1
|
Krajewski KT, Coomer W, Gerk A, Miller SC, Kwok C, Pan Z, Oleszek JL, Stratton AT, Chang F, De S. Hip Instability in Children With Spinal Muscular Atrophy: A Retrospective Study. J Pediatr Orthop 2025; 45:e131-e137. [PMID: 39282710 DOI: 10.1097/bpo.0000000000002827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
PURPOSE Hip subluxation and dislocation are known problems for children with spinal muscular atrophy (SMA). Medical complexity of these children typically results in absence of monitoring and intervention for pathologic hips. Patterns of hip migration and acetabular morphology in SMA have not been described. This study examines the natural progression of hip instability across all types of SMA in a pediatric population. METHODS Following institutional review board approval, a retrospective chart review of all children with SMA at our institution was performed. All x-rays taken before the age of 18 years containing adequate projections of the pelvis were measured for Reimer migration index (MI), acetabular depth ratio (ADR), and acetabular index (AI). Demographics and clinical data were collected including use of nusinersen, ambulatory status, contractures, and hip pain. Linear mixed effects model was fit to serial MI measures of individual hips with fixed effects consisting of SMA type, age at x-ray, and their interaction. ADR and AI measures were similarly modeled following conversion of raw values to z-scores based on the model developed by Novais et al Slope indicated rate of measure change as a function of age. RESULTS Forty-five children (22 males) with SMA types 1 to 3 were included in this retrospective study. Six children were classified as type 1, 25 were type 2, and 14 were type 3. The interaction of age by SMA type was statistically significant ( P =0.01), indicating a difference in the rate of hip subluxation between the 3 SMA types as measured by MI. By age 4, MI values were different from one another across all 3 groups ( P <0.01). ADR decreased with age across all SMA types. The slopes of ADR regression lines were negative and statistically significant between the 3 groups ( P =0.002). AI values were higher for all types of SMA, which is the opposite of expected in normal hips. CONCLUSIONS Hip subluxation occurs across all SMA types, most rapidly in SMA type 1. Regression lines of ADR and AI compared with those seen in unaffected populations suggest hips in children with SMA demonstrate a difference in morphology of the acetabulum and do not follow normal adaptive remodeling. As treatments advance and the population of SMA patients becomes more mobile, there is an increased need to monitor hip instability in children with SMA, thus making orthopaedic management an important consideration.
Collapse
Affiliation(s)
- Kellen T Krajewski
- Department of Orthopedics, University of Colorado School of Medicine
- Musculoskeletal Research Center, Department of Orthopedics, Children's Hospital Colorado
| | - Wade Coomer
- Center for Gait and Movement Analysis (CGMA), Children's Hospital Colorado
| | - Alexis Gerk
- Center for Gait and Movement Analysis (CGMA), Children's Hospital Colorado
| | - Scott C Miller
- Musculoskeletal Research Center, Department of Orthopedics, Children's Hospital Colorado
- Center for Gait and Movement Analysis (CGMA), Children's Hospital Colorado
| | - Cosmo Kwok
- Department of Physical Medicine and Rehabilitation, Children's Hospital Colorado
| | - Zhaoxing Pan
- Department of Pediatric Medicine, Children's Hospital Colorado, Aurora, CO
| | - Joyce L Oleszek
- Department of Physical Medicine and Rehabilitation, Children's Hospital Colorado
| | - Anne T Stratton
- Department of Physical Medicine and Rehabilitation, Children's Hospital Colorado
| | - Frank Chang
- Department of Orthopedics, University of Colorado School of Medicine
- Center for Gait and Movement Analysis (CGMA), Children's Hospital Colorado
| | - Sayan De
- Department of Orthopedics, University of Colorado School of Medicine
- Musculoskeletal Research Center, Department of Orthopedics, Children's Hospital Colorado
- Center for Gait and Movement Analysis (CGMA), Children's Hospital Colorado
| |
Collapse
|
2
|
Kesenheimer EM, Wendebourg MJ, Weidensteiner C, Sander L, Weigel M, Haas T, Fischer D, Neuwirth C, Braun N, Weber M, Granziera C, Sinnreich M, Bieri O, Schlaeger R. Spinal cord gray matter atrophy is associated with disability in spinal muscular atrophy. J Neurol 2025; 272:102. [PMID: 39775109 PMCID: PMC11706851 DOI: 10.1007/s00415-024-12740-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/26/2024] [Accepted: 11/12/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND With the approval of disease-modifying treatments for 5q-spinal muscular atrophy (SMA), there is an increasing need for biomarkers for disease course and therapeutic response monitoring. Radially sampled Averaged Magnetization Inversion Recovery Acquisitions (rAMIRA) MR-imaging enables spinal cord (SC) gray matter (GM) delineation and quantification in vivo. This study aims to assess SC GM atrophy in patients with 5q-SMA and its associations with clinical disability. METHODS Twenty-one patients with 5q-SMA and twenty-one age- and sex-matched healthy controls (HCs) prospectively underwent 3 T axial 2D-rAMIRA MR-imaging at the intervertebral disc levels C2/C3-C5/C6 and Tmax (lumbar enlargement level). Associations between SC GM areas with muscle strength tested by dynamometry, Motor Function Measure (MFM), revised upper limb module (RULM), Revised Hammersmith Scale (RHS), and SMA-Functional Rating Scale (SMA-FRS) were assessed by Spearman Rank correlations and linear regression analysis. RESULTS Compared to HCs, patients had significantly reduced SC GM areas at levels C3/C4 (relative reduction (RR) = 13.6%, p < 0.0001); C4/C5 (RR = 16.7%, p < 0.0001), C5/C6 (RR = 17.1%, p < 0.0001), and Tmax (RR = 17.4%, p < 0.0001). Significant correlations were found between cervical SC GM areas and muscle strength, RULM, MFM, RHS, and SMA-FRS. In linear regression analysis, GM area C3/C4 explained 33% of RHS variance. CONCLUSION SC GM atrophy is detectable in patients with 5q-SMA and is consistently associated with clinical measures of upper limb function, physiotherapeutic assessments, and SMA-FRS indicating the clinical relevance of the observed atrophy. Further longitudinal investigations are necessary next steps to evaluate this novel and easily applicable imaging marker as a potential disease course and therapeutic response marker.
Collapse
Affiliation(s)
- Eva Maria Kesenheimer
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Clinic for Neurorehabilitation and Paraplegiology, REHAB Basel, Basel, Switzerland
| | - Maria Janina Wendebourg
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Claudia Weidensteiner
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Laura Sander
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Matthias Weigel
- Translational Imaging in Neurology (ThINk), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Tanja Haas
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Dirk Fischer
- Division of Neuropediatrics and Developmental Medicine, University Childrens` Hospital of Basel (UKBB), University of Basel, Basel, Switzerland
| | - Christoph Neuwirth
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Nathalie Braun
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Cristina Granziera
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University of Basel, Basel, Switzerland
| | - Michael Sinnreich
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Regina Schlaeger
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland.
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland.
- Translational Imaging in Neurology (ThINk), Department of Biomedical Engineering, University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Zhao X, Gong Z, Luo H, Li Z, Gao R, Yang K, Deng W, Peng S, Ba L, Liu Y, Zhang M. A cross-sectional and longitudinal evaluation of serum creatinine as a biomarker in spinal muscular atrophy. Orphanet J Rare Dis 2024; 19:489. [PMID: 39722044 DOI: 10.1186/s13023-024-03515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVE Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by proximal muscle weakness and atrophy. The increasing availability of disease-modifying therapies has prompted the development of biomarkers to facilitate clinical assessments. We explored the association between disease severity and serum creatinine (Crn) levels in SMA patients undergoing up to two years of treatment with nusinersen. METHODS We measured serum Crn levels and assessed function performance using the Hammersmith Functional Motor Scale-Expanded (HFMSE), Medical Research Council Scale (MRC), 6-Minute Walk Test (6MWT), ulnar Compound Muscle Action Potential (CMAP), and forced vital capacity (FVC) in a cohort comprising 28 adolescent and adult patients with SMA. The association between Crn and disease severity was investigated through partial rank correlation analysis and linear mixed models while accounting for age, gender, and BMI. Linear models were employed to predict functional performance. RESULTS 28 SMA patients and 28 gender- and age-matched healthy controls (HCs) were included, resulting in a dataset of 185 visits. Compared to HCs, SMA patients exhibited significantly lower Crn values (67.4 ± 14 vs. 23.7 ± 14.8 umol/L, p<0.0001). After adjusting for age, sex, and BMI, Crn showed positive correlations with the HFMSE (p<0.0001, r = 0.884), MRC (p<0.0001, r = 0.827), FVC (p = 0.002, r = 0.730), and ulnar CMAP (p<0.0001, r = 0.807). Patients with SMN2 copy number ≥ 4 had nearly twice as high Crn levels as those with SMN2 copy number < 4 (34.1 ± 3.75 vs. 17.2 ± 2.52 umol/L, p = 0.00145). Ambulant SMA patients had more than double the Crn levels compared to non-ambulant ones (32 ± 2.33 vs. 12.9 ± 2.38 umol/L, p<0.0001). Furthermore, Crn explained that up to 83.5% of the variance in functional performance measured by HFMSE, MRC, and 6MWT was significantly higher than that of traditional biomarkers. CONCLUSIONS These findings suggest that Crn may be a potential biomarker for assessing disease severity in adolescents and adults with SMA, demonstrating its promise in clinical applications.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei province, China
| | - Zhenxiang Gong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei province, China
| | - Han Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei province, China
| | - Zehui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei province, China
| | - Rong Gao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei province, China
| | - Kangqin Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei province, China
| | - Wenhua Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei province, China
| | - Sirui Peng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei province, China
| | - Li Ba
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei province, China
| | - Yang Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei province, China
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei province, China.
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi province, China.
| |
Collapse
|
4
|
Severa G, Alfaro MDC, Alimi Ichola C, Shoaito H, Souvannanorath S, Authier FJ, Malfatti E. Risdiplam: therapeutic effects and tolerability in a small cohort of 6 adult type 2 and type 3 SMA patients. Orphanet J Rare Dis 2024; 19:430. [PMID: 39568039 PMCID: PMC11580475 DOI: 10.1186/s13023-024-03442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/02/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Risdiplam is a validated treatment for adult SMA patients, but clear guidelines concerning functional assessment at baseline and during the follow-up are still limited, especially in terms of sensible and validated outcome measures able to capture minimal changes in motor performances induced by therapy. The aim of this work is to describe the effect of Risdiplam on a cohort of 6 adult type 2 and type 3 SMA patients, using Motor Function Measure (MFM32) as a standardized scaleto quantify the motor improvements induced by therapy. RESULTS Risdiplam at the dose of 5 mg/daily was administered to a population of 6 (4 F;2 M) type 2 (N = 4) and type 3 (N = 2), adult SMA patients. Two patients were previously treated by Nusinersen, later suspended due to side effects. At baseline, all patients received a neuromuscular evaluation and a MFM32 assessment. After the beginning of treatment, we evaluated MFM32, patient reported outcomes (PROs), and adverse events over 7-27 months of follow-up. The MFM32 showed an increased score ranging from + 2.16% to + 7.29% in 4 patients. The improvement was maintained overtime, with two patients presenting the longest follow-up period of 24 and 27 months respectively. Subdomain D3 was ameliorated in 66.6% of patients. Two patients previously treated with Nusinersen maintained the pre-Risdiplam scores. The HFMSE was also performed and failed to show significant improvements after treatment. All patients reported subjective ameliorations. The commonest PROs were improvements in breath fatigue, voice's intelligibility, hand strength and dexterity. Adverse effects were mild and decreased over time. CONCLUSIONS Risdiplam is a well-tolerated treatment in our cohort of adult type 2 and type 3 SMA patients and resulted in improvement or stabilization in motor functions. MFM32 proved to be sensitive to detect changes induced by therapy. Subjective meaningful improvements were sustained overtime especially in bulbar functions, breath fatigue and distal motor abilities.
Collapse
Affiliation(s)
- Gianmarco Severa
- Reference Center for Neuromuscular Disorders, AP-HP Henri Mondor University Hospital, 1 Rue Gustave Eiffel, Créteil, 94010, France
- University Paris Est Créteil, Inserm, U955, IMRB, Créteil, F-94010, France
| | | | - Christophe Alimi Ichola
- Reference Center for Neuromuscular Disorders, AP-HP Henri Mondor University Hospital, 1 Rue Gustave Eiffel, Créteil, 94010, France
- Institut Universitaire de Kinésithérapie, Faculté de Santé, Université Paris Est, Fontainebleau, Ile-de France, France
| | - Hussein Shoaito
- Reference Center for Neuromuscular Disorders, AP-HP Henri Mondor University Hospital, 1 Rue Gustave Eiffel, Créteil, 94010, France
| | - Sarah Souvannanorath
- Reference Center for Neuromuscular Disorders, AP-HP Henri Mondor University Hospital, 1 Rue Gustave Eiffel, Créteil, 94010, France
| | - François-Jerôme Authier
- Reference Center for Neuromuscular Disorders, AP-HP Henri Mondor University Hospital, 1 Rue Gustave Eiffel, Créteil, 94010, France
- University Paris Est Créteil, Inserm, U955, IMRB, Créteil, F-94010, France
| | - Edoardo Malfatti
- Reference Center for Neuromuscular Disorders, AP-HP Henri Mondor University Hospital, 1 Rue Gustave Eiffel, Créteil, 94010, France.
