of this study were to investigate polymorphisms and changes in expression patterns of the genes FGF5, PGAM2, TLR2 and IL10 in V-line, Baladi Black and Baladi Red rabbits. Blood samples were collected from 180 healthy rabbits (n = 60 for each breed) for DNA extraction and DNA sequencing. At 3 mo of age, 20 randomly selected females from each breed were euthanized for gene expression quantification in muscle and spleen samples. PCR-DNA sequencing revealed single nucleotide polymorphisms (SNPs) among the 3 breeds that provided a monomorphic pattern for 3 of the 4 genes analyzed. Linear discriminant analysis (LDA) was used to classify the SNPs of these genes in the 3 breeds. The overall percentage of correctly classified cases for the model was 75%, with percentages of 100% for FGF5, 63% for IL10, and 100% for TLR2. Breed was a significant predictor for gene classification with estimation (1.00). Expression profiles of the genes were higher in V-line as compared with Baladi Black or Baladi Red. The LDA discriminated the 3 breeds using results of the gene expression profile as predictors for classification. Overall, 73% of the cases were correctly classified by gene expression. The identified SNPs, along with changes in mRNA levels of FGF5, PGAM2, TLR2, and IL10, could provide a biomarker for efficient characterization of rabbit breeds and could thus help develop marker assisted selection for growth and immune traits in rabbits.
Collapse
Affiliation(s)
- Ahmed I Ateya
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., Mansoura, Mansoura, Egypt;,
| | - Basma M Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., Mansoura, Mansoura, Egypt
| | - Hend A Radwan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., Mansoura, Mansoura, Egypt
| | - Eman A Abo Elfadl
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., Mansoura, Mansoura, Egypt
| | - Mona M Al-Sharif
- Department of Biology, College of Science, Jeddah University, Jeddah, Saudi Arabia
| |
Collapse
|
43
|
Chovatiya G, Ghuwalewala S, Walter LD, Cosgrove BD, Tumbar T. High-resolution single-cell transcriptomics reveals heterogeneity of self-renewing hair follicle stem cells. Exp Dermatol 2021; 30:457-471. [PMID: 33319418 PMCID: PMC8016723 DOI: 10.1111/exd.14262] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022]
Abstract
Multipotent bulge stem cells (SCs) fuel the hair follicle (HF) cyclic growth during adult skin homeostasis, but their intrinsic molecular heterogeneity is not well understood. These hair follicle stem cells (HFSCs) engage in bouts of self-renewal, migration and differentiation during the hair cycle. Here, we perform high-resolution single-cell RNA sequencing (scRNA-seq) of HFSCs sorted as CD34+ /K14-H2BGFP+ from mouse skin at mid-anagen, the self-renewal stage. We dissect the transcriptomic profiles and unravel population-specific transcriptional heterogeneity. Unsupervised clustering reveals five major HFSC populations, which distinguished by known markers associated with both the bulge and the outer root sheath (ORS) underneath. These populations include quiescent bulge, ORS cellular states and proliferative cells. Lineage trajectory analysis predicted the prospective differentiation path of these cellular states and their corresponding self-renewing subpopulations. The bulge population itself can be further sub-divided into distinct subpopulations that can be mapped to the upper, mid and lower bulge regions, and present a decreasing quiescence score. Gene set enrichment analysis (GSEA) revealed new markers and suggested potentially distinct functions of the ORS and bulge subpopulations. This included communications between the upper bulge subpopulation and sensory nerves and between the upper ORS and skin vasculature, as well as enrichment of a bulge subset in cell migratory functions. The lower ORS enriched genes may potentially enable nutrients passing from the surrounding fat and vasculature cells towards the proliferating hair matrix cells. Thus, we provide a comprehensive account of HFSC molecular heterogeneity during their self-renewing stage, which enables future HF functional studies.
