1
|
Schaffter SW, Kengmana E, Fern J, Byrne SR, Schulman R. Strategies to Reduce Promoter-Independent Transcription of DNA Nanostructures and Strand Displacement Complexes. ACS Synth Biol 2024; 13:1964-1977. [PMID: 38885464 DOI: 10.1021/acssynbio.3c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Bacteriophage RNA polymerases, in particular T7 RNA polymerase (RNAP), are well-characterized and popular enzymes for many RNA applications in biotechnology both in vitro and in cellular settings. These monomeric polymerases are relatively inexpensive and have high transcription rates and processivity to quickly produce large quantities of RNA. T7 RNAP also has high promoter-specificity on double-stranded DNA (dsDNA) such that it only initiates transcription downstream of its 17-base promoter site on dsDNA templates. However, there are many promoter-independent T7 RNAP transcription reactions involving transcription initiation in regions of single-stranded DNA (ssDNA) that have been reported and characterized. These promoter-independent transcription reactions are important to consider when using T7 RNAP transcriptional systems for DNA nanotechnology and DNA computing applications, in which ssDNA domains often stabilize, organize, and functionalize DNA nanostructures and facilitate strand displacement reactions. Here we review the existing literature on promoter-independent transcription by bacteriophage RNA polymerases with a specific focus on T7 RNAP, and provide examples of how promoter-independent reactions can disrupt the functionality of DNA strand displacement circuit components and alter the stability and functionality of DNA-based materials. We then highlight design strategies for DNA nanotechnology applications that can mitigate the effects of promoter-independent T7 RNAP transcription. The design strategies we present should have an immediate impact by increasing the rate of success of using T7 RNAP for applications in DNA nanotechnology and DNA computing.
Collapse
Affiliation(s)
- Samuel W Schaffter
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Eli Kengmana
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Joshua Fern
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Shane R Byrne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rebecca Schulman
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Milano L, Gautam A, Caldecott KW. DNA damage and transcription stress. Mol Cell 2024; 84:70-79. [PMID: 38103560 DOI: 10.1016/j.molcel.2023.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Genome damage and transcription are intimately linked. Tens to hundreds of thousands of DNA lesions arise in each cell each day, many of which can directly or indirectly impede transcription. Conversely, the process of gene expression is itself a source of endogenous DNA lesions as a result of the susceptibility of single-stranded DNA to damage, conflicts with the DNA replication machinery, and engagement by cells of topoisomerases and base excision repair enzymes to regulate the initiation and progression of gene transcription. Although such processes are tightly regulated and normally accurate, on occasion, they can become abortive and leave behind DNA breaks that can drive genome rearrangements, instability, or cell death.
Collapse
Affiliation(s)
- Larissa Milano
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Amit Gautam
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Keith W Caldecott
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
3
|
Caldecott KW. Causes and consequences of DNA single-strand breaks. Trends Biochem Sci 2024; 49:68-78. [PMID: 38040599 DOI: 10.1016/j.tibs.2023.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023]
Abstract
DNA single-strand breaks (SSBs) are among the most common lesions arising in human cells, with tens to hundreds of thousands arising in each cell, each day. Cells have efficient mechanisms for the sensing and repair of these ubiquitous DNA lesions, but the failure of these processes to rapidly remove SSBs can lead to a variety of pathogenic outcomes. The threat posed by unrepaired SSBs is illustrated by the existence of at least six genetic diseases in which SSB repair (SSBR) is defective, all of which are characterised by neurodevelopmental and/or neurodegenerative pathology. Here, I review current understanding of how SSBs arise and impact on critical molecular processes, such as DNA replication and gene transcription, and their links to human disease.
Collapse
Affiliation(s)
- Keith W Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK.
| |
Collapse
|
4
|
Agapov A, Olina A, Kulbachinskiy A. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3018-3041. [PMID: 35323981 PMCID: PMC8989532 DOI: 10.1093/nar/gkac174] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular DNA is continuously transcribed into RNA by multisubunit RNA polymerases (RNAPs). The continuity of transcription can be disrupted by DNA lesions that arise from the activities of cellular enzymes, reactions with endogenous and exogenous chemicals or irradiation. Here, we review available data on translesion RNA synthesis by multisubunit RNAPs from various domains of life, define common principles and variations in DNA damage sensing by RNAP, and consider existing controversies in the field of translesion transcription. Depending on the type of DNA lesion, it may be correctly bypassed by RNAP, or lead to transcriptional mutagenesis, or result in transcription stalling. Various lesions can affect the loading of the templating base into the active site of RNAP, or interfere with nucleotide binding and incorporation into RNA, or impair RNAP translocation. Stalled RNAP acts as a sensor of DNA damage during transcription-coupled repair. The outcome of DNA lesion recognition by RNAP depends on the interplay between multiple transcription and repair factors, which can stimulate RNAP bypass or increase RNAP stalling, and plays the central role in maintaining the DNA integrity. Unveiling the mechanisms of translesion transcription in various systems is thus instrumental for understanding molecular pathways underlying gene regulation and genome stability.
Collapse
Affiliation(s)
- Aleksei Agapov
- Correspondence may also be addressed to Aleksei Agapov. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| | - Anna Olina
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute” Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- To whom correspondence should be addressed. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| |
Collapse
|
5
|
Yu Z, Centola M, Valero J, Matthies M, Šulc P, Famulok M. A Self-Regulating DNA Rotaxane Linear Actuator Driven by Chemical Energy. J Am Chem Soc 2021; 143:13292-13298. [PMID: 34398597 DOI: 10.1021/jacs.1c06226] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nature-inspired molecular machines can exert mechanical forces by controlling and varying the distance between two molecular subunits in response to different inputs. Here, we present an automated molecular linear actuator composed of T7 RNA polymerase (T7RNAP) and a DNA [2]rotaxane. A T7 promoter region and terminator sequences are introduced into the rotaxane axle to achieve automated and iterative binding and detachment of T7RNAP in a self-controlled fashion. Transcription by T7RNAP is exploited to control the release of the macrocycle from a single-stranded (ss) region in the T7 promoter to switch back and forth from a static state (hybridized macrocycle) to a dynamic state (movable macrocycle). During transcription, the T7RNAP keeps restricting the movement range on the axle available for the interlocked macrocycle and prevents its return to the promotor region. Since this range is continuously depleted as T7RNAP moves along, a directional and active movement of the macrocycle occurs. When it reaches the transcription terminator, the polymerase detaches, and the system can reset as the macrocycle moves back to hybridize again to the ss-promoter docking site. The hybridization is required for the initiation of a new transcription cycle. The rotaxane actuator runs autonomously and repeats these self-controlled cycles of transcription and movement as long as NTP-fuel is available.
Collapse
Affiliation(s)
- Ze Yu
- LIMES Chemical Biology Unit, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Mathias Centola
- LIMES Chemical Biology Unit, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.,Center of Advanced European Studies and Research, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Julián Valero
- LIMES Chemical Biology Unit, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.,Interdisciplinary Nanoscience Center - INANO-MBG, iNANO-huset, Gustav Wieds Vej 14, building 1592, 328, 8000 Århus C, Denmark
| | - Michael Matthies
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Michael Famulok
- LIMES Chemical Biology Unit, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.,Center of Advanced European Studies and Research, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
6
|
Jain N, Blauch LR, Szymanski MR, Das R, Tang SKY, Yin YW, Fire AZ. Transcription polymerase-catalyzed emergence of novel RNA replicons. Science 2020; 368:eaay0688. [PMID: 32217750 PMCID: PMC7445081 DOI: 10.1126/science.aay0688] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Transcription polymerases can exhibit an unusual mode of regenerating certain RNA templates from RNA, yielding systems that can replicate and evolve with RNA as the information carrier. Two classes of pathogenic RNAs (hepatitis delta virus in animals and viroids in plants) are copied by host transcription polymerases. Using in vitro RNA replication by the transcription polymerase of T7 bacteriophage as an experimental model, we identify hundreds of new replicating RNAs, define three mechanistic hallmarks of replication (subterminal de novo initiation, RNA shape-shifting, and interrupted rolling-circle synthesis), and describe emergence from DNA seeds as a mechanism for the origin of novel RNA replicons. These results inform models for the origins and replication of naturally occurring RNA genetic elements and suggest a means by which diverse RNA populations could be propagated as hereditary material in cellular contexts.