- University Paris Est Créteil, Inserm, U955, IMRB, Créteil, F-94010, France.
| |
Collapse
|
5
|
Nishio H, Niba ETE, Saito T, Okamoto K, Lee T, Takeshima Y, Awano H, Lai PS. Clinical and Genetic Profiles of 5q- and Non-5q-Spinal Muscular Atrophy Diseases in Pediatric Patients. Genes (Basel) 2024; 15:1294. [PMID: 39457418 PMCID: PMC11506990 DOI: 10.3390/genes15101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a genetic disease characterized by loss of motor neurons in the spinal cord and lower brainstem. The term "SMA" usually refers to the most common form, 5q-SMA, which is caused by biallelic mutations in SMN1 (located on chromosome 5q13). However, long before the discovery of SMN1, it was known that other forms of SMA existed. Therefore, SMA is currently divided into two groups: 5q-SMA and non-5q-SMA. This is a simple and practical classification, and therapeutic drugs have only been developed for 5q-SMA (nusinersen, onasemnogene abeparvovec, risdiplam) and not for non-5q-SMA disease. METHODS We conducted a non-systematic critical review to identify the characteristics of each SMA disease. RESULTS Many of the non-5q-SMA diseases have similar symptoms, making DNA analysis of patients essential for accurate diagnosis. Currently, genetic analysis technology using next-generation sequencers is rapidly advancing, opening up the possibility of elucidating the pathology and treating non-5q-SMA. CONCLUSION Based on accurate diagnosis and a deeper understanding of the pathology of each disease, treatments for non-5q-SMA diseases may be developed in the near future.
Collapse
Affiliation(s)
- Hisahide Nishio
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| | - Emma Tabe Eko Niba
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8552, Japan;
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishi-cho, Imabari 794-0006, Japan;
| | - Tomoko Lee
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (T.L.); (Y.T.)
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (T.L.); (Y.T.)
| | - Hiroyuki Awano
- Organization for Research Initiative and Promotion, Research Initiative Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan;
| | - Poh-San Lai
- Department of Pediatrics, National University of Singapore, 1E Lower Kent Ridge Road, Singapore 119228, Singapore;
| |
Collapse
|
6
|
Sakpichaisakul K, Katanyuwong K, Intusoma U, Paprad T, Suwanpakdee P, Khongkhatithum C, Sanmaneechai O. Spinal muscular atrophy in an upper-middle-income nation before the advent of reimbursed disease-modifying therapies. BMJ Paediatr Open 2024; 8:e002775. [PMID: 39216878 PMCID: PMC11367378 DOI: 10.1136/bmjpo-2024-002775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE To elucidate the clinical characteristics and standard of care (SoC) of spinal muscular atrophy (SMA) patients in Thailand, focusing on primary endpoints: age at death and a composite of death or tracheostomy need. DESIGN Retrospective observational study. SETTING Seven tertiary centres across Thailand. PATIENTS Records of 110 patients with genetically confirmed SMA, spanning 2012-2021. INTERVENTIONS Historical data review; no active interventions. MAIN OUTCOME MEASURES Age at death and a composite measure of death or tracheostomy necessity. RESULTS The cohort included 1 SMA0, 50 SMA1, 40 SMA2 and 19 SMA3 cases. Median ages at the onset and diagnosis of SMA1 were 3 and 6.2 months. Of SMA1 patients, 63% required ventilators, and eight received dimethyltryptamines (DMTs) at a median of 15 months (range 6.4-24.5 months). The median time from onset to DMT was 11 months (range 4.2-20.5 months). Among SMA1 patients, 73% died by the study's end. SMA2 and SMA3 patients' median onset ages were 11 and 24 months, respectively, with diagnosis at 24.8 and 68.7 months. Half of all types received physical therapy. CONCLUSIONS Significant delays in diagnosis and SoC access, including DMTs, were observed, underscoring urgent needs for improved diagnostic and care strategies to enhance SMA patient outcomes in Thailand.
Collapse
Affiliation(s)
- Kullasate Sakpichaisakul
- Pediatrics, Queen Sirikit National Institute of Child Health, Bangkok, Thailand
- College of Medicine, Rangsit University, Bangkok, Thailand
| | | | - Utcharee Intusoma
- Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Tanitnun Paprad
- Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Chaiyos Khongkhatithum
- Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Oranee Sanmaneechai
- Center of Research Excellence for Neuromuscular Diseases, Mahidol University Faculty of Medicine Siriraj Hospital, Bangkok, Thailand
- Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Waldrop MA. Clinical decision making around commercial use of gene and genetic therapies for spinal muscular atrophy. Neurotherapeutics 2024; 21:e00437. [PMID: 39241317 PMCID: PMC11405791 DOI: 10.1016/j.neurot.2024.e00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/28/2024] [Accepted: 08/15/2024] [Indexed: 09/09/2024] Open
Abstract
Spinal muscular atrophy is no longer a leading cause of inherited infant death in the United States. Since 2016, three genetic therapies have been approved for the treatment of spinal muscular atrophy. Each therapy has been well studied with robust data for both safety and efficacy. However, there are no head-to-head comparator studies to inform clinical decision making. Thus, treatment selection, timing, and combination therapy is largely up to clinician preference and insurance policies. As the natural history of spinal muscular atrophy continues to change, more data is needed to assist in evidence-based and cost-effective clinical decision making.
Collapse
Affiliation(s)
- Megan A Waldrop
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus OH, 43205, USA; Departments of Pediatrics and Neurology, Wexner Medical Center, Ohio State University, Columbus OH 43205, USA.
| |
Collapse
|
8
|
Salort-Campana E, Solé G, Magot A, Tard C, Noury JB, Behin A, De La Cruz E, Boyer F, Lefeuvre C, Masingue M, Debergé L, Finet A, Brison M, Spinazzi M, Pegat A, Sacconi S, Malfatti E, Choumert A, Bellance R, Bedat-Millet AL, Feasson L, Vuillerot C, Jacquin-Piques A, Michaud M, Pereon Y, Stojkovic T, Laforêt P, Attarian S, Cintas P. Multidisciplinary team meetings in treatment of spinal muscular atrophy adult patients: a real-life observatory for innovative treatments. Orphanet J Rare Dis 2024; 19:24. [PMID: 38268028 PMCID: PMC10809505 DOI: 10.1186/s13023-023-03008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND In 2017, a new treatment by nusinersen, an antisense oligonucleotide delivered by repeated intrathecal injections, became available for patients with spinal muscular atrophy (SMA), whereas clinical trials had mainly involved children. Since 2020, the oral, selective SMN2-splicing modifier risdiplam has been available with restrictions evolving with time. In this peculiar context of lack of data regarding adult patients, many questions were raised to define the indications of treatment and the appropriate follow-up in this population. To homogenize access to treatment in France, a national multidisciplinary team meeting dedicated to adult SMA patients, named SMA multidisciplinary team meeting, (SMDTs) was created in 2018. Our objective was to analyze the value of SMDTs in the decision-making process in SMA adult patients and to provide guidelines about treatment. METHODS From October 2020 to September 2021, data extracted from the SMDT reports were collected. The primary outcome was the percentage of cases in which recommendations on validating treatment plans were given. The secondary outcomes were type of treatment requested, description of expectations regarding treatment and description of recommendations or follow-up and discontinuation. Data were analyzed using descriptive statistics. Comparisons between the type of treatment requested were performed using Mann-Whitney test or the Student t test for quantitative data and the Fisher's exact test or the χ2 test for qualitative data. RESULTS Cases of 107 patients were discussed at the SMDTs with a mean age of 35.3 (16-62). Forty-seven were SMA type 2, and 57 SMA type 3. Twelve cases were presented twice. Out of 122 presentations to the SMDTs, most of requests related to the initiation of a treatment (nusinersen (n = 46), risdiplam (n = 54), treatment without mentioning preferred choice (n = 5)) or a switch of treatment (n = 12). Risdiplam requests concerned significantly older patients (p = 0.002), mostly SMA type 2 (p < 0.0001), with greater disease severity in terms of motor and respiratory function compared to requests for nusinersen. In the year prior to presentation to the SMDTs, most of the patients experienced worsening of motor weakness assessed by functional tests as MFM32 or other meaningful scales for the most severe patients. Only 12% of the patients discussed had a stable condition. Only 49/122 patients (40.1%) expressed clear expectations regarding treatment. The treatment requested was approved by the SMDTs in 72 patients (67.2%). The most common reasons to decline treatment were lack of objective data on the disease course prior discussion to the SMDTs or inappropriate patient's expectations. Treatment requests were more likely to be validated by the SMDTs if sufficient pre-therapeutic functional assessment had been performed to assess the natural history (55% vs. 32%) and if the patient had worsening rather than stable motor function (p = 0.029). In patients with approved treatment, a-priori criteria to define a further ineffectiveness of treatment (usually after 14 months of treatment) were proposed for 67/72 patients. CONCLUSIONS In the context of costly treatments with few controlled studies in adults with SMA, in whom assessment of efficacy can be complex, SMDTs are 'real-world observatories' of great interest to establish national recommendations about indications of treatment and follow-up.
Collapse
Affiliation(s)
- Emmanuelle Salort-Campana
- Service de Neurologie du Pr Attarian, Centre de Référence des Maladies Neuromusculaires PACA Réunion Rhône Alpes, Timone University Hospital, Aix-Marseille University, 264 Rue Saint-Pierre, 13385, Marseille Cedex 05, France.
- Inserm UMR_S 910 Medical Genetics and Functional Genomics, Aix Marseille Université, Marseille, France.
- FILNEMUS, Marseille, France.