Collapse
Affiliation(s)
- Gopal Chovatiya
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Sangeeta Ghuwalewala
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Lauren D. Walter
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Benjamin D. Cosgrove
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Tudorita Tumbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
44
|
Thomas HF, Kotova E, Jayaram S, Pilz A, Romeike M, Lackner A, Penz T, Bock C, Leeb M, Halbritter F, Wysocka J, Buecker C. Temporal dissection of an enhancer cluster reveals distinct temporal and functional contributions of individual elements. Mol Cell 2021; 81:969-982.e13. [PMID: 33482114 DOI: 10.1016/j.molcel.2020.12.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/09/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
Many genes are regulated by multiple enhancers that often simultaneously activate their target gene. However, how individual enhancers collaborate to activate transcription is not well understood. Here, we dissect the functions and interdependencies of five enhancer elements that together activate Fgf5 expression during exit from naive murine pluripotency. Four intergenic elements form a super-enhancer, and most of the elements contribute to Fgf5 induction at distinct time points. A fifth, poised enhancer located in the first intron contributes to Fgf5 expression at every time point by amplifying overall Fgf5 expression levels. Despite low individual enhancer activity, together these elements strongly induce Fgf5 expression in a super-additive fashion that involves strong accumulation of RNA polymerase II at the intronic enhancer. Finally, we observe a strong anti-correlation between RNA polymerase II levels at enhancers and their distance to the closest promoter, and we identify candidate elements with properties similar to the intronic enhancer.
Collapse
Affiliation(s)
- Henry F Thomas
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria
| | - Elena Kotova
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria
| | - Swathi Jayaram
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria
| | - Axel Pilz
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria
| | - Merrit Romeike
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria
| | - Andreas Lackner
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Martin Leeb
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria
| | | | - Joanna Wysocka
- Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christa Buecker
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
45
|
Ji S, Zhu Z, Sun X, Fu X. Functional hair follicle regeneration: an updated review. Signal Transduct Target Ther 2021; 6:66. [PMID: 33594043 PMCID: PMC7886855 DOI: 10.1038/s41392-020-00441-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/25/2020] [Accepted: 11/03/2020] [Indexed: 01/31/2023] Open
Abstract
The hair follicle (HF) is a highly conserved sensory organ associated with the immune response against pathogens, thermoregulation, sebum production, angiogenesis, neurogenesis and wound healing. Although recent advances in lineage-tracing techniques and the ability to profile gene expression in small populations of cells have increased the understanding of how stem cells operate during hair growth and regeneration, the construction of functional follicles with cycling activity is still a great challenge for the hair research field and for translational and clinical applications. Given that hair formation and cycling rely on tightly coordinated epithelial-mesenchymal interactions, we thus review potential cell sources with HF-inducive capacities and summarize current bioengineering strategies for HF regeneration with functional restoration.
Collapse
Affiliation(s)
- Shuaifei Ji
- grid.506261.60000 0001 0706 7839Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048 People’s Republic of China
| | - Ziying Zhu
- grid.506261.60000 0001 0706 7839Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048 People’s Republic of China
| | - Xiaoyan Sun
- grid.506261.60000 0001 0706 7839Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048 People’s Republic of China
| | - Xiaobing Fu
- grid.506261.60000 0001 0706 7839Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048 People’s Republic of China
| |
Collapse
|
46
|
Specific inhibition of FGF5-induced cell proliferation by RNA aptamers. Sci Rep 2021; 11:2976. [PMID: 33536494 PMCID: PMC7858594 DOI: 10.1038/s41598-021-82350-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
Fibroblast growth factor 5 (FGF5) is a crucial regulator of hair growth and an oncogenic factor in several human cancers. To generate FGF5 inhibitors, we performed Systematic Evolution of Ligands by EXponential enrichment and obtained novel RNA aptamers that have high affinity to human FGF5. These aptamers inhibited FGF5-induced cell proliferation, but did not inhibit FGF2-induced cell proliferation. Surface plasmon resonance demonstrated that one of the aptamers, F5f1, binds to FGF5 tightly (Kd = 0.7 ± 0.2 nM), but did not fully to FGF1, FGF2, FGF4, FGF6, or FGFR1. Based on sequence and secondary structure similarities of the aptamers, we generated the truncated aptamer, F5f1_56, which has higher affinity (Kd = 0.118 ± 0.003 nM) than the original F5f1. Since the aptamers have high affinity and specificity to FGF5 and inhibit FGF5-induced cell proliferation, they may be candidates for therapeutic use with FGF5-related diseases or hair disorders.