Collapse
Affiliation(s)
- Nimit Jain
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Lucas R Blauch
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Michal R Szymanski
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Intercollegiate Faculty of Biotechnology of the University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Y Whitney Yin
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrew Z Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Schaffter SW, Green LN, Schneider J, Subramanian HKK, Schulman R, Franco E. T7 RNA polymerase non-specifically transcribes and induces disassembly of DNA nanostructures. Nucleic Acids Res 2018; 46:5332-5343. [PMID: 29718412 PMCID: PMC6007251 DOI: 10.1093/nar/gky283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022] Open
Abstract
The use of proteins that bind and catalyze reactions with DNA alongside DNA nanostructures has broadened the functionality of DNA devices. DNA binding proteins have been used to specifically pattern and tune structural properties of DNA nanostructures and polymerases have been employed to directly and indirectly drive structural changes in DNA structures and devices. Despite these advances, undesired and poorly understood interactions between DNA nanostructures and proteins that bind DNA continue to negatively affect the performance and stability of DNA devices used in conjunction with enzymes. A better understanding of these undesired interactions will enable the construction of robust DNA nanostructure-enzyme hybrid systems. Here, we investigate the undesired disassembly of DNA nanotubes in the presence of viral RNA polymerases (RNAPs) under conditions used for in vitro transcription. We show that nanotubes and individual nanotube monomers (tiles) are non-specifically transcribed by T7 RNAP, and that RNA transcripts produced during non-specific transcription disassemble the nanotubes. Disassembly requires a single-stranded overhang on the nanotube tiles where transcripts can bind and initiate disassembly through strand displacement, suggesting that single-stranded domains on other DNA nanostructures could cause unexpected interactions in the presence of viral RNA polymerases.
Collapse
Affiliation(s)
- Samuel W Schaffter
- Department of Chemical and Biomolecular Engineering – Johns Hopkins University
| | - Leopold N Green
- Department of Mechanical Engineering – University of California - Riverside
| | - Joanna Schneider
- Department of Chemical and Biomolecular Engineering – Johns Hopkins University
| | | | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering – Johns Hopkins University
- Department of Computer Science – Johns Hopkins University
| | - Elisa Franco
- Department of Mechanical Engineering – University of California - Riverside
| |
Collapse
|
8
|
Emery NJ, Majumder S, Liu AP. Synergistic and non-specific nucleic acid production by T7 RNA polymerase and Bsu DNA polymerase catalyzed by single-stranded polynucleotides. Synth Syst Biotechnol 2018; 3:130-134. [PMID: 29900426 PMCID: PMC5995454 DOI: 10.1016/j.synbio.2018.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/21/2018] [Accepted: 02/24/2018] [Indexed: 11/18/2022] Open
Abstract
Point-of-care molecular diagnostic tests show great promise for providing accurate, timely results in low-infrastructure healthcare settings and at home. The design space for these tests is limited by a variety of possible background reactions, which often originate from relatively weak promiscuous activities of the enzymes used for nucleic acid amplification. When this background signal is amplified alongside the signal of the intended biomarker, the dynamic range of the test can be severely compromised. Therefore, a detailed knowledge of potential side reactions arising from enzyme promiscuity can improve rational design of point-of-care molecular diagnostic tests. Towards this end, we report a previously unknown synergistic reaction between T7 RNA polymerase and Bsu DNA polymerase that produces nucleic acid in the presence of single-stranded DNA or RNA. This reaction occurs in the absence of any previously reported substrates for either polymerases and compromises a theoretical microRNA amplification scheme utilizing these polymerases.
Collapse
Affiliation(s)
- Nicholas J. Emery
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Sagardip Majumder
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Biophysics Program, University of Michigan, Ann Arbor, MI, United States
- Corresponding author. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
9
|
Bertucat G, Lavery R, Prévost C. A Mechanism for RecA-Promoted Sequence Homology Recognition and Strand Exchange Between Single-Stranded DNA and Duplex DNA, via Triple-Helical Intermediates. J Biomol Struct Dyn 2016; 17 Suppl 1:147-53. [PMID: 22607418 DOI: 10.1080/07391102.2000.10506615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Abstract A central function of RecA protein during homologous recombination is to promote sequence recognition and strand exchange between a stretched and unwound single-stranded DNA, to which it is complexed, and a duplex DNA. By studying the properties of DNA under the conditions of deformation imposed by RecA, we propose a model for recognition and strand exchange at the atomic level, via unusual triple-helical intermediates. In this model, association takes place within a stretched and unwound triple helix of a new type, where the invading single strand occupies the minor groove of the duplex in a parallel orientation. Our calculations indicate that strand exchange within this structure is exothermic and results in a triple helix where the third strand interacts in the major groove, the so-called R-DNA triple helix. Preliminary calculations suggest that sequence homology recognition within the triplex of association is partial and that it is completed during strand exchange and product formation.
Collapse
Affiliation(s)
- G Bertucat
- a Laboratoire de Biochimie Théorique, CNRS UPR 9080 , Institut de Biologie Physico-Chimique , 13, rue Pierre et Marie Curie , 75005 , Paris , France
| | | | | |
Collapse
|
10
|
Lama L, Seidl CI, Ryan K. New insights into the promoterless transcription of DNA coligo templates by RNA polymerase III. Transcription 2015; 5:e27913. [PMID: 25764216 PMCID: PMC4214238 DOI: 10.4161/trns.27913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chemically synthesized DNA can carry small RNA sequence information but converting that information into small RNA is generally thought to require large double-stranded promoters in the context of plasmids, viruses and genes. We previously found evidence that circularized oligodeoxynucleotides (coligos) containing certain sequences and secondary structures can template the synthesis of small RNA by RNA polymerase III in vitro and in human cells. By using immunoprecipitated RNA polymerase III we now report corroborating evidence that this enzyme is the sole polymerase responsible for coligo transcription. The immobilized polymerase enabled experiments showing that coligo transcripts can be formed through transcription termination without subsequent 3' end trimming. To better define the determinants of productive transcription, a structure-activity relationship study was performed using over 20 new coligos. The results show that unpaired nucleotides in the coligo stem facilitate circumtranscription, but also that internal loops and bulges should be kept small to avoid secondary transcription initiation sites. A polymerase termination sequence embedded in the double-stranded region of a hairpin-encoding coligo stem can antagonize transcription. Using lessons learned from new and old coligos, we demonstrate how to convert poorly transcribed coligos into productive templates. Our findings support the possibility that coligos may prove useful as chemically synthesized vectors for the ectopic expression of small RNA in human cells.
Collapse
Affiliation(s)
- Lodoe Lama
- a Department of Chemistry; The City College of New York; The City University of New York; New York, NY USA
| | | | | |
Collapse
|
11
|
|
12
|
Iyer S, Doktycz MJ. Thrombin-mediated transcriptional regulation using DNA aptamers in DNA-based cell-free protein synthesis. ACS Synth Biol 2014; 3:340-6. [PMID: 24059754 DOI: 10.1021/sb4000756] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Realizing the potential of cell-free systems will require development of ligand-sensitive gene promoters that control gene expression in response to a ligand of interest. Here, we describe an approach to designing ligand-sensitive transcriptional control in cell-free systems that is based on the combination of a DNA aptamer that binds thrombin and the T7 bacteriophage promoter. Placement of the aptamer near the T7 promoter, and using a primarily single-stranded template, results in up to a 6-fold change in gene expression in a ligand concentration-dependent manner. We further demonstrate that the sensitivity to thrombin concentration and the fold change in expression can be tuned by altering the position of the aptamer. The results described here pave the way for the use of DNA aptamers to achieve modular regulation of transcription in response to a wide variety of ligands in cell-free systems.