| | - Guilhem Solé
- Centre de Référence des Maladies Neuromusculaires AOC, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
- FILNEMUS, Marseille, France
| | - Armelle Magot
- Laboratoire d'Explorations Fonctionnelles, Hôtel-Dieu, Centre de Référence des Maladies Neuromusculaires AOC, CHU de Nantes, Nantes, France
- FILNEMUS, Marseille, France
| | - Céline Tard
- Centre de Référence des Maladies Neuromusculaires Nord Est Ile de France, Lille, France
- FILNEMUS, Marseille, France
| | - Jean-Baptiste Noury
- Reference Centre for Neuromuscular Diseases AOC, University Hospital of Brest, Brest, France
- FILNEMUS, Marseille, France
| | - Anthony Behin
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Île-de-France, Institut de Myologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
- FILNEMUS, Marseille, France
| | - Elisa De La Cruz
- Centre de Référence des Maladies Neuromusculaires AOC, CHU et Université de Montpellier, Montpellier, France
- UVSQ, Paris-Saclay University, Paris, France
| | - François Boyer
- Pôle de Médecine Physique et de Réadaptation, Hôpital Universitaire Reims-Champagne-Ardenne, CHU Sébastopol, Centre de Référence des Maladies Neuromusculaires Nord Est Ile de France, Reims, France
- FILNEMUS, Marseille, France
| | - Claire Lefeuvre
- Nord-Est-Ile-de-France, Service de Neurologie, FHU Phenix, Centre de Référence de Pathologie Neuromusculaire, Raymond Poincaré University Hospital, Garches, APHP, Garches, France
- FILNEMUS, Marseille, France
| | - Marion Masingue
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Île-de-France, Institut de Myologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
- FILNEMUS, Marseille, France
| | - Louise Debergé
- Centre de Référence des Maladies Neuromusculaires AOC, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
- FILNEMUS, Marseille, France
| | - Armelle Finet
- Service de Neurologie du Pr Attarian, Centre de Référence des Maladies Neuromusculaires PACA Réunion Rhône Alpes, Timone University Hospital, Aix-Marseille University, 264 Rue Saint-Pierre, 13385, Marseille Cedex 05, France
- FILNEMUS, Marseille, France
| | - Mélanie Brison
- Centre de Réference des Maladies Neuromusculaires PACA Réunion Rhône Alpes Service de Neurologie, CHU de Saint-Etienne, Saint-Étienne, France
- FILNEMUS, Marseille, France
| | - Marco Spinazzi
- Department of Neurology, Centre Hospitalier Universitaire d'Angers, Angers, France
- FILNEMUS, Marseille, France
| | - Antoine Pegat
- Service de Neurologie C, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 69500, Bron, France
- Service d'Explorations Fonctionnelles Neurologiques, Hôpital Neurologique Pierre Wertheimer, 69500, Bron, France
- FILNEMUS, Marseille, France
| | - Sabrina Sacconi
- Service Système Nerveux Périphérique & Muscle, Centre de Référence des Maladies Neuromusculaires PACA Réunion Rhône Alpes, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
- FILNEMUS, Marseille, France
| | - Edoardo Malfatti
- APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, University Paris-Est, Créteil, France
- FILNEMUS, Marseille, France
| | - Ariane Choumert
- Department of Rare Neurological Diseases, Centre de Référence des Maladies Neuromusculaires PACA Réunion Rhône Alpes, CHU de la Réunion, Saint-Pierre, France
- FILNEMUS, Marseille, France
| | - Rémi Bellance
- CeRCa, Site Constitutif de Centre de Référence Caribéen des Maladies Neuromusculaires Rares, CHU de Martinique, Hôpital P. Zobda-Quitman, Fort-de-France, France
- FILNEMUS, Marseille, France
| | | | - Léonard Feasson
- Physiology and Exercise Laboratory EA4338, Centre de Référence des Maladies Neuromusculaires PACA Réunion Rhône Alpes, Rhône-Alpes Bellevue Hospital, University Hospital Center of Saint-Étienne, Saint-Étienne, France
- FILNEMUS, Marseille, France
| | - Carole Vuillerot
- Service de Médecine Physique et Réadaptation Pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 69677, Bron Cedex, France
- FILNEMUS, Marseille, France
| | - Agnès Jacquin-Piques
- Department of Clinical Neurophysiology, CHU Dijon Bourgogne, Dijon, France
- FILNEMUS, Marseille, France
| | - Maud Michaud
- Department of Neurology, Nancy University Hospital, Nancy, France
- FILNEMUS, Marseille, France
| | - Yann Pereon
- Laboratoire d'Explorations Fonctionnelles, Hôtel-Dieu, Centre de Référence des Maladies Neuromusculaires AOC, CHU de Nantes, Nantes, France
- FILNEMUS, Marseille, France
| | - Tanya Stojkovic
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Île-de-France, Institut de Myologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
- FILNEMUS, Marseille, France
| | - Pascal Laforêt
- Nord-Est-Ile-de-France, Service de Neurologie, FHU Phenix, Centre de Référence de Pathologie Neuromusculaire, Raymond Poincaré University Hospital, Garches, APHP, Garches, France
- UVSQ, Paris-Saclay University, Paris, France
- FILNEMUS, Marseille, France
| | - Shahram Attarian
- Service de Neurologie du Pr Attarian, Centre de Référence des Maladies Neuromusculaires PACA Réunion Rhône Alpes, Timone University Hospital, Aix-Marseille University, 264 Rue Saint-Pierre, 13385, Marseille Cedex 05, France
- Inserm UMR_S 910 Medical Genetics and Functional Genomics, Aix Marseille Université, Marseille, France
- FILNEMUS, Marseille, France
| | - Pascal Cintas
- Service de Neurologie, CHU de Toulouse Purpan, Place du Docteur Baylac TSA 40031, 8. Centre de Référence des Maladies Neuromusculaires AOC, 31059, Toulouse Cedex 9, France
- FILNEMUS, Marseille, France
| |
Collapse
|
9
|
Łusakowska A, Wójcik A, Frączek A, Aragon-Gawińska K, Potulska-Chromik A, Baranowski P, Nowak R, Rosiak G, Milczarek K, Konecki D, Gierlak-Wójcicka Z, Burlewicz M, Kostera-Pruszczyk A. Long-term nusinersen treatment across a wide spectrum of spinal muscular atrophy severity: a real-world experience. Orphanet J Rare Dis 2023; 18:230. [PMID: 37542300 PMCID: PMC10401775 DOI: 10.1186/s13023-023-02769-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/04/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by a biallelic mutation in the SMN1 gene, resulting in progressive muscle weakness and atrophy. Nusinersen is the first disease-modifying drug for all SMA types. We report on effectiveness and safety data from 120 adults and older children with SMA types 1c-3 treated with nusinersen. METHODS Patients were evaluated with the Hammersmith Functional Motor Scale Expanded (HFMSE; n = 73) or the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP-INTEND; n = 47). Additionally, the Revised Upper Limb Module (RULM) and 6-minute walk test (6MWT) were used in a subset of patients. Patients were followed for up to 30 months of nusinersen treatment (mean, SD; 23, 14 months). Subjective treatment outcomes were evaluated with the Patients Global Impression-Improvement (PGI-I) scale used in all patients or caregivers at each follow-up visit. RESULTS An increase in the mean HFMSE score was noted at month 14 (T14) (3.9 points, p < 0.001) and month 30 (T30) (5.1 points, p < 0.001). The mean RULM score increased by 0.79 points at T14 (p = 0.001) and 1.96 points (p < 0.001) at month 30 (T30). The mean CHOP-INTEND increased by 3.6 points at T14 (p < 0.001) and 5.6 points at month 26 (p < 0.001). The mean 6MWT improved by 16.6 m at T14 and 27 m at T30 vs. baseline. A clinically meaningful improvement in HFMSE (≥ 3 points) was seen in 62% of patients at T14, and in 71% at T30; in CHOP INTEND (≥ 4 points), in 58% of patients at T14 and in 80% at T30; in RULM (≥ 2 points), in 26.6% of patients at T14 and in 43.5% at T30; and in 6MWT (≥ 30-meter increase), in 26% of patients at T14 and in 50% at T30. Improved PGI-I scores were reported for 75% of patients at T14 and 85% at T30; none of the patients reporting worsening at T30. Adverse events were mild and related to lumbar puncture. CONCLUSIONS In our study, nusinersen led to continuous functional improvement over 30-month follow-up and was well tolerated by adults and older children with a wide spectrum of SMA severity.
Collapse
Affiliation(s)
- Anna Łusakowska
- Department of Neurology, Medical University of Warsaw, ERN EURO-NMD, ul. Banacha 1a, Warsaw, 02-097, Poland
| | - Adrianna Wójcik
- Department of Neurology and Stroke, Ludwik Rydygier Specialist Hospital, Osiedle Złotej Jesieni 1, Kraków, 31-826, Poland
| | - Anna Frączek
- Department of Neurology, Medical University of Warsaw, ERN EURO-NMD, ul. Banacha 1a, Warsaw, 02-097, Poland
| | - Karolina Aragon-Gawińska
- Department of Neurology, Medical University of Warsaw, ERN EURO-NMD, ul. Banacha 1a, Warsaw, 02-097, Poland
| | - Anna Potulska-Chromik
- Department of Neurology, Medical University of Warsaw, ERN EURO-NMD, ul. Banacha 1a, Warsaw, 02-097, Poland
| | - Paweł Baranowski
- Department of Econometrics, Faculty of Economics and Sociology, University of Łódź, ul. Rewolucji 1905 37/39, Łódź, 90-214, Poland
| | - Ryszard Nowak
- Department of Neurology and Stroke, Ludwik Rydygier Specialist Hospital, Osiedle Złotej Jesieni 1, Kraków, 31-826, Poland
| | - Grzegorz Rosiak
- Department of Radiology, Medical University of Warsaw, ul. Banacha 1a, Warsaw, 02-097, Poland
| | - Krzysztof Milczarek
- Department of Radiology, Medical University of Warsaw, ul. Banacha 1a, Warsaw, 02-097, Poland
| | - Dariusz Konecki
- Department of Radiology, Medical University of Warsaw, ul. Banacha 1a, Warsaw, 02-097, Poland
| | - Zuzanna Gierlak-Wójcicka
- Department of Neurology, Medical University of Warsaw, ERN EURO-NMD, ul. Banacha 1a, Warsaw, 02-097, Poland
| | - Małgorzata Burlewicz
- Department of Neurology, Medical University of Warsaw, ERN EURO-NMD, ul. Banacha 1a, Warsaw, 02-097, Poland
| | - Anna Kostera-Pruszczyk
- Department of Neurology, Medical University of Warsaw, ERN EURO-NMD, ul. Banacha 1a, Warsaw, 02-097, Poland.
| |
Collapse
|
10
|
Nishio H, Niba ETE, Saito T, Okamoto K, Takeshima Y, Awano H. Spinal Muscular Atrophy: The Past, Present, and Future of Diagnosis and Treatment. Int J Mol Sci 2023; 24:11939. [PMID: 37569314 PMCID: PMC10418635 DOI: 10.3390/ijms241511939] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a lower motor neuron disease with autosomal recessive inheritance. The first cases of SMA were reported by Werdnig in 1891. Although the phenotypic variation of SMA led to controversy regarding the clinical entity of the disease, the genetic homogeneity of SMA was proved in 1990. Five years later, in 1995, the gene responsible for SMA, SMN1, was identified. Genetic testing of SMN1 has enabled precise epidemiological studies, revealing that SMA occurs in 1 of 10,000 to 20,000 live births and that more than 95% of affected patients are homozygous for SMN1 deletion. In 2016, nusinersen was the first drug approved for treatment of SMA in the United States. Two other drugs were subsequently approved: onasemnogene abeparvovec and risdiplam. Clinical trials with these drugs targeting patients with pre-symptomatic SMA (those who were diagnosed by genetic testing but showed no symptoms) revealed that such patients could achieve the milestones of independent sitting and/or walking. Following the great success of these trials, population-based newborn screening programs for SMA (more precisely, SMN1-deleted SMA) have been increasingly implemented worldwide. Early detection by newborn screening and early treatment with new drugs are expected to soon become the standards in the field of SMA.
Collapse
Affiliation(s)
- Hisahide Nishio
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| | - Emma Tabe Eko Niba
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8552, Japan;
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishi-cho, Imabari 794-0006, Japan;
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Hiroyuki Awano
- Organization for Research Initiative and Promotion, Research Initiative Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan;
| |
Collapse
|
11
|
Abstract
Spinal muscular atrophy (SMA) is caused by biallelic mutations in the SMN1 (survival motor neuron 1) gene on chromosome 5q13.2, which leads to a progressive degeneration of alpha motor neurons in the spinal cord and in motor nerve nuclei in the caudal brainstem. It is characterized by progressive proximally accentuated muscle weakness with loss of already acquired motor skills, areflexia and, depending on the phenotype, varying degrees of weakness of the respiratory and bulbar muscles. Over the past decade, disease-modifying therapies have become available based on splicing modulation of the SMN2 with SMN1 gene replacement, which if initiated significantly modifies the natural course of the disease. Newborn screening for SMA has been implemented in an increasing number of centers; however, available evidence for these new treatments is often limited to a small spectrum of patients concerning age and disease stage.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| | - Jerry R Mendell
- Department of Neurology and Pediatrics, Center for Gene Therapy, Abigail Wexner Research Institute, The Ohio State University, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
12
|
Blatnik AJ, McGovern VL, Burghes AHM. What Genetics Has Told Us and How It Can Inform Future Experiments for Spinal Muscular Atrophy, a Perspective. Int J Mol Sci 2021; 22:8494. [PMID: 34445199 PMCID: PMC8395208 DOI: 10.3390/ijms22168494] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Proximal spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder characterized by motor neuron loss and subsequent atrophy of skeletal muscle. SMA is caused by deficiency of the essential survival motor neuron (SMN) protein, canonically responsible for the assembly of the spliceosomal small nuclear ribonucleoproteins (snRNPs). Therapeutics aimed at increasing SMN protein levels are efficacious in treating SMA. However, it remains unknown how deficiency of SMN results in motor neuron loss, resulting in many reported cellular functions of SMN and pathways affected in SMA. Herein is a perspective detailing what genetics and biochemistry have told us about SMA and SMN, from identifying the SMA determinant region of the genome, to the development of therapeutics. Furthermore, we will discuss how genetics and biochemistry have been used to understand SMN function and how we can determine which of these are critical to SMA moving forward.
Collapse
Affiliation(s)
| | | | - Arthur H. M. Burghes
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Rightmire Hall, Room 168, 1060 Carmack Road, Columbus, OH 43210, USA; (A.J.B.III); (V.L.M.)
| |
Collapse
|
13
|
Wadmann S, Hauge AM. Strategies of stratification: Regulating market access in the era of personalized medicine. SOCIAL STUDIES OF SCIENCE 2021; 51:628-653. [PMID: 33885344 DOI: 10.1177/03063127211005539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Personalized medicine raises the stakes of pharmaceutical market regulation. Drawing on pragmatist valuation studies and science and technology studies literature on personalized medicine and pharmaceutical markets, this article demonstrates how complex negotiations about the value of a pharmaceutical can constitute a market in various ways, while also shaping the concerned patient populations. Tracing the path of a pharmacogenetic treatment, Spinraza, from its approval by the European Medicines Agency to its adoption in the publicly funded Danish healthcare system, we show how the market was formatted through particular stratifications of the patient population. We conceptualize these seemingly technical moves as strategies of stratification, that is, the application of techniques to assemble and divide data - and what data are meant to represent - into groups delineated by certain characteristics. We argue that stakeholders' use of strategies of stratification has important implications not only for market access, but also for the delineation of diseases and patient populations. Hence, it is crucial to make intelligible the mutual constitution of pharmaceutical markets and patient populations and the political efforts of delineating and connecting the two.
Collapse
Affiliation(s)
- Sarah Wadmann
- The Danish Center for Social Science Research - VIVE, Copenhagen, Denmark
| | | |
Collapse
|
14
|
Wirth B. Spinal Muscular Atrophy: In the Challenge Lies a Solution. Trends Neurosci 2021; 44:306-322. [PMID: 33423791 DOI: 10.1016/j.tins.2020.11.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/08/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
The path from gene discovery to therapy in spinal muscular atrophy (SMA) has been a highly challenging endeavor, but also led to one of the most successful stories in neurogenetics. In SMA, a neuromuscular disorder with an often fatal outcome until recently, with those affected never able to sit, stand, or walk, children now achieve these motoric abilities and almost age-based development when treated presymptomatically. This review summarizes the challenges along this 30-year journey. It is also meant to inspire early-career scientists not to give up when things become difficult but to try to uncover the biological underpinnings and transform the challenge into the next big discovery. Without doubt, the improvements seen with the three therapeutic strategies in SMA are impressive; many open questions remain and are discussed in this review.