Collapse
|
47
|
Kim YJ, Jung N, Kim N, Ha JC, Park JH, Han K, Chang M, Lee J, Kim CH. Effect of cysteine-free human fibroblast growth factor-5s mutant (FGF5sC93S) on hair growth. Dermatol Ther 2020; 33:e14530. [PMID: 33174271 DOI: 10.1111/dth.14530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/27/2022]
Abstract
Treatment for hair loss is largely limited, and any beneficial effects are often transient. Based on the critical role of the FGF5 isoform, FGF5s, in the hair growth cycle, it may be a good therapeutic candidate for the prevention of hair loss, as well as the promotion of hair growth. To investigate its potential use for hair growth, a mutant form of the FGF5s protein (FGF5sC93S) was generated, expressed, and purified. The FGF5sC93S mutant was able to antagonize FGF5-induced mitogenic activity, which normally triggers the conversion of hair follicles from the anagen phase to the catagen phase. In addition, the FGF5sC93S mutant efficiently suppressed gene expression induced by FGF5 both human outer root sheath (hORS) and human dermal papilla (hDP) cells. Administration of FGF5sC93S proteins onto the scalps of human subjects significantly increased the total number of hairs at 24 weeks. Together, our data demonstrate that a mutant form of the FGF5s protein could be used as a potential hair promoting agent.
Collapse
Affiliation(s)
- Yu Jin Kim
- Paean Biotechnology, Inc., Daejeon, South Korea
| | - Narae Jung
- Paean Biotechnology, Inc., Daejeon, South Korea
| | - Nayoung Kim
- Paean Biotechnology, Inc., Daejeon, South Korea
| | | | | | - Kyuboem Han
- Paean Biotechnology, Inc., Daejeon, South Korea
| | - Minyoul Chang
- Skinmed Clinical Trials Center, Daejeon, South Korea
| | - Jeunghoon Lee
- Skinmed Clinical Trials Center, Daejeon, South Korea
| | | |
Collapse
|
48
|
Harshuk-Shabso S, Dressler H, Niehrs C, Aamar E, Enshell-Seijffers D. Fgf and Wnt signaling interaction in the mesenchymal niche regulates the murine hair cycle clock. Nat Commun 2020; 11:5114. [PMID: 33037205 PMCID: PMC7547083 DOI: 10.1038/s41467-020-18643-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 09/04/2020] [Indexed: 12/31/2022] Open
Abstract
Tissue growth in the adult is an orchestrated process that often requires biological clocks to time stem cell and progenitor activity. Here, we employed the hair follicle, which cycles between growth and regression in a timely-restricted mode, to show that some components of the hair cycle clock reside within the mesenchymal niche of the hair follicle, the dermal papilla (DP), and both Fgf and Wnt signaling pathways interact within the DP to regulate the expression of these components that include Wnt agonists (Rspondins) and antagonists (Dkk2 and Notum). The levels of Wnt agonists and antagonists in the DP are progressively reduced and elevated during the growth phase, respectively. Consequently, Wnt signaling activity in the overlying epithelial progenitor cells decreases, resulting in the induction of the regression phase. Remarkably, DP properties allow Wnt activity in the DP to persist despite the Wnt-inhibiting milieu and consequently synchronize the induction and progression of the regression phase. This study provides insight into the importance of signaling crosstalk in coupling progenitors and their niche to regulate tissue growth. The underlying mechanisms regulating the mouse hair cycle remain poorly understood. Here, the authors find that Fgf and Wnt signaling pathways interact in the mesenchymal niche of the hair follicle to regulate the molecular clock that dictates the duration of hair growth.
Collapse
Affiliation(s)
- Sarina Harshuk-Shabso
- The Laboratory of Developmental Biology, The Azrieli Faculty of Medicine, Bar-Ilan university, Safed, Israel
| | - Hila Dressler
- The Laboratory of Developmental Biology, The Azrieli Faculty of Medicine, Bar-Ilan university, Safed, Israel
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany.,Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Emil Aamar
- The Laboratory of Developmental Biology, The Azrieli Faculty of Medicine, Bar-Ilan university, Safed, Israel
| | - David Enshell-Seijffers
- The Laboratory of Developmental Biology, The Azrieli Faculty of Medicine, Bar-Ilan university, Safed, Israel.