Collapse
Affiliation(s)
- Sukanya Iyer
- Graduate
Program
in Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Mitchel J. Doktycz
- Graduate
Program
in Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Center for
Nanophase
Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
13
|
Belotserkovskii BP, Mirkin SM, Hanawalt PC. DNA sequences that interfere with transcription: implications for genome function and stability. Chem Rev 2013; 113:8620-37. [PMID: 23972098 DOI: 10.1021/cr400078y] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Neil AJ, Belotserkovskii BP, Hanawalt PC. Transcription blockage by bulky end termini at single-strand breaks in the DNA template: differential effects of 5' and 3' adducts. Biochemistry 2012; 51:8964-70. [PMID: 23066636 DOI: 10.1021/bi301240y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RNA polymerases from phage-infected bacteria and mammalian cells have been shown to bypass single-strand breaks (SSBs) with a single-nucleotide gap in the template DNA strand during transcription elongation; however, the SSB bypass efficiency varies significantly depending upon the backbone end chemistries at the break. Using a reconstituted T7 phage transcription system (T7 RNAP) and RNA polymerase II (RNAPII) in HeLa cell nuclear extracts, we observe a slight reduction in the level of transcription arrest at SSBs with no gap as compared to those with a single-nucleotide gap. We have shown that biotin and carbon-chain moieties linked to the 3' side, and in select cases the 5' side, of an SSB in the template strand strongly increase the level of transcription arrest when compared to unmodified SSBs. We also find that a small carbon-chain moiety linked to the upstream side of an SSB aids transcriptional bypass of SSBs for both T7 RNAP and RNAP II. Analysis of transcription across SSBs flanked by bulky 3' adducts reveals the ability of 3' end chemistries to arrest T7 RNAP in a size-dependent manner. T7 RNAP is also completely arrested when 3' adducts or 3'-phosphate groups are placed opposite 5'-phosphate groups at an SSB. We have also observed that a biotinylated thymine in the template strand (without a break) does not pose a strong block to transcription. Taken together, these results emphasize the importance of the size of 3', but usually not 5', end chemistries in arresting transcription at SSBs, substantiating the notion that bulky 3' lesions (e.g., topoisomerase cleavable complexes, 3'-phosphoglycolates, and 3'-unsaturated aldehydes) pose very strong blocks to transcribing RNA polymerases. These findings have implications for the processing of DNA damage through SSB intermediates and the mechanism of SSB bypass by T7 RNAP and mammalian RNAPII.
Collapse
Affiliation(s)
- Alexander J Neil
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | | | | |
Collapse
|
15
|
DNAPKcs-dependent arrest of RNA polymerase II transcription in the presence of DNA breaks. Nat Struct Mol Biol 2012; 19:276-82. [PMID: 22343725 DOI: 10.1038/nsmb.2224] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 12/02/2011] [Indexed: 01/02/2023]
Abstract
DNA double-strand break (DSB) repair interferes with ongoing cellular processes, including replication and transcription. Although the process of replication stalling upon collision of replication forks with damaged DNA has been extensively studied, the fate of elongating RNA polymerase II (RNAPII) that encounters a DSB is not well understood. We show that the occurrence of a single DSB at a human RNAPII-transcribed gene leads to inhibition of transcription elongation and reinitiation. Upon inhibition of DNA protein kinase (DNAPK), RNAPII bypasses the break and continues transcription elongation, suggesting that it is not the break per se that inhibits the processivity of RNAPII, but the activity of DNAPK. We also show that the mechanism of DNAPK-mediated transcription inhibition involves the proteasome-dependent pathway. The results point to the pivotal role of DNAPK activity in the eviction of RNAPII from DNA upon encountering a DNA lesion.
Collapse
|
16
|
Nakano T, Ouchi R, Kawazoe J, Pack SP, Makino K, Ide H. T7 RNA polymerases backed up by covalently trapped proteins catalyze highly error prone transcription. J Biol Chem 2012; 287:6562-72. [PMID: 22235136 DOI: 10.1074/jbc.m111.318410] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RNA polymerases (RNAPs) transcribe genes through the barrier of nucleoproteins and site-specific DNA-binding proteins on their own or with the aid of accessory factors. Proteins are often covalently trapped on DNA by DNA damaging agents, forming DNA-protein cross-links (DPCs). However, little is known about how immobilized proteins affect transcription. To elucidate the effect of DPCs on transcription, we constructed DNA templates containing site-specific DPCs and performed in vitro transcription reactions using phage T7 RNAP. We show here that DPCs constitute strong but not absolute blocks to in vitro transcription catalyzed by T7 RNAP. More importantly, sequence analysis of transcripts shows that RNAPs roadblocked not only by DPCs but also by the stalled leading RNAP become highly error prone and generate mutations in the upstream intact template regions. This contrasts with the transcriptional mutations induced by conventional DNA lesions, which are delivered to the active site or its proximal position in RNAPs and cause direct misincorporation. Our data also indicate that the trailing RNAP stimulates forward translocation of the stalled leading RNAP, promoting the translesion bypass of DPCs. The present results provide new insights into the transcriptional fidelity and mutual interactions of RNAPs that encounter persistent roadblocks.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The majority of human cells do not multiply continuously but are quiescent or slow-replicating and devote a large part of their energy to transcription. When DNA damage in the transcribed strand of an active gene is bypassed by a RNA polymerase, they can miscode at the damaged site and produce mutant transcripts. This process is known as transcriptional mutagenesis and, as discussed in this Perspective, could lead to the production of mutant proteins and might therefore be important in tumour development.
Collapse
Affiliation(s)
- Damien Brégeon
- Université Paris Sud-11, Institut de Génétique et Microbiologie, CNRS UMR 8621, Bât 400, F-91405 Orsay Cedex, France, Tel : +33 1 69 15 35 61, Fax : +33 1 69 15 46 29,
| | - Paul W. Doetsch
- Departments of Biochemistry and Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, 1510 Clifton Rd NE, Atlanta, Georgia 30322, USA, Tel : +1 (404) 727-0409, Fax : +1 (404) 727-2618,
| |
Collapse
|
18
|
Abasic sites and strand breaks in DNA cause transcriptional mutagenesis in Escherichia coli. Proc Natl Acad Sci U S A 2010; 107:3657-62. [PMID: 20142484 DOI: 10.1073/pnas.0913191107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA damage occurs continuously, and faithful replication and transcription are essential for maintaining cell viability. Cells in nature are not dividing and replicating DNA often; therefore it is important to consider the outcome of RNA polymerase (RNAP) encounters with DNA damage. Base damage in the DNA can affect transcriptional fidelity, leading to production of mutant mRNA and protein in a process termed transcriptional mutagenesis (TM). Abasic (AP) sites and strand breaks are frequently occurring, spontaneous damages that are also base excision repair (BER) intermediates. In vitro studies have demonstrated that these lesions can be bypassed by RNAP; however this has never been assessed in vivo. This study demonstrates that RNAP is capable of bypassing AP sites and strand breaks in Escherichia coli and results in TM through adenine incorporation in nascent mRNA. Elimination of the enzymes that process these lesions further increases TM; however, such mutants can still complete repair by other downstream pathways. These results show that AP sites and strand breaks can result in mutagenic RNAP bypass and have important implications for the biologic endpoints of DNA damage.