Collapse
Affiliation(s)
- Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine, Center for Rare Disorders, University of Cologne, Kerpener Str. 34, 50931 Cologne, Germany.
| |
Collapse
|
15
|
Berciano MT, Castillo-Iglesias MS, Val-Bernal JF, Lafarga V, Rodriguez-Rey JC, Lafarga M, Tapia O. Mislocalization of SMN from the I-band and M-band in human skeletal myofibers in spinal muscular atrophy associates with primary structural alterations of the sarcomere. Cell Tissue Res 2020; 381:461-478. [PMID: 32676861 DOI: 10.1007/s00441-020-03236-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/05/2020] [Indexed: 12/22/2022]
Abstract
Spinal muscular atrophy (SMA) is caused by a deletion or mutation of the survival motor neuron 1 (SMN1) gene. Reduced SMN levels lead to motor neuron degeneration and muscular atrophy. SMN protein localizes to the cytoplasm and Cajal bodies. Moreover, in myofibrils from Drosophila and mice, SMN is a sarcomeric protein localized to the Z-disc. Although SMN participates in multiple functions, including the biogenesis of spliceosomal small nuclear ribonucleoproteins, its role in the sarcomere is unclear. Here, we analyzed the sarcomeric organization of SMN in human control and type I SMA skeletal myofibers. In control sarcomeres, we demonstrate that human SMN is localized to the titin-positive M-band and actin-positive I-band, and to SMN-positive granules that flanked the Z-discs. Co-immunoprecipitation assays revealed that SMN interacts with the sarcomeric protein actin, α-actinin, titin, and profilin2. In the type I SMA muscle, SMN levels were reduced, and atrophic (denervated) and hypertrophic (nondenervated) myofibers coexisted. The hypertrophied myofibers, which are potential primary targets of SMN deficiency, exhibited sites of focal or segmental alterations of the actin cytoskeleton, where the SMN immunostaining pattern was altered. Moreover, SMN was relocalized to the Z-disc in overcontracted minisarcomeres from hypertrophic myofibers. We propose that SMN could have an integrating role in the molecular components of the sarcomere. Consequently, low SMN levels might impact the normal sarcomeric architecture, resulting in the disruption of myofibrils found in SMA muscle. This primary effect might be independent of the neurogenic myopathy produced by denervation and contribute to pathophysiology of the SMA myopathy.
Collapse
Affiliation(s)
- María T Berciano
- Departamento de Biología Molecular, Universidad de Cantabria-IDIVAL, Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | | | - J Fernando Val-Bernal
- Unidad de Patología, Departamento de Ciencias Médicas y Quirúrgicas, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - Vanesa Lafarga
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - José C Rodriguez-Rey
- Departamento de Biología Molecular, Universidad de Cantabria-IDIVAL, Santander, Spain
| | - Miguel Lafarga
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain.
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria-IDIVAL, Santander, Spain.
| | - Olga Tapia
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL) and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain.
- Universidad Europea del Atlántico, Santander, Spain.
| |
Collapse
|
16
|
Wadman RI, van der Pol WL, Bosboom WMJ, Asselman F, van den Berg LH, Iannaccone ST, Vrancken AFJE, Cochrane Neuromuscular Group. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 2020; 1:CD006282. [PMID: 32006461 PMCID: PMC6995983 DOI: 10.1002/14651858.cd006282.pub5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by a homozygous deletion of the survival motor neuron 1 (SMN1) gene on chromosome 5, or a heterozygous deletion in combination with a (point) mutation in the second SMN1 allele. This results in degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type II do not develop the ability to walk without support and have a shortened life expectancy, whereas children with SMA type III develop the ability to walk and have a normal life expectancy. This is an update of a review first published in 2009 and previously updated in 2011. OBJECTIVES To evaluate if drug treatment is able to slow or arrest the disease progression of SMA types II and III, and to assess if such therapy can be given safely. SEARCH METHODS We searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, Embase, and ISI Web of Science conference proceedings in October 2018. In October 2018, we also searched two trials registries to identify unpublished trials. SELECTION CRITERIA We sought all randomised or quasi-randomised trials that examined the efficacy of drug treatment for SMA types II and III. Participants had to fulfil the clinical criteria and have a homozygous deletion or hemizygous deletion in combination with a point mutation in the second allele of the SMN1 gene (5q11.2-13.2) confirmed by genetic analysis. The primary outcome measure was change in disability score within one year after the onset of treatment. Secondary outcome measures within one year after the onset of treatment were change in muscle strength, ability to stand or walk, change in quality of life, time from the start of treatment until death or full-time ventilation and adverse events attributable to treatment during the trial period. Treatment strategies involving SMN1-replacement with viral vectors are out of the scope of this review, but a summary is given in Appendix 1. Drug treatment for SMA type I is the topic of a separate Cochrane Review. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. MAIN RESULTS The review authors found 10 randomised, placebo-controlled trials of treatments for SMA types II and III for inclusion in this review, with 717 participants. We added four of the trials at this update. The trials investigated creatine (55 participants), gabapentin (84 participants), hydroxyurea (57 participants), nusinersen (126 participants), olesoxime (165 participants), phenylbutyrate (107 participants), somatotropin (20 participants), thyrotropin-releasing hormone (TRH) (nine participants), valproic acid (33 participants), and combination therapy with valproic acid and acetyl-L-carnitine (ALC) (61 participants). Treatment duration was from three to 24 months. None of the studies investigated the same treatment and none was completely free of bias. All studies had adequate blinding, sequence generation and reporting of primary outcomes. Based on moderate-certainty evidence, intrathecal nusinersen improved motor function (disability) in children with SMA type II, with a 3.7-point improvement in the nusinersen group on the Hammersmith Functional Motor Scale Expanded (HFMSE; range of possible scores 0 to 66), compared to a 1.9-point decline on the HFMSE in the sham procedure group (P < 0.01; n = 126). On all motor function scales used, higher scores indicate better function. Based on moderate-certainty evidence from two studies, the following interventions had no clinically important effect on motor function scores in SMA types II or III (or both) in comparison to placebo: creatine (median change 1 higher, 95% confidence interval (CI) -1 to 2; on the Gross Motor Function Measure (GMFM), scale 0 to 264; n = 40); and combination therapy with valproic acid and carnitine (mean difference (MD) 0.64, 95% CI -1.1 to 2.38; on the Modified Hammersmith Functional Motor Scale (MHFMS), scale 0 to 40; n = 61). Based on low-certainty evidence from other single studies, the following interventions had no clinically important effect on motor function scores in SMA types II or III (or both) in comparison to placebo: gabapentin (median change 0 in the gabapentin group and -2 in the placebo group on the SMA Functional Rating Scale (SMAFRS), scale 0 to 50; n = 66); hydroxyurea (MD -1.88, 95% CI -3.89 to 0.13 on the GMFM, scale 0 to 264; n = 57), phenylbutyrate (MD -0.13, 95% CI -0.84 to 0.58 on the Hammersmith Functional Motor Scale (HFMS) scale 0 to 40; n = 90) and monotherapy of valproic acid (MD 0.06, 95% CI -1.32 to 1.44 on SMAFRS, scale 0 to 50; n = 31). Very low-certainty evidence suggested that the following interventions had little or no effect on motor function: olesoxime (MD 2, 95% -0.25 to 4.25 on the Motor Function Measure (MFM) D1 + D2, scale 0 to 75; n = 160) and somatotropin (median change at 3 months 0.25 higher, 95% CI -1 to 2.5 on the HFMSE, scale 0 to 66; n = 19). One small TRH trial did not report effects on motor function and the certainty of evidence for other outcomes from this trial were low or very low. Results of nine completed trials investigating 4-aminopyridine, acetyl-L-carnitine, CK-2127107, hydroxyurea, pyridostigmine, riluzole, RO6885247/RG7800, salbutamol and valproic acid were awaited and not available for analysis at the time of writing. Various trials and studies investigating treatment strategies other than nusinersen (e.g. SMN2-augmentation by small molecules), are currently ongoing. AUTHORS' CONCLUSIONS Nusinersen improves motor function in SMA type II, based on moderate-certainty evidence. Creatine, gabapentin, hydroxyurea, phenylbutyrate, valproic acid and the combination of valproic acid and ALC probably have no clinically important effect on motor function in SMA types II or III (or both) based on low-certainty evidence, and olesoxime and somatropin may also have little to no clinically important effect but evidence was of very low-certainty. One trial of TRH did not measure motor function.
Collapse
Affiliation(s)
- Renske I Wadman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - W Ludo van der Pol
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Wendy MJ Bosboom
- Onze Lieve Vrouwe Gasthuis locatie WestDepartment of NeurologyAmsterdamNetherlands
| | - Fay‐Lynn Asselman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Leonard H van den Berg
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Susan T Iannaccone
- University of Texas Southwestern Medical CenterDepartment of Pediatrics5323 Harry Hines BoulevardDallasTexasUSA75390
| | - Alexander FJE Vrancken
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | | |
Collapse
|
17
|
Wadman RI, van der Pol WL, Bosboom WMJ, Asselman F, van den Berg LH, Iannaccone ST, Vrancken AFJE, Cochrane Neuromuscular Group. Drug treatment for spinal muscular atrophy type I. Cochrane Database Syst Rev 2019; 12:CD006281. [PMID: 31825542 PMCID: PMC6905354 DOI: 10.1002/14651858.cd006281.pub5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by a homozygous deletion of the survival motor neuron 1 (SMN1) gene on chromosome 5, or a heterozygous deletion in combination with a point mutation in the second SMN1 allele. This results in degeneration of anterior horn cells, which leads to progressive muscle weakness. By definition, children with SMA type I are never able to sit without support and usually die or become ventilator dependent before the age of two years. There have until very recently been no drug treatments to influence the course of SMA. We undertook this updated review to evaluate new evidence on emerging treatments for SMA type I. The review was first published in 2009 and previously updated in 2011. OBJECTIVES To assess the efficacy and safety of any drug therapy designed to slow or arrest progression of spinal muscular atrophy (SMA) type I. SEARCH METHODS We searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, Embase, and ISI Web of Science conference proceedings in October 2018. We also searched two trials registries to identify unpublished trials (October 2018). SELECTION CRITERIA We sought all randomised controlled trials (RCTs) or quasi-RCTs that examined the efficacy of drug treatment for SMA type I. Included participants had to fulfil clinical criteria and have a genetically confirmed deletion or mutation of the SMN1 gene (5q11.2-13.2). The primary outcome measure was age at death or full-time ventilation. Secondary outcome measures were acquisition of motor milestones, i.e. head control, rolling, sitting or standing, motor milestone response on disability scores within one year after the onset of treatment, and adverse events and serious adverse events attributable to treatment during the trial period. Treatment strategies involving SMN1 gene replacement with viral vectors are out of the scope of this review. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. MAIN RESULTS We identified two RCTs: one trial of intrathecal nusinersen in comparison to a sham (control) procedure in 121 randomised infants with SMA type I, which was newly included at this update, and one small trial comparing riluzole treatment to placebo in 10 children with SMA type I. The RCT of intrathecally-injected nusinersen was stopped early for efficacy (based on a predefined Hammersmith Infant Neurological Examination-Section 2 (HINE-2) response). At the interim analyses after 183 days of treatment, 41% (21/51) of nusinersen-treated infants showed a predefined improvement on HINE-2, compared to 0% (0/27) of participants in the control group. This trial was largely at low risk of bias. Final analyses (ranging from 6 months to 13 months of treatment), showed that fewer participants died or required full-time ventilation (defined as more than 16 hours daily for 21 days or more) in the nusinersen-treated group than the control group (hazard ratio (HR) 0.53, 95% confidence interval (CI) 0.32 to 0.89; N = 121; a 47% lower risk; moderate-certainty evidence). A proportion of infants in the nusinersen group and none of 37 infants in the control group achieved motor milestones: 37/73 nusinersen-treated infants (51%) achieved a motor milestone response on HINE-2 (risk ratio (RR) 38.51, 95% CI 2.43 to 610.14; N = 110; moderate-certainty evidence); 16/73 achieved head control (RR 16.95, 95% CI 1.04 to 274.84; moderate-certainty evidence); 6/73 achieved independent sitting (RR 6.68, 95% CI 0.39 to 115.38; moderate-certainty evidence); 7/73 achieved rolling over (RR 7.70, 95% CI 0.45 to 131.29); and 1/73 achieved standing (RR 1.54, 95% CI 0.06 to 36.92; moderate-certainty evidence). Seventy-one per cent of nusinersen-treated infants versus 3% of infants in the control group were responders on the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND) measure of motor disability (RR 26.36, 95% CI 3.79 to 183.18; N = 110; moderate-certainty evidence). Adverse events and serious adverse events occurred in the majority of infants but were no more frequent in the nusinersen-treated group than the control group (RR 0.99, 95% CI 0.92 to 1.05 and RR 0.70, 95% CI 0.55 to 0.89, respectively; N = 121; moderate-certainty evidence). In the riluzole trial, three of seven children treated with riluzole were still alive at the ages of 30, 48, and 64 months, whereas all three children in the placebo group died. None of the children in the riluzole or placebo group developed the ability to sit, which was the only milestone reported. There were no adverse effects. The certainty of the evidence for all measured outcomes from this study was very low, because the study was too small to detect or rule out an effect, and had serious limitations, including baseline differences. This trial was stopped prematurely because the pharmaceutical company withdrew funding. Various trials and studies investigating treatment strategies other than nusinersen, such as SMN2 augmentation by small molecules, are ongoing. AUTHORS' CONCLUSIONS Based on the very limited evidence currently available regarding drug treatments for SMA type 1, intrathecal nusinersen probably prolongs ventilation-free and overall survival in infants with SMA type I. It is also probable that a greater proportion of infants treated with nusinersen than with a sham procedure achieve motor milestones and can be classed as responders to treatment on clinical assessments (HINE-2 and CHOP INTEND). The proportion of children experiencing adverse events and serious adverse events on nusinersen is no higher with nusinersen treatment than with a sham procedure, based on evidence of moderate certainty. It is uncertain whether riluzole has any effect in patients with SMA type I, based on the limited available evidence. Future trials could provide more high-certainty, longer-term evidence to confirm this result, or focus on comparing new treatments to nusinersen or evaluate them as an add-on therapy to nusinersen.