| |
Collapse
|
49
|
Kinoshita-Ise M, Tsukashima A, Kinoshita T, Yamazaki Y, Ohyama M. Altered FGF expression profile in human scalp-derived fibroblasts upon WNT activation: implication of their role to provide folliculogenetic microenvironment. Inflamm Regen 2020; 40:35. [PMID: 32973962 PMCID: PMC7507293 DOI: 10.1186/s41232-020-00141-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/04/2020] [Indexed: 01/12/2023] Open
Abstract
Background Hair follicle (HF) formation and growth are sustained by epithelial-mesenchymal interaction via growth factors and cytokines. Pivotal roles of FGFs on HF regeneration and neogenesis have been reported mainly in rodent models. FGF expression is regulated by upstream pathways, represented by canonical WNT signaling; however, how FGFs influence on human folliculogenesis remains elusive. The aim of this study is to assess if human scalp-derived fibroblasts (sFBs) are able to modulate their FGF expression profile in response to WNT activation and to evaluate the influence of WNT-activated or suppressed FGFs on folliculogenesis. Methods Dermal papilla cells (DPCs), dermal sheath cells (DSCs), and sFBs were isolated from the human scalp and cultured independently. The gene expression profile of FGFs in DPCs, DSCs, and sFBs and the influence of WNT activator, CHIR99021, on FGF expression pattern in sFBs were evaluated by reverse transcription polymerase chain reaction, which were confirmed at protein level by western blotting analysis. The changes in the expression of DPC or keratinocyte (KC) biomarkers under the presence of FGF7 or 9 were examined in both single and co-culture assay of DPCs and/or KCs. The influence of FGF 7 and FGF 9 on hair morphogenesis and growth was analyzed in vivo using mouse chamber assay. Results In single culture, sFBs were distinguished from DPCs and DSCs by relatively high expression of FGF5 and FGF18, potential inducers of hair cycle retardation or catagen phase. In WNT-activated state, sFBs downregulated FGF7 while upregulating FGF9, a positive regulator of HF morphogenesis, FGF16 and FGF20 belonging to the same FGF subfamily. In addition, CHIR99021, a WNT activator, dose-dependently modulated FGF7 and 9 expression to be folliculogenic. Altered expressions of FGF7 and FGF9 by CHIR99021 were confirmed at protein level. Supplementation of FGF9 to cultured DPCs resulted in upregulation of representative DP biomarkers and this tendency was sustained, when DPCs were co-cultured with KCs. In mouse chamber assay, FGF9 increased both the number and the diameter of newly formed HFs, while FGF7 decreased HF diameter. Conclusion The results implied that sFBs support HF formation by modulating regional FGF expression profile responding to WNT activation.
Collapse
Affiliation(s)
- Misaki Kinoshita-Ise
- Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611 Japan.,Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku, Tokyo, 160-8582 Japan
| | - Aki Tsukashima
- Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611 Japan
| | - Tomonari Kinoshita
- Division of Cellular Signaling Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Yoshimi Yamazaki
- Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611 Japan
| | - Manabu Ohyama
- Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611 Japan.,Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku, Tokyo, 160-8582 Japan
| |
Collapse
|
50
|
Chen S, Xie W, Liu Z, Shan H, Chen M, Song Y, Yu H, Lai L, Li Z. CRISPR Start-Loss: A Novel and Practical Alternative for Gene Silencing through Base-Editing-Induced Start Codon Mutations. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:1062-1073. [PMID: 32854061 PMCID: PMC7452150 DOI: 10.1016/j.omtn.2020.07.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 01/22/2023]
Abstract
CRISPR-Cas9-mediated gene knockout and base-editing-associated induction of STOP codons (iSTOP) have been widely used to exterminate the function of a coding gene, while they have been reported to exhibit side effects. In this study, we propose a novel and practical alternative method referred to as CRISPR Start-Loss (CRISPR-SL), which eliminates gene expression by utilizing both adenine base editors (ABEs) and cytidine base editors (CBEs) to disrupt the initiation codon (ATG). CRISPR-SL has been verified to be a feasible strategy on the cellular and embryonic levels (mean editing efficiencies up to 30.67% and 73.50%, respectively) and in two rabbit models mimicking Otc deficiency (Otc gene) and long hair economic traits (Fgf5 gene).
Collapse
Affiliation(s)
- Siyu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| | - Wanhua Xie
- The Precise Medicine Center, Shenyang Medical College, Shenyang, China
| | - Zhiquan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| | - Huanhuan Shan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| | - Mao Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| | - Yuning Song
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| | - Hao Yu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China.
| | - Liangxue Lai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guang Dong Laboratory (GRMH-GDL), Guangzhou 510005, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China.
| |
Collapse
|