Collapse
|
19
|
Belotserkovskii BP, Liu R, Hanawalt PC. Peptide nucleic acid (PNA) binding and its effect on in vitro transcription in friedreich's ataxia triplet repeats. Mol Carcinog 2009; 48:299-308. [PMID: 19306309 DOI: 10.1002/mc.20486] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Peptide nucleic acids (PNAs) are DNA mimics in which peptide-like linkages are substituted for the phosphodiester backbone. Homopyrimidine PNAs can invade double-stranded DNA containing the homologous sequence by displacing the homopyrimidine strand from the DNA duplex and forming a PNA/DNA/PNA triplex with the complementary homopurine strand. Among biologically interesting targets for triplex-forming PNA are (GAA/CTT)(n) repeats. Expansion of these repeats results in partial inhibition of transcription in the frataxin gene, causing Friedreich's ataxia. We have studied PNA binding and its effect on T7 RNA polymerase transcription in vitro for short repeats (n = 3) and for long repeats (n = 39), placed in both possible orientations relative to the T7 promoter such that either the GAA-strand, or the CTT-strand serves as the template for transcription. In all cases PNA bound specifically and efficiently to its target sequence. For the short insert, PNA binding to the template strand caused partial transcription blockage with well-defined sites of RNA product truncation in the region of the PNA-binding sequence, whereas binding to the nontemplate strand did not block transcription. However, PNA binding to long repeats, whether in the template or the nontemplate strand, resulted in a dramatic reduction of the amount of full-length transcription product, although in the case of the nontemplate strand there were no predominant truncation sites. Biological implications of these results are discussed.
Collapse
|
20
|
Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 2008; 9:958-70. [PMID: 19023283 DOI: 10.1038/nrm2549] [Citation(s) in RCA: 777] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Expressed genes are scanned by translocating RNA polymerases, which sensitively detect DNA damage and initiate transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes lesions from the template DNA strands of actively transcribed genes. Human hereditary diseases that present a deficiency only in TCR are characterized by sunlight sensitivity without enhanced skin cancer. Although multiple gene products are implicated in TCR, we still lack an understanding of the precise signals that can trigger this pathway. Futile cycles of TCR at naturally occurring non-canonical DNA structures might contribute to genomic instability and genetic disease.
Collapse
|
21
|
Kuraoka I. Effects of DNA Lesions on Transcription Elongation by RNA Polymerases. Genes Environ 2008. [DOI: 10.3123/jemsge.30.63] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
22
|
Abstract
Each day tens of thousands of DNA single-strand breaks (SSBs) arise in every cell from the attack of deoxyribose and DNA bases by reactive oxygen species and other electrophilic molecules. DNA double-strand breaks (DSBs) also arise, albeit at a much lower frequency, from similar attacks and from the encounter of unrepaired SSBs and possibly other DNA structures by DNA replication forks. DSBs are also created during normal development of the immune system. Defects in the cellular response to DNA strand breaks underpin many human diseases, including disorders associated with cancer predisposition, immune dysfunction, radiosensitivity, and neurodegeneration. Here we provide an overview of the genetic diseases associated with defects in the repair/response to DNA strand breaks.
Collapse
Affiliation(s)
- Peter J McKinnon
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
23
|
Marietta C, Brooks PJ. Transcriptional bypass of bulky DNA lesions causes new mutant RNA transcripts in human cells. EMBO Rep 2007; 8:388-93. [PMID: 17363972 PMCID: PMC1852755 DOI: 10.1038/sj.embor.7400932] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 01/19/2007] [Accepted: 01/19/2007] [Indexed: 12/22/2022] Open
Abstract
Here, we characterize the mutant transcripts resulting from bypass of an 8,5'-cyclo-2'-deoxyadenosine (cyclo-dA) or cyclobutane pyrimidine dimer (CPD) by human RNA polymerase II (Pol II) in vivo. With the cyclo-dA lesion, we observed two new types of mutant transcripts. In the first type, the polymerase inserted uridine opposite the lesion and then misincorporated adenosine opposite the template deoxyadenosine downstream (5') of the lesion. The second type contained deletions of 7, 13 or 21 nucleotides (nt) after uridine incorporation opposite the lesion. The frequency of the different types of transcript from the cyclo-dA lesion in mutant human cell lines suggests that the Cockayne syndrome B protein affects the probability of deletion transcript formation. With the CPD-containing construct, we also detected rare transcripts containing 12 nt deletions. These results indicate that RNA pol II in living human cells can bypass helix-distorting DNA lesions that are substrates for nucleotide excision repair, resulting in transcriptional mutagenesis.
Collapse
Affiliation(s)
- Cheryl Marietta
- Section on Molecular Neurobiology, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, 5625 Fishers Lane, Room 3S-32, MSC 9412, Bethesda, Maryland 20892, USA
| | - Philip J Brooks
- Section on Molecular Neurobiology, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, 5625 Fishers Lane, Room 3S-32, MSC 9412, Bethesda, Maryland 20892, USA
- Tel: +1 301 496 7920; Fax: +1 301 480 2839; E-mail:
| |
Collapse
|
24
|
Pedersen AE. The potential for induction of autoimmune disease by a randomly-mutated self-antigen. Med Hypotheses 2007; 68:1240-6. [PMID: 17197112 DOI: 10.1016/j.mehy.2006.10.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Accepted: 10/22/2006] [Indexed: 11/15/2022]
Abstract
The pathology of most autoimmune diseases is well described. However, the exact event that triggers the onset of the inflammatory cascade leading to disease is less certain and most autoimmune diseases are complex idiopathic diseases with no single gene known to be causative. In many cases, a relation to an infectious disease is described, and it is thought that microbes can play a direct role in induction of autoimmunity, for instance by molecular mimicry or bystander activation of autoreactive T cells. In contrast, less attention has been given to the possibility that modified self-antigens can be immunogenic and lead to autoimmunity against wildtype self-antigens. In theory, modified self-antigens can arise by random errors and mutations during protein synthesis and would be recognized as foreign antigens by naïve B and T lymphocytes. Here, it is postulated that the initial auto-antigen is not a germline self-antigen, but rather a mutated self-antigen. This mutated self-antigen might interfere with peripheral tolerance if presented to the immune system during an infection. The infection lead to bystander activation of naïve T and B cells with specificity for mutated self-antigen and this can lead to epitopespreading in which T and B cells with specificity for wildtype self-antigens are activated as a result of general inflammation.
Collapse
Affiliation(s)
- A E Pedersen
- Laboratory of Cellular Immunology, Department of Medical Anatomy A, The Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
25
|
Stanley LK, Seidel R, van der Scheer C, Dekker NH, Szczelkun MD, Dekker C. When a helicase is not a helicase: dsDNA tracking by the motor protein EcoR124I. EMBO J 2006; 25:2230-9. [PMID: 16642041 PMCID: PMC1462981 DOI: 10.1038/sj.emboj.7601104] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 03/27/2006] [Indexed: 11/08/2022] Open
Abstract
Using a combination of single molecule and bulk solution measurements, we have examined the DNA translocation activity of a helicase, the Type I restriction modification enzyme EcoR124I. We find that EcoR124I can translocate past covalent interstrand crosslinks, inconsistent with an obligatory unwinding mechanism. Instead, translocation of the intact dsDNA occurs principally via contacts to the sugar-phosphate backbone and bases of the 3'-5' strand; contacts to the 5'-3' strand are not essential for motion but do play a key role in stabilising the motor on the DNA. A model for dsDNA translocation is presented that could be applicable to a wide range of other enzyme complexes that are also labelled as helicases but which do not have actual unwinding activity.