Collapse
Affiliation(s)
- Renske I Wadman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - W Ludo van der Pol
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Wendy MJ Bosboom
- Onze Lieve Vrouwe Gasthuis locatie WestDepartment of NeurologyAmsterdamNetherlands
| | - Fay‐Lynn Asselman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Leonard H van den Berg
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Susan T Iannaccone
- University of Texas Southwestern Medical CenterDepartment of Pediatrics5323 Harry Hines BoulevardDallasTexasUSA75390
| | - Alexander FJE Vrancken
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | | |
Collapse
|
18
|
Mercuri E, Pera MC, Brogna C. Neonatal hypotonia and neuromuscular conditions. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:435-448. [PMID: 31324324 DOI: 10.1016/b978-0-444-64029-1.00021-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The differential diagnosis of neonatal hypotonia is a complex task, as in newborns hypotonia can be the presenting sign of different underlying causes, including peripheral and central nervous system involvement and genetic and metabolic diseases. This chapter describes how a combined approach, based on the combination of clinical signs and new genetic techniques, can help not only to establish when the hypotonia is related to peripheral involvement but also to achieve an accurate and early diagnosis of the specific neuromuscular diseases with neonatal onset. The early identification of such disorders is important, as this allows early intervention with disease-specific standards of care and, more importantly, because of the possibility to treat some of them, such as spinal muscular atrophy, with therapeutic approaches that have recently become available.
Collapse
Affiliation(s)
- Eugenio Mercuri
- Department of Pediatric Neurology, Catholic University, Rome, Italy.
| | | | - Claudia Brogna
- Department of Pediatric Neurology, Catholic University, Rome, Italy
| |
Collapse
|
19
|
Abstract
Autosomal-recessive proximal spinal muscular atrophy (Werdnig-Hoffmann, Kugelberg-Welander) is caused by mutation of the SMN1 gene, and the clinical severity correlates with the number of copies of a nearly identical gene, SMN2. The SMN protein plays a critical role in spliceosome assembly and may have other cellular functions, such as mRNA transport. Cell culture and animal models have helped to define the disease mechanism and to identify targets for therapeutic intervention. The main focus for developing treatment has been to increase SMN levels, and accomplishing this with small molecules, oligonucleotides, and gene replacement has been quite. An oligonucleotide, nusinersen, was recently approved for treatment in patients, and confirmatory studies of other agents are now under way.
Collapse
Affiliation(s)
- Eveline S Arnold
- Neurogenetics Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
20
|
Critical period of neuromuscular development: Importance for a new treatment of SMA. Neuromuscul Disord 2018; 28:385-393. [DOI: 10.1016/j.nmd.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/05/2018] [Accepted: 03/08/2018] [Indexed: 11/24/2022]
|
21
|
Walker C, El-Khamisy SF. Perturbed autophagy and DNA repair converge to promote neurodegeneration in amyotrophic lateral sclerosis and dementia. Brain 2018; 141:1247-1262. [PMID: 29584802 PMCID: PMC5917746 DOI: 10.1093/brain/awy076] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/16/2018] [Accepted: 02/09/2018] [Indexed: 12/13/2022] Open
Abstract
Maintaining genomic stability constitutes a major challenge facing cells. DNA breaks can arise from direct oxidative damage to the DNA backbone, the inappropriate activities of endogenous enzymes such as DNA topoisomerases, or due to transcriptionally-derived RNA/DNA hybrids (R-loops). The progressive accumulation of DNA breaks has been linked to several neurological disorders. Recently, however, several independent studies have implicated nuclear and mitochondrial genomic instability, perturbed co-transcriptional processing, and impaired cellular clearance pathways as causal and intertwined mechanisms underpinning neurodegeneration. Here, we discuss this emerging paradigm in the context of amyotrophic lateral sclerosis and frontotemporal dementia, and outline how this knowledge paves the way to novel therapeutic interventions.
Collapse
Affiliation(s)
- Callum Walker
- Krebs Institute, Department of Molecular biology and biotechnology, University of Sheffield, UK
- The Institute of Cancer Research, London, UK
| | - Sherif F El-Khamisy
- Krebs Institute, Department of Molecular biology and biotechnology, University of Sheffield, UK
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
22
|
Takarada T, Ar Rochmah M, Harahap NIF, Shinohara M, Saito T, Saito K, Lai PS, Bouike Y, Takeshima Y, Awano H, Morioka I, Iijima K, Nishio H, Takeuchi A. SMA mutations in SMN Tudor and C-terminal domains destabilize the protein. Brain Dev 2017; 39:606-612. [PMID: 28366534 DOI: 10.1016/j.braindev.2017.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND PURPOSE Most spinal muscular atrophy (SMA) patients are homozygous for survival of motor neuron 1 gene (SMN1) deletion. However, some SMA patients carry an intragenic SMN1 mutation. Such patients provide a clue to understanding the function of the SMN protein and the role of each domain of the protein. We previously identified mutations in the Tudor domain and C-terminal region of the SMN protein in three Japanese SMA patients. To clarify the effect of these mutations on protein stability, we conducted expression assays of SMN with mutated domains. PATIENTS AND METHODS Patients A and B carried a mutation in SMN1 exon 3, which encodes a Tudor domain, c.275G>C (p.Trp92Ser). Patient C carried a mutation in SMN1 exon 6, which encodes a YG-box; c.819_820insT (p.Thr274Tyrfs). We constructed plasmid expression vectors containing wild-type and mutant SMN1 cDNAs. After transfection of HeLa cells with the expression plasmids, RNA and protein were isolated and analyzed by reverse-transcription PCR and western blot analysis. RESULTS The abundance of wild-type and mutant SMN1 transcripts in HeLa cells was almost the same. However, western blot analysis showed lower levels of mutant SMN proteins compared with wild-type SMN. In mutant SMN proteins, it is noteworthy that the level of the p.Thr274Tyrfs mutant was much reduced compared with that of the p.Trp92Ser mutant. CONCLUSIONS SMN mutations may affect the stability and levels of the protein.
Collapse
Affiliation(s)
- Toru Takarada
- Analytical Laboratory, Kobe Pharmaceutical University, Kobe, Japan
| | - Mawaddah Ar Rochmah
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nur Imma Fatimah Harahap
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masakazu Shinohara
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshio Saito
- Department of Neurology, Toneyama National Hospital, Osaka, Japan
| | - Kayoko Saito
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ichiro Morioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Atsuko Takeuchi
- Analytical Laboratory, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
23
|
Beecroft SJ, McLean CA, Delatycki MB, Koshy K, Yiu E, Haliloglu G, Orhan D, Lamont PJ, Davis MR, Laing NG, Ravenscroft G. Expanding the phenotypic spectrum associated with mutations of DYNC1H1. Neuromuscul Disord 2017; 27:607-615. [PMID: 28554554 DOI: 10.1016/j.nmd.2017.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
Abstract
Autosomal dominant mutations of DYNC1H1 cause a range of neurogenetic diseases, including mental retardation with cortical malformations, hereditary spastic paraplegia and spinal muscular atrophy. Using SNP array, linkage analysis and next generation sequencing, we identified two families and one isolated proband sharing a known spinal muscular atrophy, lower extremity predominant (SMALED) causing mutation DYNC1H1 c.1792C>T, p.Arg598Cys, and another family harbouring a c.2327C>T, p.Pro776Leu mutation. Here, we present a detailed clinical and pathological examination of these patients, and show that patients with DYNC1H1 mutations may present with a phenotype mimicking a congenital myopathy. We also highlight features that increase the phenotypic overlap with BICD2, which causes SMALED2. Serial muscle biopsies were available for several patients, spanning from infancy and early childhood to middle age. These provide a unique insight into the developmental and pathological origins of SMALED, suggesting in utero denervation with reinnervation by surrounding intact motor neurons and segmental anterior horn cell deficits. We characterise biopsy features that may make diagnosis of this condition easier in the future.
Collapse
Affiliation(s)
- Sarah J Beecroft
- Neurogenetic Diseases Group Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA 6009, Australia; QEII Medical Centre, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia
| | - Catriona A McLean
- Victorian Neuromuscular Laboratory, Alfred Health, Commercial Rd, Prahran, Vic. 3181, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre, Murdoch Childrens Research Institute, Parkville, Vic. 3052, Australia; Victorian Clinical Genetics Services, Parkville, Vic. 3052, Australia
| | - Kurian Koshy
- Launceston General Hospital, Launceston, Tas. 7250, Australia
| | - Eppie Yiu
- Bruce Lefroy Centre, Murdoch Childrens Research Institute, Parkville, Vic. 3052, Australia; Neurology Department, Royal Children's Hospital, Melbourne, Vic. 3052, Australia
| | - Goknur Haliloglu
- Department of Pediatric Neurology, Hacettepe University Children's Hospital, Ankara 06100, Turkey
| | - Diclehan Orhan
- Pediatric Pathology Unit, Hacettepe University Children's Hospital, Ankara 06100, Turkey
| | - Phillipa J Lamont
- Neurogenetic Unit, Department of Neurology, Royal Perth Hospital, Australia
| | - Mark R Davis
- Neurogenetic Unit, Department of Diagnostic Genomics, PathWest, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Nigel G Laing
- Neurogenetic Diseases Group Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA 6009, Australia; QEII Medical Centre, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; Neurogenetic Unit, Department of Diagnostic Genomics, PathWest, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Gianina Ravenscroft
- Neurogenetic Diseases Group Centre for Medical Research, QEII Medical Centre, University of Western Australia, Nedlands, WA 6009, Australia; QEII Medical Centre, Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia.
| |
Collapse
|
24
|
Abstract
After the advances created by the use of cryostat sections and histochemistry 60 years ago, muscle histopathology is now living a real renaissance. In the field of genetic neuromuscular disorders, muscle biopsy analysis is fundamental to address questions about pathogenicity and protein expression when new genes are discovered through next-generation sequencing approaches. Moreover, the identification of the same gene mutated in previously considered distinct histopathologic entities imposes a constant reassessment of morphologic boundaries in several groups of disorders. In other fields like the acquired inflammatory myopathies, histologic analysis nowadays helps to affirm a diagnosis, set up therapeutic strategies, and verify the success of immunosuppressive treatment. In this exciting scenario morphologists are definitely key figures in the neuromuscular field. The objective of this chapter is to give an overview on morphology of the most frequent and recently identified muscle conditions, stressing the importance that only a combined analysis of clinical findings, muscle histology, and specific ancillary investigations is effective in reaching a precise diagnosis and orienting therapy.
Collapse
Affiliation(s)
- Edoardo Malfatti
- Neuromuscular Morphology Unit and Neuromuscular Pathology Reference Center Paris-Est, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France.
| | - Norma Beatriz Romero
- Neuromuscular Morphology Unit and Neuromuscular Pathology Reference Center Paris-Est, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| |
Collapse
|
25
|
Butchbach MER. Copy Number Variations in the Survival Motor Neuron Genes: Implications for Spinal Muscular Atrophy and Other Neurodegenerative Diseases. Front Mol Biosci 2016; 3:7. [PMID: 27014701 PMCID: PMC4785180 DOI: 10.3389/fmolb.2016.00007] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/25/2016] [Indexed: 12/11/2022] Open
Abstract
Proximal spinal muscular atrophy (SMA), a leading genetic cause of infant death worldwide, is an early-onset, autosomal recessive neurodegenerative disease characterized by the loss of spinal α-motor neurons. This loss of α-motor neurons is associated with muscle weakness and atrophy. SMA can be classified into five clinical grades based on age of onset and severity of the disease. Regardless of clinical grade, proximal SMA results from the loss or mutation of SMN1 (survival motor neuron 1) on chromosome 5q13. In humans a large tandem chromosomal duplication has lead to a second copy of the SMN gene locus known as SMN2. SMN2 is distinguishable from SMN1 by a single nucleotide difference that disrupts an exonic splice enhancer in exon 7. As a result, most of SMN2 mRNAs lack exon 7 (SMNΔ7) and produce a protein that is both unstable and less than fully functional. Although only 10–20% of the SMN2 gene product is fully functional, increased genomic copies of SMN2 inversely correlates with disease severity among individuals with SMA. Because SMN2 copy number influences disease severity in SMA, there is prognostic value in accurate measurement of SMN2 copy number from patients being evaluated for SMA. This prognostic value is especially important given that SMN2 copy number is now being used as an inclusion criterion for SMA clinical trials. In addition to SMA, copy number variations (CNVs) in the SMN genes can affect the clinical severity of other neurological disorders including amyotrophic lateral sclerosis (ALS) and progressive muscular atrophy (PMA). This review will discuss how SMN1 and SMN2 CNVs are detected and why accurate measurement of SMN1 and SMN2 copy numbers is relevant for SMA and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Matthew E R Butchbach
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for ChildrenWilmington, DE, USA; Center for Pediatric Research, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for ChildrenWilmington, DE, USA; Department of Biological Sciences, University of DelawareNewark, DE, USA; Department of Pediatrics, Thomas Jefferson UniversityPhiladelphia, PA, USA
| |
Collapse
|
26
|
Sedghi M, Vallian S. D5S351 and D5S1414 located at the spinal muscular atrophy critical region represent novel informative markers in the Iranian population. Meta Gene 2016; 7:16-9. [PMID: 26693404 PMCID: PMC4660382 DOI: 10.1016/j.mgene.2015.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/08/2015] [Accepted: 10/26/2015] [Indexed: 11/28/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a degenerative neuromuscular disease associated with progressive symmetric weakness and atrophy of the limb muscles. In view of the involvement of numerous point mutations and deletions associated with the disease, the application of polymorphic markers flanking the SMA critical region could be valuable in molecular diagnosis of the disease. In the present study, D5S351 and D5S1414 polymorphic markers located at the SMA critical region in the Iranian populations were characterized. Genotyping of the markers indicated the presence of six and nine different alleles for D5S351 and D5S1414, respectively. Haplotype frequency estimation in 25 trios families and 75 unrelated individuals indicated the presence of six informative haplotypes with frequency higher than 0.05 in the studied population. Furthermore, the D′ coefficient and the χ2 value for D5S351 and D5S1414 markers revealed the presence of linkage disequilibrium between the two markers in the Iranians. These data suggested that D5S351 and D5S1414 could be suggested as informative markers for linkage analysis and molecular diagnosis of SMA in the Iranian population.
Collapse
|
27
|
Prior TW, Nagan N. Spinal Muscular Atrophy: Overview of Molecular Diagnostic Approaches. ACTA ACUST UNITED AC 2016; 88:9.27.1-9.27.13. [PMID: 26724723 DOI: 10.1002/0471142905.hg0927s88] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease and the most common genetic cause of infant mortality, affecting ∼1 in 10,000 live births. The disease is characterized by progressive symmetrical muscle weakness resulting from the degeneration and loss of anterior horn cells in the spinal cord and brain stem nuclei. The disease is classified on the basis of age of onset and clinical course. SMA is caused by mutations in the telomeric copy of the survival motor neuron 1 (SMN1) gene, but all patients retain a centromeric copy of the gene, SMN2. The homozygous absence of the SMN1 exon 7 has been observed in the majority of patients and is being utilized as a reliable and sensitive SMA diagnostic test. In the majority of cases, the disease severity correlates inversely with an increased SMN2 gene copy number. Carrier detection, in the deletion cases, relies on the accurate determination of the SMN1 gene copies. Since SMA is one of the most common lethal genetic disorders, with a carrier frequency of 1 in 40 to 1 in 60, direct carrier dosage testing has been beneficial to many families. This unit attempts to highlight the molecular genetics of SMA with a focus on the advantages and limitations of the current molecular technologies.
Collapse
Affiliation(s)
- Thomas W Prior
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Narasimhan Nagan
- Integrated Genetics, Laboratory Corporation of America Holdings, Westborough, Massachusetts
| |
Collapse
|
28
|
Yamamoto T, Sato H, Lai PS, Nurputra DK, Harahap NIF, Morikawa S, Nishimura N, Kurashige T, Ohshita T, Nakajima H, Yamada H, Nishida Y, Toda S, Takanashi JI, Takeuchi A, Tohyama Y, Kubo Y, Saito K, Takeshima Y, Matsuo M, Nishio H. Intragenic mutations in SMN1 may contribute more significantly to clinical severity than SMN2 copy numbers in some spinal muscular atrophy (SMA) patients. Brain Dev 2014; 36:914-20. [PMID: 24359787 DOI: 10.1016/j.braindev.2013.11.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/20/2013] [Accepted: 11/25/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by deletion or intragenic mutation of SMN1. SMA is classified into several subtypes based on clinical severity. It has been reported that the copy number of SMN2, a highly homologous gene to SMN1, is associated with clinical severity among SMA patients with homozygous deletion of SMN1. The purpose of this study was to clarify the genotype-phenotype relationship among the patients without homozygous deletion of SMN1. METHODS We performed molecular genetic analyses of SMN1 and SMN2 in 112 Japanese patients diagnosed as having SMA based on the clinical findings. For the patients retaining SMN1, the PCR or RT-PCR products of SMN1 were sequenced to identify the mutation. RESULTS Out of the 112 patients, 106 patients were homozygous for deletion of SMN1, and six patients were compound heterozygous for deletion of one SMN1 allele and intragenic mutation in the retained SMN1 allele. Four intragenic mutations were identified in the six patients: p.Ala2Val, p.Trp92Ser, p.Thr274TyrfsX32 and p.Tyr277Cys. To the best of our knowledge, all mutations except p.Trp92Ser were novel mutations which had never been previously reported. According to our observation, clinical severity of the six patients was determined by the type and location of the mutation rather than SMN2 copy number. CONCLUSION SMN2 copy number is not always associated with clinical severity of SMA patients, especially SMA patients retaining one SMN1 allele.
Collapse
Affiliation(s)
- Tomoto Yamamoto
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideyuki Sato
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, NUHS, National University of Singapore, Singapore
| | - Dian Kesumapramudya Nurputra
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nur Imma Fatimah Harahap
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoru Morikawa
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriyuki Nishimura
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Kurashige
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tomohiko Ohshita
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hideki Nakajima
- Department of Clinical Neuroscience and Neurology, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| | - Hiroyuki Yamada
- Department of Pediatrics, Hyogo Prefectural Tsukaguchi Hospital, Amagasaki, Hyogo, Japan
| | - Yoshinobu Nishida
- Department of Pediatrics, Hyogo Prefectural Tsukaguchi Hospital, Amagasaki, Hyogo, Japan
| | - Soichiro Toda
- Department of Pediatrics, Kameda Medical Center, Kamogawa, Chiba, Japan
| | | | | | - Yumi Tohyama
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Yuji Kubo
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Kayoko Saito
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasuhiro Takeshima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masafumi Matsuo
- Department of Medical Rehabilitation, Kobe Gakuin University, Kobe, Japan
| | - Hisahide Nishio
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
29
|
Sedghi M, Behnam M, Fazel E, Salehi M, Ganji H, Meamar R, Hosseinzadeh M, Nouri N. Genotype-phenotype correlation of survival motor neuron and neuronal apoptosis inhibitory protein genes in spinal muscular atrophy patients from Iran. Adv Biomed Res 2014; 3:74. [PMID: 24627882 PMCID: PMC3950840 DOI: 10.4103/2277-9175.125872] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/19/2012] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Proximal spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by symmetrical proximal muscle weakness and atrophy. According to the severity of the disease and the age of onset, SMA can be divided into three groups. The survival motor neuron (SMN) gene that is located on 5q13 is identified as the disease determining gene. Another gene in this region is neuronal apoptosis inhibitory protein (NAIP), and its functional role in the pathogenesis of SMA has not been fully elucidated. Here, we investigated the correlation between deletions in SMN and NAIP genes with clinical features of SMA patients. MATERIALS AND METHODS In the current study, 71 unrelated Iranian patients were investigated for the detection of deletions in SMN1 and NAIP genes. Polymerase chain reaction (PCR) was used to detect the deletions of exon 4 and 5 of the NAIP gene. Deletions in exon 7 and 8 of SMN1 gene were detected by RFLP-PCR with DraI and DdeI, respectively. RESULTS Our results showed that 51 patients have homozygous deletions in SMN1 and/or NAIP genes. Among these 51 patients, deletion in NAIP gene were found in 35 patients (65.7% of type I, 22.5% type II and 11.42% type III). CONCLUSION Defect in SMN1 gene plays a major role in manifesting of the disease and NAIP (4 and 5) gene acts as a modifying factor in severity of symptoms. Correlation between NAIP gene defect and severity of the disease is confirmed. However, the exact role of NAIP gene in SMA has yet to be fully clarified.
Collapse
Affiliation(s)
- Maryam Sedghi
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdiyeh Behnam
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Esmat Fazel
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoor Salehi
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Ganji
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rokhsareh Meamar
- Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Hosseinzadeh
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nayereh Nouri
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
30
|
Bladen CL, Thompson R, Jackson JM, Garland C, Wegel C, Ambrosini A, Pisano P, Walter MC, Schreiber O, Lusakowska A, Jedrzejowska M, Kostera-Pruszczyk A, van der Pol L, Wadman RI, Gredal O, Karaduman A, Topaloglu H, Yilmaz O, Matyushenko V, Rasic VM, Kosac A, Karcagi V, Garami M, Herczegfalvi A, Monges S, Moresco A, Chertkoff L, Chamova T, Guergueltcheva V, Butoianu N, Craiu D, Korngut L, Campbell C, Haberlova J, Strenkova J, Alejandro M, Jimenez A, Ortiz GG, Enriquez GVG, Rodrigues M, Roxburgh R, Dawkins H, Youngs L, Lahdetie J, Angelkova N, Saugier-Veber P, Cuisset JM, Bloetzer C, Jeannet PY, Klein A, Nascimento A, Tizzano E, Salgado D, Mercuri E, Sejersen T, Kirschner J, Rafferty K, Straub V, Bushby K, Verschuuren J, Beroud C, Lochmüller H. Mapping the differences in care for 5,000 spinal muscular atrophy patients, a survey of 24 national registries in North America, Australasia and Europe. J Neurol 2014; 261:152-63. [PMID: 24162038 DOI: 10.1007/s00415-013-7154-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 01/29/2023]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder characterised by the degeneration of motor neurons and progressive muscle weakness. It is caused by homozygous deletions in the survival motor neuron gene on chromosome 5. SMA shows a wide range of clinical severity, with SMA type I patients often dying before 2 years of age, whereas type III patients experience less severe clinical manifestations and can have a normal life span. Here, we describe the design, setup and utilisation of the TREAT-NMD national SMA patient registries characterised by a small, but fully standardised set of registry items and by genetic confirmation in all patients. We analyse a selection of clinical items from the SMA registries in order to provide a snapshot of the clinical data stratified by SMA subtype, and compare these results with published recommendations on standards of care. Our study included 5,068 SMA patients in 25 countries. A total of 615 patients were ventilated, either invasively (178) or non-invasively (437), 439 received tube feeding and 455 had had scoliosis surgery. Some of these interventions were not available to patients in all countries, but differences were also noted among high-income countries with comparable wealth and health care systems. This study provides the basis for further research, such as quality of life in ventilated SMA patients, and will inform clinical trial planning.
Collapse
Affiliation(s)
- Catherine L Bladen
- MRC Centre for Neuromuscular Diseases at Newcastle, Institute of Genetic Medicine, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lunke S, El-Osta A. Applicability of histone deacetylase inhibition for the treatment of spinal muscular atrophy. Neurotherapeutics 2013; 10:677-87. [PMID: 23996601 PMCID: PMC3805858 DOI: 10.1007/s13311-013-0209-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spinal muscular atrophy (SMA), a neurodegenerative disease with potentially devastating and even deadly effects on affected individuals, was first described in the late nineteenth century. Although the survival of motor neuron (SMN) gene was identified nearly 2 decades ago to be causative of the disease, neither an effective treatment nor a cure are currently available. Yet efforts are on-going to test a multitude of treatment strategies with the potential to alleviate disease symptoms in human and clinical trials. Among the most studied compounds for the treatment of SMA are histone deacetylase inhibitors. Several of these epigenetic modifiers have been shown to increase expression of the crucial SMN gene in vitro and in vivo, an effect linked to increased histone acetylation and remodeling of the chromatin landscape surrounding the SMN gene promoter. Here, we review the history and current state of use of histone deacetylase inhibitors in SMA, as well as the success of clinical trials investigating the clinical applicability of these epigenetic modifiers in SMA treatment.