Collapse
Affiliation(s)
- Louise K Stanley
- DNA–Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
| | - Ralf Seidel
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | | | - Nynke H Dekker
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Mark D Szczelkun
- DNA–Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
- DNA-Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK. Tel.: +44 117 928 7439; Fax: +44 117 928 8274; E-mail:
| | - Cees Dekker
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands. Tel.: +31 15 278 6094; Fax: +31 15 278 1202; E-mail:
| |
Collapse
|
26
|
Saxowsky TT, Doetsch PW. RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis? Chem Rev 2006; 106:474-88. [PMID: 16464015 DOI: 10.1021/cr040466q] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Tina T Saxowsky
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
27
|
Seyhan AA, Vlassov AV, Johnston BH. RNA interference from multimeric shRNAs generated by rolling circle transcription. Oligonucleotides 2006; 16:353-63. [PMID: 17155910 DOI: 10.1089/oli.2006.16.353] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Methods most commonly used for producing small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) are chemical synthesis and intracellular expression from engineered vectors. For shRNAs, chemical synthesis is very costly and construction of vectors is laborious. Synthesis by phage RNA polymerases from their natural promoters results in a 5 -terminal triphosphate that can trigger an interferon (IFN) response. Moreover, due to the requirement of phage promoters for 5 - GPuPuPu sequences for transcription initiation, shRNA transcripts may have extra 5 -nucleotides that can constrain the sequences that can be targeted. Also, the 3 ends may have an additional n + 1 nucleotide not encoded by the template. Here we present a novel approach for synthesizing functional shRNAs via rolling circle transcription (RCT) of small (approximately 70 nt) single-stranded DNA circles using T7 RNA polymerase, which avoids these issues. Due to internal pairing, these circles are dumbbell-shaped. RCT produces large transcripts (>10 kb in length) consisting of multimers (>150 copies) of shRNAs in the absence of promoter, terminator, or primer sequences. Dumbbells targeting red fluorescent protein (DsRed), human tumor necrosis factor-alpha (TNF-alpha) and hepatitis C virus (HCV) internal ribosome entry site (IRES) were prepared and transcribed. The resulting long transcripts are substrates for Dicer. When introduced into 293FT and Huh7 cells, the multimeric transcripts inhibited their target genes at levels similar to an equivalent mass of monomeric shRNAs, indicating that they can enter the RNAi pathway. Thus, rolling circle transcription of small DNA dumbbells provides a new source of biologically active interfering RNA.
Collapse
|
28
|
Tornaletti S. Transcription arrest at DNA damage sites. Mutat Res 2005; 577:131-45. [PMID: 15904937 DOI: 10.1016/j.mrfmmm.2005.03.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2005] [Revised: 03/08/2005] [Accepted: 03/08/2005] [Indexed: 11/16/2022]
Abstract
Transcription arrest by RNA polymerase II at a DNA damage site on the transcribed strand is considered an essential step in initiation of transcription-coupled repair (TCR), a specialized repair pathway, which specifically removes lesions from transcribed strands of expressed genes. To understand how initiation of TCR occurs, it is necessary to characterize the properties of the transcription complex when it encounters a lesion in its path. The analysis of different types of arrested complexes should help us understand how an arrested RNA polymerase may signal the repair proteins to initiate a repair event. This article will review the recent literature describing how the presence of DNA damage along the DNA affects transcription elongation by RNA polymerase II and its implications for the initial steps of TCR.
Collapse
Affiliation(s)
- Silvia Tornaletti
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA.
| |
Collapse
|
29
|
Abstract
The association of human genetic disorders with defects in the DNA damage response is well established. Most of the major DNA repair pathways are represented by diseases in which that pathway is absent or impaired, including those responsible for repairing DNA double-strand breaks. Conspicuous by their absence, however, have been human disorders associated with defects in the repair or response to DNA single-strand breaks (SSBs). However, three papers have recently associated hereditary spinocerebellar ataxia with mutations in genes connected with SSBR. The emerging links between SSBR and neurodegeneration are discussed.
Collapse
Affiliation(s)
- Keith W Caldecott
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
30
|
Kathe SD, Shen GP, Wallace SS. Single-Stranded Breaks in DNA but Not Oxidative DNA Base Damages Block Transcriptional Elongation by RNA Polymerase II in HeLa Cell Nuclear Extracts. J Biol Chem 2004; 279:18511-20. [PMID: 14978042 DOI: 10.1074/jbc.m313598200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription and repair of many DNA helix-distorting lesions such as cyclobutane pyrimidine dimers have been shown to be coupled in cells across phyla from bacteria to humans. The signal for transcription-coupled repair appears to be a stalled transcription complex at the lesion site. To determine whether oxidative DNA lesions can block correctly initiated human RNA polymerase II, we examined the effect of site-specifically introduced oxidative damages on transcription in HeLa cell nuclear extracts. We found that transcription was blocked by single-stranded breaks, common oxidative DNA lesions, when present in the transcribed strand of the transcription template. Cyclobutane pyrimidine dimers, which have been previously shown to block transcription both in vitro and in vivo, also blocked transcription in the HeLa cell nuclear transcription assay. In contrast, the oxidative DNA base lesions, 8-oxoguanine, 5-hydroxycytosine, and thymine glycol did not inhibit transcription, although pausing was observed with the thymine glycol lesion. Thus, DNA strand breaks but not oxidative DNA base damages blocked transcription by RNA polymerase II.
Collapse
Affiliation(s)
- Scott D Kathe
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, Vermont 05405-0068, USA
| | | | | |
Collapse
|
31
|
Kalogeraki VS, Tornaletti S, Hanawalt PC. Transcription arrest at a lesion in the transcribed DNA strand in vitro is not affected by a nearby lesion in the opposite strand. J Biol Chem 2003; 278:19558-64. [PMID: 12646562 DOI: 10.1074/jbc.m301060200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cis-syn cyclobutane pyrimidine dimers (CPDs) are the most frequently formed lesions in UV-irradiated DNA. CPDs are repaired by the nucleotide excision repair pathway. Additionally, they are subject to transcription-coupled DNA repair. In the general model for transcription-coupled DNA repair, an RNA polymerase arrested at a lesion on the transcribed DNA strand facilitates repair by recruiting the repair machinery to the site of the lesion. Consistent with this model, transcription experiments in vitro have shown that CPDs in the transcribed DNA strand interfere with the translocation of prokaryotic and eukaryotic RNA polymerases. Here, we study the behavior of RNA polymerase when transcribing a template that contains two closely spaced lesions, one on each DNA strand. Similar DNA templates containing no CPD, or a single CPD on either the transcribed or the nontranscribed strand were used as controls. Using an in vitro transcription system with purified T7 RNA polymerase (T7 RNAP) or rat liver RNAP II, we characterized transcript length and efficiency of transcription in vitro. We also tested the sensitivity of the arrested RNAP II-DNA-RNA ternary complex, at a CPD in the transcribed strand, to transcription factor TFIIS. The presence of a nearby CPD in the nontranscribed strand did not affect the behavior of either RNA polymerase nor did it affect the reverse translocation ability of the RNAP II-arrested complex. Our results additionally indicate that the sequence context of a CPD affects the efficiency of T7 RNAP arrest more significantly than that of RNAP II.
Collapse
Affiliation(s)
- Virginia S Kalogeraki
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | | | |
Collapse
|
32
|
Doetsch PW. Translesion synthesis by RNA polymerases: occurrence and biological implications for transcriptional mutagenesis. Mutat Res 2002; 510:131-40. [PMID: 12459449 DOI: 10.1016/s0027-5107(02)00258-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genes of all organisms are continuously damaged by extrinsic and intrinsic physical and chemical agents. If the resulting DNA damage is left unrepaired, a number of deleterious biological consequences may result including the production of mutant proteins which can change the cellular phenotype. The majority of DNA damage-induced mutagenesis studies are based on models of DNA polymerase errors occurring in the vicinity of the lesion. In contrast, few studies have addressed the possibility that mutagenesis at the level of transcription (i.e. when RNA polymerase bypasses a lesion and a misincorporation event occurs) may also be an important source of mutant proteins, particularly in nondividing cell populations. This article reviews a number of recent studies on translesion synthesis by RNA polymerases resulting in the production of mutant transcripts (transcriptional mutagenesis). Over a dozen different types of DNA damage are now known to be bypassed with various degrees of efficiency and miscoding abilities by the transcriptional elongation machinery. Some important biological implications of transcriptional mutagenesis are discussed.