Collapse
Affiliation(s)
- Sebastian Lunke
- />Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004 Australia
- />Translational Genomics Laboratory, Centre for Translational Pathology, Department of Pathology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Assam El-Osta
- />Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004 Australia
- />Epigenomics Profiling Facility, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC Australia
- />Department of Pathology, The University of Melbourne, Melbourne, VIC Australia
- />Faculty of Medicine, Monash University, Monash, VIC Australia
| |
Collapse
|
32
|
Nurputra DK, Lai PS, Harahap NIF, Morikawa S, Yamamoto T, Nishimura N, Kubo Y, Takeuchi A, Saito T, Takeshima Y, Tohyama Y, Tay SKH, Low PS, Saito K, Nishio H. Spinal muscular atrophy: from gene discovery to clinical trials. Ann Hum Genet 2013; 77:435-63. [PMID: 23879295 DOI: 10.1111/ahg.12031] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 04/26/2013] [Indexed: 12/25/2022]
Abstract
Spinal muscular atrophy (SMA) is a common neuromuscular disorder with autosomal recessive inheritance, resulting in the degeneration of motor neurons. The incidence of the disease has been estimated at 1 in 6000-10,000 newborns with a carrier frequency of 1 in 40-60. SMA is caused by mutations of the SMN1 gene, located on chromosome 5q13. The gene product, survival motor neuron (SMN) plays critical roles in a variety of cellular activities. SMN2, a homologue of SMN1, is retained in all SMA patients and generates low levels of SMN, but does not compensate for the mutated SMN1. Genetic analysis demonstrates the presence of homozygous deletion of SMN1 in most patients, and allows screening of heterozygous carriers in affected families. Considering high incidence of carrier frequency in SMA, population-wide newborn and carrier screening has been proposed. Although no effective treatment is currently available, some treatment strategies have already been developed based on the molecular pathophysiology of this disease. Current treatment strategies can be classified into three major groups: SMN2-targeting, SMN1-introduction, and non-SMN targeting. Here, we provide a comprehensive and up-to-date review integrating advances in molecular pathophysiology and diagnostic testing with therapeutic developments for this disease including promising candidates from recent clinical trials.
Collapse
Affiliation(s)
- Dian K Nurputra
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bottai D, Adami R. Spinal muscular atrophy: new findings for an old pathology. Brain Pathol 2013; 23:613-22. [PMID: 23750936 DOI: 10.1111/bpa.12071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 05/24/2013] [Indexed: 12/15/2022] Open
Abstract
Understanding the events that are responsible for a disease is mandatory for setting up a therapeutic strategy. Although spinal muscular atrophy (SMA) is considered a rare neurodegenerative pathology, its impact in our society is really devastating as it strikes young people from birth onward, and it affects their families either emotionally or financially. Moreover, it requires intensive care for the children, and this diverts both parents and relatives from their occupations. Each neuron is very different from one another; therefore, in a neurodegenerative disease, the population of axons, synapses and cell bodies degenerate asynchronously, and subpopulations of neurons have different vulnerabilities. The knowledge of the sequence of events along the lengths of individual neurons is crucial to understand if each synapse degenerates before the corresponding axon, or if each axon degenerates before the corresponding cell body. Early degeneration of one neuronal compartment in disease often reflects molecular defects somewhere else. Up until now, SMA is considered mostly a lower motor neuron disease caused by the loss-of-function mutations in the SMN1 gene; here, we inspect other features that can be altered by this defect, such as the cross talk between muscle and motor neuron and the role of physical inactivity.
Collapse
Affiliation(s)
- Daniele Bottai
- Department of Science Health, University of Milan, Milano, Italy
| | | |
Collapse
|
34
|
Alsaman AS, Alshaikh NM. Type III spinal muscular atrophy mimicking muscular dystrophies. Pediatr Neurol 2013; 48:363-6. [PMID: 23583053 DOI: 10.1016/j.pediatrneurol.2012.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 12/31/2012] [Indexed: 11/28/2022]
Abstract
Types III and IV spinal muscular atrophy represent a diagnostic challenge due to the great variability in their presentation. We report a series of eight patients with type III spinal muscular atrophy who were followed for a long time for possible muscular dystrophy or myopathy, confirming its clinical heterogeneity and propensity to delayed diagnosis. Clinical examination revealed heterogeneous findings, where the diagnosis of type III spinal muscular atrophy was not immediately apparent in many patients as their clinical and laboratory abnormalities were consistent with muscular dystrophy or myopathy. The presence of dystrophic features such as hypertrophy of the calves, weakness of the limb girdle, high serum creatine kinase levels, and myopathic histopathology should not divert attention from the possibility of spinal muscular atrophy. It is strongly recommended to give variable presentations enough thought and to consider the autosomal recessive type III spinal muscular atrophy in the diagnostic evaluation.
Collapse
Affiliation(s)
- Abdulaziz S Alsaman
- Pediatric Neurology Department, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia.
| | | |
Collapse
|
35
|
Jiang W, Ji X, Xu Y, Qu X, Sun W, Yang Z, Tao J, Chen Y. Molecular prenatal diagnosis of autosomal recessive spinal muscular atrophies using quantification polymerase chain reaction. Genet Test Mol Biomarkers 2013; 17:438-42. [PMID: 23448387 DOI: 10.1089/gtmb.2012.0481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder characterized by degeneration of alpha motor neurons in the spinal cord, resulting in progressive proximal muscle weakness and paralysis. SMA is the second most common neuromuscular disorder and a common cause of infant disability and mortality. About 95% of patients have a homozygous deletion of exon7 in the survival motor neuron 1 gene. About 50 fetuses from 47 Chinese couples at risk of having an affected child were recruited in this study. The homozygous absence of exon7 of the survival motor neuron 1 gene was detected by both polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and the quantitative PCR method. Short tandem repeat microsatellite markers linked to the survival motor neuron 1 gene were used to do linkage analysis. In conclusion, the quantitative PCR method results were as reliable as the results using the PCR-RFLP method in prenatal diagnosis. The quantitative PCR method can give more information on SMA carrier status that coincides with the result of linkage analysis.
Collapse
Affiliation(s)
- Wenting Jiang
- Department of Prenatal Diagnosis Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Spinal muscular atrophies (SMA) are genetic disorders characterized by degeneration of lower motor neurons. The most frequent form is caused by mutations of the survival motor neuron 1 gene (SMN1). The identification of this gene greatly improved diagnostic testing and family-planning options of SMA families. SMN plays a key role in metabolism of RNA. However, the link between RNA metabolism and motor neuron degeneration remains unknown. A defect in mRNA processing likely generates either a loss of function of some critical RNA or abnormal transcripts with toxic property for motor neurons. Mutations of SMN in various organisms highlighted an essential role of SMN in motor axon and neuromuscular junction development or maintenance. The quality of life of patients has greatly improved over recent decades through the improvement of care and management of patients. In addition, major advances in translational research have been made in the field of SMA. Various therapeutic strategies have been successfully developed aiming at acting on SMN2, a partially functional copy of the SMN1 gene which remains present in patients. Drugs have been identified and some are already at preclinical stages. Identifying molecules involved in the SMA degenerative process should represent additional attractive targets for therapeutics in SMA.
Collapse
Affiliation(s)
- Louis Viollet
- Hôpital Necker-Enfants Malades and Université Paris Descartes, Paris, France
| | | |
Collapse
|
37
|
Oates EC, Reddel S, Rodriguez ML, Gandolfo LC, Bahlo M, Hawke SH, Lamandé SR, Clarke NF, North KN. Autosomal dominant congenital spinal muscular atrophy: a true form of spinal muscular atrophy caused by early loss of anterior horn cells. ACTA ACUST UNITED AC 2012; 135:1714-23. [PMID: 22628388 DOI: 10.1093/brain/aws108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Autosomal dominant congenital spinal muscular atrophy is characterized by predominantly lower limb weakness and wasting, and congenital or early-onset contractures of the hip, knee and ankle. Mutations in TRPV4, encoding a cation channel, have recently been identified in one large dominant congenital spinal muscular atrophy kindred, but the genetic basis of dominant congenital spinal muscular atrophy in many families remains unknown. It has been hypothesized that differences in the timing and site of anterior horn cell loss in the central nervous system account for the variations in clinical phenotype between different forms of spinal muscular atrophy, but there has been a lack of neuropathological data to support this concept in dominant congenital spinal muscular atrophy. We report clinical, electrophysiology, muscle magnetic resonance imaging and histopathology findings in a four generation family with typical dominant congenital spinal muscular atrophy features, without mutations in TRPV4, and in whom linkage to other known dominant neuropathy and spinal muscular atrophy genes has been excluded. The autopsy findings in the proband, who died at 14 months of age from an unrelated illness, provided a rare opportunity to study the neuropathological basis of dominant congenital spinal muscular atrophy. There was a reduction in anterior horn cell number in the lumbar and, to a lesser degree, the cervical spinal cord, and atrophy of the ventral nerve roots at these levels, in the absence of additional peripheral nerve pathology or abnormalities elsewhere along the neuraxis. Despite the young age of the child at the time of autopsy, there was no pathological evidence of ongoing loss or degeneration of anterior horn cells suggesting that anterior horn cell loss in dominant congenital spinal muscular atrophy occurs in early life, and is largely complete by the end of infancy. These findings confirm that dominant congenital spinal muscular atrophy is a true form of spinal muscular atrophy caused by a loss of anterior horn cells localized to lumbar and cervical regions early in development.
Collapse
Affiliation(s)
- Emily C Oates
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales, 2145, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wadman RI, Bosboom WMJ, van der Pol WL, van den Berg LH, Wokke JHJ, Iannaccone ST, Vrancken AFJE. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 2012:CD006282. [PMID: 22513940 DOI: 10.1002/14651858.cd006282.pub4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type II do not develop the ability to walk without support and have a shortened life expectancy, whereas children with SMA type III develop the ability to walk and have a normal life expectancy. There are no known efficacious drug treatments that influence the disease course of SMA. This is an update of a review first published in 2009. OBJECTIVES To evaluate whether drug treatment is able to slow or arrest the disease progression of SMA types II and III and to assess if such therapy can be given safely. Drug treatment for SMA type I is the topic of a separate updated Cochrane review. SEARCH METHODS We searched the Cochrane Neuromuscular Disease Group Specialized Register (8 March 2011), Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 1), MEDLINE (January 1991 to February 2011), EMBASE (January 1991 to February 2011) and ISI Web of Knowledge (January 1991 to March 8 2011). We also searched clinicaltrials.gov to identify as yet unpublished trials (8 March 2011). SELECTION CRITERIA We sought all randomised or quasi-randomised trials that examined the efficacy of drug treatment for SMA types II and III. Participants had to fulfil the clinical criteria and have a deletion or mutation of the survival motor neuron 1 (SMN1) gene (5q11.2-13.2) that was confirmed by genetic analysis.The primary outcome measure was to be change in disability score within one year after the onset of treatment. Secondary outcome measures within one year after the onset of treatment were to be change in muscle strength, ability to stand or walk, change in quality of life, time from the start of treatment until death or full time ventilation and adverse events attributable to treatment during the trial period. DATA COLLECTION AND ANALYSIS Two authors independently reviewed and extracted data from all potentially relevant trials. Pooled relative risks and pooled standardised mean differences were to be calculated to assess treatment efficacy. Risk of bias was systematically analysed. MAIN RESULTS Six randomised placebo-controlled trials on treatment for SMA types II and III were found and included in the review: the four in the original review and two trials added in this update. The treatments were creatine (55 participants), phenylbutyrate (107 participants), gabapentin (84 participants), thyrotropin releasing hormone (9 participants), hydroxyurea (57 participants), and combination therapy with valproate and acetyl-L-carnitine (61 participants). None of these studies were completely free of bias. All studies had adequate blinding, sequence generation and reports of primary outcomes.None of the included trials showed any statistically significant effects on the outcome measures in participants with SMA types II and III. One participant died due to suffocation in the hydroxyurea trial and one participant died in the creatine trial. No participants in any of the other four trials died or reached the state of full time ventilation. Serious side effects were infrequent. AUTHORS' CONCLUSIONS There is no proven efficacious drug treatment for SMA types II and III.
Collapse
Affiliation(s)
- Renske I Wadman
- Department of Neurology, University Medical Center Utrecht, Utrecht, Netherlands.
| | | | | | | | | | | | | |
Collapse
|
39
|
Wadman RI, Bosboom WMJ, van der Pol WL, van den Berg LH, Wokke JHJ, Iannaccone ST, Vrancken AFFJE. Drug treatment for spinal muscular atrophy type I. Cochrane Database Syst Rev 2012:CD006281. [PMID: 22513939 DOI: 10.1002/14651858.cd006281.pub4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by degeneration of anterior horn cells of the spinal cord, which leads to progressive muscle weakness. Children with SMA type I will never be able to sit without support and usually die by the age of two years. There are no known efficacious drug treatments that influence the course of the disease. This is an update of a review first published in 2009. OBJECTIVES To evaluate whether drug treatment is able to slow or arrest the disease progression of SMA type I, and to assess if such therapy can be given safely. Drug treatment for SMA types II and III is the topic of a separate updated Cochrane review. SEARCH METHODS We searched the Cochrane Neuromuscular Disease Group Specialized Register (8 March 2011), CENTRAL (The Cochrane Library 2011, Issue 1), MEDLINE (January 1991 to February 2011), EMBASE (January 1991 to February 2011) and ISI Web of Knowledge (January 1991 to 8 March 2011). We searched the Clinical Trials Registry of the U.S. National Institute of Health (www.ClinicalTrials.gov) (8 March 2011) to identify additional trials that had not yet been published. SELECTION CRITERIA We sought all randomised or quasi-randomised trials that examined the efficacy of drug treatment for SMA type I. Participants had to fulfil the clinical criteria and have a deletion or mutation of the SMN1 gene (5q11.2-13.2) confirmed by genetic analysis.The primary outcome measure was time from birth until death or full time ventilation. Secondary outcome measures were development of rolling, sitting or standing within one year after the onset of treatment, and adverse events attributable to treatment during the trial period. DATA COLLECTION AND ANALYSIS Two authors (RW and AV) independently reviewed and extracted data from all potentially relevant trials. For included studies, pooled relative risks and standardised mean differences were to be calculated to assess treatment efficacy. MAIN RESULTS One small randomised controlled study comparing riluzole treatment to placebo for 10 SMA type 1 children was identified and included in the original review. No further trials were identified for the update in 2011. Regarding the primary outcome measure, three of seven children treated with riluzole were still alive at the ages of 30, 48 and 64 months, whereas all three children in the placebo group died; but the difference was not statistically significant. Regarding the secondary outcome measures, none of the children in the riluzole or placebo group developed the ability to roll, sit or stand, and no adverse effects were observed. For several reasons the overall quality of the study was low, mainly because the study was too small to detect an effect and because of baseline differences. Follow-up of the 10 included children was complete. AUTHORS' CONCLUSIONS No drug treatment for SMA type I has been proven to have significant efficacy.