Collapse
Affiliation(s)
- Paul W Doetsch
- Department of Biochemistry and Division of Cancer Biology, Emory University School of Medicine, 4013 Rollins Research Center, Atlanta, GA 30322, USA.
| |
Collapse
|
33
|
Byrne EM, Stout A, Gott JM. Editing site recognition and nucleotide insertion are separable processes in Physarum mitochondria. EMBO J 2002; 21:6154-61. [PMID: 12426387 PMCID: PMC137202 DOI: 10.1093/emboj/cdf610] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insertional RNA editing in Physarum polycephalum is a complex process involving the specific addition of non-templated nucleotides to nascent mitochondrial transcripts. Since all four ribonucleotides are substrates for the editing activity(s), both the site of insertion and the identity of the nucleotide to be added at a particular position must be specified, but the signals for these events have yet to be elucidated. Here we report the occurrence of sporadic errors in RNAs synthesized in vitro. These mistakes, which include omission of encoded nucleotides as well as misinsertions, occur only on templates that support editing. The pattern of these misediting events indicates that editing site recognition and nucleotide addition are separable events, and that the recognition step involves features of the mitochondrial template that are required for editing. The larger deletions lack all templated nucleotides between editing sites, suggesting that the transcription/editing apparatus can "jump" from one insertion site to another, perhaps mediated by interactions with editing determinants, while smaller omissions most likely reflect misalignment of the transcript upon resumption of templated RNA synthesis.
Collapse
Affiliation(s)
| | - Angela Stout
- Center for RNA Molecular Biology, Case Western Reserve University, 2109 Adelbert Road, School of Medicine, Cleveland, OH 44106, USA
Present address: Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH 45267-0524, USA Corresponding author e-mail:
| | - Jonatha M. Gott
- Center for RNA Molecular Biology, Case Western Reserve University, 2109 Adelbert Road, School of Medicine, Cleveland, OH 44106, USA
Present address: Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH 45267-0524, USA Corresponding author e-mail:
| |
Collapse
|
34
|
Abstract
The genetic stability of living cells is continuously threatened by the presence of endogenous reactive oxygen species and other genotoxic molecules. Of particular threat are the thousands of DNA single-strand breaks that arise in each cell, each day, both directly from disintegration of damaged sugars and indirectly from the excision repair of damaged bases. If un-repaired, single-strand breaks can be converted into double-strand breaks during DNA replication, potentially resulting in chromosomal rearrangement and genetic deletion. Consequently, cells have adopted multiple pathways to ensure the rapid and efficient removal of single-strand breaks. A general feature of these pathways appears to be the extensive employment of protein-protein interactions to stimulate both the individual component steps and the overall repair reaction. Our current understanding of DNA single-strand break repair is discussed, and testable models for the architectural coordination of this important process are presented.
Collapse
Affiliation(s)
- K W Caldecott
- School of Biological Sciences, G.38 Stopford Building, University of Manchester, Oxford Road, M13 9PT, UK.
| |
Collapse
|
35
|
Mentesana PE, Chin-Bow ST, Sousa R, McAllister WT. Characterization of halted T7 RNA polymerase elongation complexes reveals multiple factors that contribute to stability. J Mol Biol 2000; 302:1049-62. [PMID: 11183774 DOI: 10.1006/jmbi.2000.4114] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have constructed a series of plasmid templates that allow T7 RNA polymerase (RNAP) to be halted at defined intervals downstream from its promoter in a preserved sequence context. While transcription complexes halted at +3 to +6 are highly unstable, complexes halted at +10 to +14 dissociate very slowly and gradually lose their capacity to extend transcripts. Complexes halted at +18 and beyond dissociate more readily, but the stability of the these complexes is enhanced significantly in the presence of the next incoming nucleotide. Unexpectedly, the stability of complexes halted at +14 and beyond was found to be lower on supercoiled templates than on linear templates. To explore this further, we used synthetic DNA templates in which the nature of the non-template (NT) strand was varied. Whereas initiation complexes are less stable in the presence of a complementary NT strand, elongation complexes are more stable in the presence of a complementary NT strand, and the presence of a non-complementary NT strand (a mismatched bubble) results in even greater stability. The results suggest that the NT strand plays an important role in displacing the nascent RNA, allowing its interaction with an RNA product binding site in the RNAP. The NT strand may also contribute to stabilization by interacting directly with the enzyme. A mutant RNAP that has a deletion in the flexible "thumb" domain responds to changes in template topology in a manner that is similar to that of the wild-type (WT) enzyme, but halted complexes formed by the mutant enzyme are particularly dependent upon the presence of the NT strand for stability. In contrast, an N-terminal RNAP mutant that has a decreased capacity to bind single-stranded RNA forms halted complexes with much lower levels of stability than the WT enzyme, and these complexes are not stabilized by the presence of the NT strand. The distinct responses of the mutant RNAPs to changes in template structure indicate that the N-terminal and thumb domains have quite different functions in stabilizing the transcription complex.
Collapse
MESH Headings
- Bacteriophage T7/enzymology
- Bacteriophage T7/genetics
- Base Sequence
- Binding Sites
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- DNA-Directed RNA Polymerases/chemistry
- DNA-Directed RNA Polymerases/genetics
- DNA-Directed RNA Polymerases/metabolism
- Enzyme Stability/drug effects
- Heparin/pharmacology
- Kinetics
- Macromolecular Substances
- Models, Genetic
- Mutation/genetics
- N-Acetylmuramoyl-L-alanine Amidase/metabolism
- Nucleic Acid Conformation
- Nucleotides/metabolism
- Plasmids/chemistry
- Plasmids/genetics
- Plasmids/metabolism
- Poly U/chemistry
- Poly U/genetics
- Poly U/metabolism
- Promoter Regions, Genetic/genetics
- Protein Structure, Tertiary
- Protein Subunits
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Templates, Genetic
- Transcription, Genetic/drug effects
- Viral Proteins
Collapse
Affiliation(s)
- P E Mentesana
- Morse Institute for Molecular Genetics, Department of Microbiology and Immunology, SUNY Health Science Center, Brooklyn, NY 11203-2098, USA.
| | | | | | | |
Collapse
|
36
|
Abstract
Some types of damage to cellular DNA have been shown to interfere with the essential transactions of replication and transcription. Not only may the translocation of the polymerase be arrested at the site of the lesion but the bound protein may encumber recognition of the lesion by repair enzymes. In the case of transcription a subpathway of excision repair, termed transcription-coupled repair (TCR) has been shown to operate on lesions in the transcribed strands of expressed genes in bacteria, yeast, mammalian cells and a number of other organisms. Certain genes in mammalian cells (e.g., CSA and CSB) have been uniquely implicated in TCR while others (e.g., XPC-HR23 and XPE) have been shown to operate in the global genomic pathway of nucleotide excision repair, but not in TCR. In order to understand the mechanism of TCR it is important to learn how an RNA polymerase elongation complex interacts with a damaged DNA template. That relationship is explored for different lesions and different RNA polymerase systems in this article.
Collapse
Affiliation(s)
- S Tornaletti
- Department of Biological Sciences, Stanford University, CA 94305-5020, USA
| | | |
Collapse
|
37
|
Smith CA, Baeten J, Taylor JS. The ability of a variety of polymerases to synthesize past site-specific cis-syn, trans-syn-II, (6-4), and Dewar photoproducts of thymidylyl-(3'-->5')-thymidine. J Biol Chem 1998; 273:21933-40. [PMID: 9705333 DOI: 10.1074/jbc.273.34.21933] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of photoproduct structure, 3' --> 5' exonuclease activity, and processivity on polynucleotide synthesis past photoproducts of thymidylyl-(3' --> 5')-thymidine was investigated. Both Moloney murine leukemia virus reverse transcriptase and 3' --> 5' exonuclease-deficient (exo-) Vent polymerase were blocked by all photoproducts, whereas Taq polymerase could slowly bypass the cis-syn dimer. T7 RNA polymerase was able to bypass all the photoproducts in the order cis-syn > Dewar > (6-4) > trans-syn-II. Klenow fragment could not bypass any of the photoproducts, but an exo- mutant could bypass the cis-syn dimer to a greater extent than the others. Likewise T7 DNA polymerase, composed of the T7 gene 5 protein and Escherichia coli thioredoxin, was blocked by all the photoproducts, but the exo- mutant Sequenase 2.0 was able to bypass them all in the order cis-syn > Dewar > trans-syn-II > (6-4). No bypass occurred with an exo- gene 5 protein in the absence of the thioredoxin processivity factor. Bypass of the cis-syn and trans-syn-II products by Sequenase 2.0 was essentially non-mutagenic, whereas about 20% dTMP was inserted opposite the 5'-T of the Dewar photoproduct. A mechanism involving a transient abasic site is proposed to account for the preferential incorporation of dAMP opposite the 3'-T of the photoproducts.
Collapse
Affiliation(s)
- C A Smith
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
38
|
Abstract
T7 RNA polymerase (RNAP) is able to traverse a variety of discontinuities in the template (T) strand of duplex DNA, including nicks, gaps, and branched junctions in which the 3' end of the T strand is not complementary to the non-template (NT) strand. The products represent a faithful copy of the T strand, with no insertions or deletions. On double-stranded templates having protruding 3' ends the polymerase is able to insert the free 3' end of the NT strand and to utilize this as a new T strand ("turn around transcription"), resulting in the anomalous production of high molecular weight transcripts. The capacity of T7 RNAP to bypass interruptions in the T strand depends upon the stability of the elongation complex. Sequences that are expected to stabilize a local RNA:DNA hybrid (such as the presence of a C6 tract in the T strand) dramatically reduce dissociation of the RNAP while still allowing the enzyme to insert a new 3' end. Similar effects on RNAP release are observed when the enzyme reaches the end of a template (i.e. when synthesizing runoff products), resulting in markedly different yields of RNA product during multiple rounds of transcription.
Collapse
Affiliation(s)
- M Rong
- Department of Microbiology and Immunology, Morse Institute for Molecular Genetics, State University of New York, Health Science Center, Brooklyn, New York 11203-2098, USA
| | | | | |
Collapse
|
39
|
Liu J, Doetsch PW. Escherichia coli RNA and DNA polymerase bypass of dihydrouracil: mutagenic potential via transcription and replication. Nucleic Acids Res 1998; 26:1707-12. [PMID: 9512542 PMCID: PMC147455 DOI: 10.1093/nar/26.7.1707] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dihydrouracil (DHU) is a DNA base damage product produced in significant amounts by ionizing radiation damage to cytosine under anoxic conditions. DHU represents a model for pyrimidine base damage (ring saturation products) of the type recognized and repaired by Escherichia coli endonuclease III and its homologs in other species. We have built this lesion into synthetic oligonucleotides, with DHU placed at a single location downstream from an E.coli RNA polymerase promoter. This construct was used to determine the effect of DHU when encountered on a DNA template strand by either E.coli RNA or DNA polymerase (Klenow fragment). Single round transcription experiments or primer extension-type replication experiments were conducted in order to make a direct comparison between RNA and DNA polymerases with DHU placed within the same sequence context. Both DNA and RNA polymerase efficiently bypass DHU and insert adenine opposite this lesion. These results suggest that DHU is mutagenic with respect to both replication and transcription and have implications for DNA repair as well the routes leading to generation of mutant proteins in dividing and non-dividing cells.
Collapse
Affiliation(s)
- J Liu
- Department of Biochemistry and Division of Cancer Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
40
|
Pourquier P, Pilon AA, Kohlhagen G, Mazumder A, Sharma A, Pommier Y. Trapping of mammalian topoisomerase I and recombinations induced by damaged DNA containing nicks or gaps. Importance of DNA end phosphorylation and camptothecin effects. J Biol Chem 1997; 272:26441-7. [PMID: 9334220 DOI: 10.1074/jbc.272.42.26441] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We used purified mammalian topoisomerases I (top1) and oligonucleotides containing a unique top1 cleavage site to study top1-mediated cleavage and recombination in the presence of nicks and short gaps mimicking DNA damage. In general, top1 cleavage was not induced opposite to the nicks, and nicks upstream from the top1 cleavage site suppressed top1 activity. Irreversible top1 cleavage complexes ("suicide products" or "aborted complexes") were produced in DNA containing nicks or short gaps just opposite to the normal top1 cleavage site. Camptothecin enhanced the formation of the aborted top1 complexes only for nicks downstream from the cleavage site. These aborted (suicide) complexes can mediate DNA recombination and promote illegitimate recombination by catalyzing the ligation of nonhomologous DNA fragments (acceptors). We report for the first time that top1-mediated recombination is greatly enhanced by the presence of a phosphate at the 5' terminus of the top1 aborted complex (donor DNA). By contrast, phosphorylation of the 3' terminus of the gap did not affect recombination. At concentrations that strongly enhanced inhibition of intramolecular religation, resulting in an increase of top1 cleavable complexes, camptothecin did not reduce recombination (intermolecular religation). Nicks or gaps with 5'-phosphate termini would be expected to be produced directly by ionizing radiations or by processing of abasic sites and DNA lesions induced by carcinogens or drugs used in cancer chemotherapy. Thus, these results further demonstrate that DNA damage can efficiently trap top1-cleavable complexes and enhance top1-mediated DNA recombination.
Collapse
Affiliation(s)
- P Pourquier
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | |
Collapse
|
41
|
Weston BF, Kuzmine I, Martin CT. Positioning of the start site in the initiation of transcription by bacteriophage T7 RNA polymerase. J Mol Biol 1997; 272:21-30. [PMID: 9299334 DOI: 10.1006/jmbi.1997.1199] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The determination of various polymerase structures has sparked interest in understanding how the polynucleotide template interacts with the active site. In the primer-independent initiation of transcription, an additional question arises as to how the complex directs the first two bases of the template uniquely into the active site. Recent studies in the model RNA polymerase from bacteriophage T7 demonstrate that upstream duplex contacts provide at least some of the binding specificity and suggest that the enzyme interacts with the template strand in a melted context near the start site for transcription. The current work probes the role of the template strand in positioning of the first two templating bases during initiation. The results suggest that such positioning is not rate-limiting in steady-state turnover, and that the insertion of a very large and flexible linker three or four bases upstream of the start site has no significant effect on the fidelity of start site selection. The insertion of linkers immediately adjacent to the start site, however, does significantly decrease the fidelity of start site selection (as evidenced by a large increase in misinitiation at position +2, with little change in the observed rate of correct initiation), suggesting that some of the non-transcribed template DNA does help to position the first two templating bases into the active site of the RNA polymerase. Finally, incorporation of an abasic site at position -1 yields a similar decrease in initiation fidelity, suggesting a role for stacking of the bases at positions -1 and +1.
Collapse
Affiliation(s)
- B F Weston
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003-4510, USA
| | | | | |
Collapse
|
42
|
Sastry SS, Ross BM. Nuclease activity of T7 RNA polymerase and the heterogeneity of transcription elongation complexes. J Biol Chem 1997; 272:8644-52. [PMID: 9079696 DOI: 10.1074/jbc.272.13.8644] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have discovered that T7 RNA polymerase, purified to apparent homogeneity from overexpressing Escherichia coli cells, possesses a DNase and an RNase activity. Mutations in the active center of T7 RNA polymerase abolished or greatly decreased the nuclease activity. This nuclease activity is specific for single-stranded DNA and RNA oligonucleotides and does not manifest on double-stranded DNAs. Under the conditions of promoter-driven transcription on double-stranded DNA, no nuclease activity was observed. The nuclease attacks DNA oligonucleotides in mono- or dinucleotide steps. The nuclease is a 3' to 5' exonuclease leaving a 3'-OH end, and it degrades DNA oligonucleotides to a minimum size of 3 to 5 nucleotides. It is completely dependent on Mg2+. The T7 RNA polymerase-nuclease is inhibited by T7 lysozyme and heparin, although not completely. In the presence of rNTPs, the nuclease activity is suppressed but an unusual 3'-end-initiated polymerase activity is unmasked. RNA from isolated pre-elongation and elongation complexes arrested by a psoralen roadblock or naturally paused at the 3'-end of an oligonucleotide template exhibited evidence of nuclease activity. The nuclease activity of T7 RNA polymerase is unrelated to pyrophosphorolysis. We propose that the nuclease of T7 RNA polymerase acts only in arrested or paused elongation complexes, and that in combination with the unusual 3'-end polymerizing activity, causes heterogeneity in elongation complexes. Additionally, during normal transcription elongation, the kinetic balance between nuclease and polymerase is shifted in favor of polymerase.
Collapse
Affiliation(s)
- S S Sastry
- Laboratory of Molecular Genetics, Box 174, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
43
|
Abstract
Ternary complexes of DNA-dependent RNA polymerase with its DNA template and nascent transcript are central intermediates in transcription. In recent years, several unusual biochemical reactions have been discovered that affect the progression of RNA polymerase in ternary complexes through various transcription units. These reactions can be signaled intrinsically, by nucleic acid sequences and the RNA polymerase, or extrinsically, by protein or other regulatory factors. These factors can affect any of these processes, including promoter proximal and promoter distal pausing in both prokaryotes and eukaryotes, and therefore play a central role in regulation of gene expression. In eukaryotic systems, at least two of these factors appear to be related to cellular transformation and human cancers. New models for the structure of ternary complexes, and for the mechanism by which they move along DNA, provide plausible explanations for novel biochemical reactions that have been observed. These models predict that RNA polymerase moves along DNA without the constant possibility of dissociation and consequent termination. A further prediction of these models is that the polymerase can move in a discontinuous or inchworm-like manner. Many direct predictions of these models have been confirmed. However, one feature of RNA chain elongation not predicted by the model is that the DNA sequence can determine whether the enzyme moves discontinuously or monotonically. In at least two cases, the encounter between the RNA polymerase and a DNA block to elongation appears to specifically induce a discontinuous mode of synthesis. These findings provide important new insights into the RNA chain elongation process and offer the prospect of understanding many significant biological regulatory systems at the molecular level.
Collapse
Affiliation(s)
- S M Uptain
- Department of Molecular and Cell Biology, University of California at Berkeley 94720, USA.
| | | | | |
Collapse
|
44
|
Guérin M, Leng M, Rahmouni AR. High resolution mapping of E.coli transcription elongation complex in situ reveals protein interactions with the non-transcribed strand. EMBO J 1996; 15:5397-407. [PMID: 8895583 PMCID: PMC452282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have used chemical probes and UV light to perform a high resolution mapping of an Escherichia coli transcription elongation complex that was arrested in vivo by a protein readblock at a position distal to the promoter. The in situ probing data provide a precise picture of a constrained ternary complex in which the front edge of the polymerase is located at <6 bp from the catalytic center. Furthermore, our analyses reveal protein contacts with the non-transcribed strand within the arrested ternary complex. Thus, these results contribute substantially to the emerging view of a flexible transcription elongation complex in which the non-transcribed strand is an important regulatory element.
Collapse
Affiliation(s)
- M Guérin
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | | | | |
Collapse
|
45
|
Hartvig L, Christiansen J. Intrinsic termination of T7 RNA polymerase mediated by either RNA or DNA. EMBO J 1996; 15:4767-74. [PMID: 8887568 PMCID: PMC452209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Intrinsic termination of T7 RNA polymerase transcription occurs at different signals in vitro. One type of signal is similar to that mediating factor-independent termination of Escherichia coli RNA polymerase, whereas the other type does not involve RNA hairpin formation. By examining the termination behaviour of T7 RNA polymerase at the E.coli rrnB operon t1 terminator, at the T7-t(phi) terminator, at the human preproparathyroid hormone gene terminator on both single- and double-stranded templates, and in the presence of GTP or ITP during transcription, we show that the termination event can be mediated by either RNA or DNA structural features. Moreover, by using co-transcriptional probing with potassium permanganate, we present evidence for the presence of transcription-induced hyperreactive thymidines on the non-template strand in the DNA-mediated event, and a putative sequence motif is identified. We conclude that intrinsic termination of T7 RNA polymerase transcription in vitro can be mediated either by a hairpin in the nascent RNA or by a sequence motif including hyperreactive thymidines in the non-template DNA strand.
Collapse
Affiliation(s)
- L Hartvig
- RNA Regulation Centre, Institute of Molecular Biology, University of Copenhagen, Denmark
| | | |
Collapse
|
46
|
Donahue BA, Fuchs RP, Reines D, Hanawalt PC. Effects of aminofluorene and acetylaminofluorene DNA adducts on transcriptional elongation by RNA polymerase II. J Biol Chem 1996; 271:10588-94. [PMID: 8631860 PMCID: PMC3371604 DOI: 10.1074/jbc.271.18.10588] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A prominent model for the mechanism of transcription-coupled DNA repair proposes that an arrested RNA polymerase directs the nucleotide excision repair complex to the transcription-blocking lesion. The specific role for RNA polymerase II in this mechanism can be examined by comparing the extent of polymerase arrest with the extent of transcription-coupled repair for a specific DNA lesion. Previously we reported that a cyclobutane pyrimidine dimer that is repaired preferentially in transcribed genes is a strong block to transcript elongation by RNA pol II (Donahue, B.A., Yin, S., Taylor, J.-S., Reines, D., and Hanawalt, P. C. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 8502-8506). Here we report the extent of RNA polymerase II arrest by the C-8 guanine DNA adduct formed by N-2-aminofluorene, a lesion that does not appear to be preferentially repaired. Templates for an in vitro transcription assay were constructed with either an N-2-aminofluorene adduct or the helix-distorting N-2-acetylaminofluorene adduct situated at a specific site downstream from the major late promoter of adenovirus. Consistent with the model for transcription-coupled repair, an aminofluorene adduct located on the transcribed strand was a weak pause site for RNA polymerase II. An acetylaminofluorene adduct located on the transcribed strand was an absolute block to transcriptional elongation. Either adduct located on the nontranscribed strand enhanced polymerase arrest at a nearby sequence-specific pause site.
Collapse
Affiliation(s)
- B A Donahue
- Department of Biological Sciences, Stanford University, California 94305-5020, USA
| | | | | | | |
Collapse
|
47
|
Liu J, Zhou W, Doetsch PW. RNA polymerase bypass at sites of dihydrouracil: implications for transcriptional mutagenesis. Mol Cell Biol 1995; 15:6729-35. [PMID: 8524238 PMCID: PMC230926 DOI: 10.1128/mcb.15.12.6729] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Dihydrouracil (DHU) is a major base damage product formed from cytosine following exposure of DNA to ionizing radiation under anoxic conditions. To gain insight into the DNA lesion structural requirements for RNA polymerase arrest or bypass at various DNA damages located on the transcribed strand during elongation, DHU was placed onto promoter-containing DNA templates 20 nucleotides downstream from the transcription start site. In vitro, single-round transcription experiments carried out with SP6 and T7 RNA polymerases revealed that following a brief pause at the DHU site, both enzymes efficiently bypass this lesion with subsequent rapid generation of full-length runoff transcripts. Direct sequence analysis of these transcripts indicated that both RNA polymerases insert primarily adenine opposite to the DHU site, resulting in a G-to-A transition mutation in the lesion bypass product. Such bypass and insertion events at DHU sites (or other types of DNA damages), if they occur in vivo, have a number of important implications for both the repair of such lesions and the DNA damage-induced production of mutant proteins at the level of transcription (transcriptional mutagenesis).
Collapse
Affiliation(s)
- J Liu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|