Collapse
Affiliation(s)
- Renske I Wadman
- Department of Neurology, University Medical Center Utrecht, Utrecht, Netherlands.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Human embryonic stem cells (HESCs) are of great interest in biology and medicine due to their ability to grow indefinitely in culture while maintaining their ability to differentiate into all different cell types in the human body. In addition, HESCs can be used for better understanding the key developmental processes and can, therefore, serve for studying genetic disorders for which no good research model exists. Preimplantation genetic diagnosis of in vitro derived embryos results in affected-spare blastocysts with specific known inherited mutations.These affected blastocysts can be used for the derivation of disease-bearing HESCs, which would serve for studying the molecular and pathophysiological mechanisms underlying the genetic disease for which they were diagnosed. This chapter describes the methods to derive HESCs carrying mutations for inherited disorders.
Collapse
|
41
|
Wadman RI, Bosboom WM, van den Berg LH, Wokke JH, Iannaccone ST, Vrancken AF. Drug treatment for spinal muscular atrophy type I. Cochrane Database Syst Rev 2011:CD006281. [PMID: 22161399 DOI: 10.1002/14651858.cd006281.pub3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by degeneration of anterior horn cells of the spinal cord, which leads to progressive muscle weakness. Children with SMA type I will never be able to sit without support and usually die by the age of two years. There are no known efficacious drug treatments that influence the course of the disease. This is an update of a review first published in 2009. OBJECTIVES To evaluate whether drug treatment is able to slow or arrest the disease progression of SMA type I, and to assess if such therapy can be given safely. Drug treatment for SMA types II and III is the topic of a separate updated Cochrane review. SEARCH METHODS We searched the Cochrane Neuromuscular Disease Group Specialized Register (8 March 2011), CENTRAL (The Cochrane Library 2011, Issue 1), MEDLINE (January 1991 to February 2011), EMBASE (January 1991 to February 2011) and ISI Web of Knowledge (January 1991 to 8 March 2011). We searched the Clinical Trials Registry of the U.S. National Institute of Health (www.ClinicalTrials.gov) (8 March 2011) to identify additional trials that had not yet been published. SELECTION CRITERIA We sought all randomised or quasi-randomised trials that examined the efficacy of drug treatment for SMA type I. Participants had to fulfil the clinical criteria and have a deletion or mutation of the SMN1 gene (5q11.2-13.2) confirmed by genetic analysis.The primary outcome measure was time from birth until death or full time ventilation. Secondary outcome measures were development of rolling, sitting or standing within one year after the onset of treatment, and adverse events attributable to treatment during the trial period. DATA COLLECTION AND ANALYSIS Two authors (RW and AV) independently reviewed and extracted data from all potentially relevant trials. For included studies, pooled relative risks and standardised mean differences were to be calculated to assess treatment efficacy. MAIN RESULTS One small randomised controlled study comparing riluzole treatment to placebo for 10 SMA type 1 children was identified and included in the original review. No further trials were identified for the update in 2011. Regarding the primary outcome measure, three of seven children treated with riluzole were still alive at the ages of 30, 48 and 64 months, whereas all three children in the placebo group died; but the difference was not statistically significant. Regarding the secondary outcome measures, none of the children in the riluzole or placebo group developed the ability to roll, sit or stand, and no adverse effects were observed. For several reasons the overall quality of the study was low, mainly because the study was too small to detect an effect and because of baseline differences. Follow-up of the 10 included children was complete. AUTHORS' CONCLUSIONS No drug treatment for SMA type I has been proven to have significant efficacy.
Collapse
Affiliation(s)
- Renske I Wadman
- Department of Neurology, University Medical Center Utrecht, Rudolf Magnus Institute for Neuroscience, Universiteitsweg 100, Utrecht, Netherlands, 3584 CG
| | | | | | | | | | | |
Collapse
|
42
|
Wadman RI, Bosboom WM, van den Berg LH, Wokke JH, Iannaccone ST, Vrancken AF. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 2011:CD006282. [PMID: 22161400 DOI: 10.1002/14651858.cd006282.pub3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type II do not develop the ability to walk without support and have a shortened life expectancy, whereas children with SMA type III develop the ability to walk and have a normal life expectancy. There are no known efficacious drug treatments that influence the disease course of SMA. This is an update of a review first published in 2009. OBJECTIVES To evaluate whether drug treatment is able to slow or arrest the disease progression of SMA types II and III and to assess if such therapy can be given safely. Drug treatment for SMA type I is the topic of a separate updated Cochrane review. SEARCH METHODS We searched the Cochrane Neuromuscular Disease Group Specialized Register (8 March 2011), Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 1), MEDLINE (January 1991 to February 2011), EMBASE (January 1991 to February 2011) and ISI Web of Knowledge (January 1991 to March 8 2011). We also searched clinicaltrials.gov to identify as yet unpublished trials (8 March 2011). SELECTION CRITERIA We sought all randomised or quasi-randomised trials that examined the efficacy of drug treatment for SMA types II and III. Participants had to fulfil the clinical criteria and have a deletion or mutation of the survival motor neuron 1 (SMN1) gene (5q11.2-13.2) that was confirmed by genetic analysis.The primary outcome measure was to be change in disability score within one year after the onset of treatment. Secondary outcome measures within one year after the onset of treatment were to be change in muscle strength, ability to stand or walk, change in quality of life, time from the start of treatment until death or full time ventilation and adverse events attributable to treatment during the trial period. DATA COLLECTION AND ANALYSIS Two authors independently reviewed and extracted data from all potentially relevant trials. Pooled relative risks and pooled standardised mean differences were to be calculated to assess treatment efficacy. Risk of bias was systematically analysed. MAIN RESULTS Six randomised placebo-controlled trials on treatment for SMA types II and III were found and included in the review: the four in the original review and two trials added in this update. The treatments were creatine (55 participants), phenylbutyrate (107 participants), gabapentin (84 participants), thyrotropin releasing hormone (9 participants), hydroxyurea (57 participants), and combination therapy with valproate and acetyl-L-carnitine (61 participants). None of these studies were completely free of bias. All studies had adequate blinding, sequence generation and reports of primary outcomes.None of the included trials showed any statistically significant effects on the outcome measures in participants with SMA types II and III. One participant died due to suffocation in the hydroxyurea trial and one participant died in the creatine trial. No participants in any of the other four trials died or reached the state of full time ventilation. Serious side effects were infrequent. AUTHORS' CONCLUSIONS There is no proven efficacious drug treatment for SMA types II and III.
Collapse
Affiliation(s)
- Renske I Wadman
- Department of Neurology, University Medical Center Utrecht, Rudolf Magnus Institute for Neuroscience, Universiteitsweg 100, Utrecht, Netherlands, 3584 CG
| | | | | | | | | | | |
Collapse
|
43
|
Sukenik-Halevy R, Pesso R, Garbian N, Magal N, Shohat M. Large-Scale Population Carrier Screening for Spinal Muscular Atrophy in Israel—Effect of Ethnicity on the False-Negative Rate. Genet Test Mol Biomarkers 2010; 14:319-24. [DOI: 10.1089/gtmb.2009.0089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rivka Sukenik-Halevy
- Rabin Medical Center, Recanati Institute of Medical Genetics, Petach Tikva, Israel
| | - Rachel Pesso
- Genetic Institute of Maccabi Health Insurance, Mega-Lab, Rehovot, Israel
| | - Noa Garbian
- Genetic Institute of Maccabi Health Insurance, Mega-Lab, Rehovot, Israel
| | - Nurit Magal
- Rabin Medical Center, Recanati Institute of Medical Genetics, Petach Tikva, Israel
| | - Mordechai Shohat
- Rabin Medical Center, Recanati Institute of Medical Genetics, Petach Tikva, Israel
| |
Collapse
|
44
|
Burlet P, Gigarel N, Magen M, Drunat S, Benachi A, Hesters L, Munnich A, Bonnefont JP, Steffann J. Single-sperm analysis for recurrence risk assessment of spinal muscular atrophy. Eur J Hum Genet 2010; 18:505-8. [PMID: 19904299 PMCID: PMC2987255 DOI: 10.1038/ejhg.2009.198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 11/09/2022] Open
Abstract
With the detection of a homozygous deletion of the survival motor neuron 1 gene (SMN1), prenatal and preimplantation genetic diagnosis (PGD) for spinal muscular atrophy has become feasible and widely applied. The finding of a de novo rearrangement, resulting in the loss of the SMN1 gene, reduces the recurrence risk from 25% to a lower percentage, the residual risk arising from recurrent de novo mutation or germline mosaicism. In a couple referred to our PGD center because their first child was affected with SMA, the male partner was shown to carry two SMN1 copies. An analysis of the SMN1 gene and two flanking markers was performed on 12 single spermatozoa, to determine whether the father carried a CIS duplication of the SMN1 gene on one chromosome and was a carrier, or if the deletion has occurred de novo. We showed that all spermatozoa that were carriers of the 'at-risk haplotype' were deleted for the SMN1 gene, confirming the carrier status of the father. We provide an original application of single germ cell studies to recessive disorders using coamplification of the gene and its linked markers. This efficient and easy procedure might be useful to elucidate complex genetic situations when samples from other family members are not available.
Collapse
Affiliation(s)
- Philippe Burlet
- Unité INSERM U781 Institut de Recherche Necker-Enfants Malades, service de génétique médicale, Hôpital Necker-Enfants Malades (Assistance Publique-Hôpitaux de Paris), Université Paris-Descartes, 75743 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Martins de Araújo M, Bonnal S, Hastings ML, Krainer AR, Valcárcel J. Differential 3' splice site recognition of SMN1 and SMN2 transcripts by U2AF and U2 snRNP. RNA (NEW YORK, N.Y.) 2009; 15:515-23. [PMID: 19244360 PMCID: PMC2661831 DOI: 10.1261/rna.1273209] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 01/14/2009] [Indexed: 05/20/2023]
Abstract
Spinal Muscular atrophy is a prevalent genetic disease caused by mutation of the SMN1 gene, which encodes the SMN protein involved in assembly of small nuclear ribonucleoprotein (snRNP) complexes. A paralog of the gene, SMN2, cannot provide adequate levels of functional SMN because exon 7 is skipped in a significant fraction of the mature transcripts. A C to T transition located at position 6 of exon 7 is critical for the difference in exon skipping between SMN1 and SMN2. Here we report that this nucleotide difference results in increased ultraviolet light-mediated crosslinking of the splicing factor U2AF(65) with the 3' splice site of SMN1 intron 6 in HeLa nuclear extract. U2 snRNP association, analyzed by native gel electrophoresis, is also more efficient on SMN1 than on SMN2, particularly under conditions of competition, suggesting more effective use of limiting factors. Two trans-acting factors implicated in SMN regulation, SF2/ASF and hnRNP A1, promote and repress, respectively, U2 snRNP recruitment to both RNAs. Interestingly, depending on the transcript and the regulatory factor, the effects on U2 binding not always correlate with changes in U2AF(65) crosslinking. Furthermore, blocking recognition of a Tra2-beta1-dependent splicing enhancer located in exon 7 inhibits U2 snRNP recruitment without affecting U2AF(65) crosslinking. Collectively, the results suggest that both U2AF binding and other steps of U2 snRNP recruitment can be control points in SMN splicing regulation.
Collapse
|
47
|
Hasanzad M, Golkar Z, Kariminejad R, Hadavi V, Almadani N, Afroozan F, Salahshurifar I, Shafeghati Y, Kahrizi K, Najmabadi H. Deletions in the Survival Motor Neuron Gene in Iranian Patients with Spinal Muscular Atrophy. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2009. [DOI: 10.47102/annals-acadmedsg.v38n2p139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Introduction: Spinal muscular atrophy (SMA) is a common neuromuscular disorder with progressive paralysis caused by the loss of -motor neurons in the spinal cord. The survival motor neuron (SMN) protein is encoded by 2 genes, SMN1 and SMN2. The most frequent mutation is the biallelic deletion of exon 7 of the SMN1 gene. In SMA, SMN2 cannot compensate for the loss of SMN1, due to the exclusion of exon 7. The aim of our study was to estimate the frequency of the common SMN1 exon 7 deletion in patients referred to our centre for carrier detection and prenatal diagnosis. Materials and Methods: We performed the detection of exon 7 deletion of the SMN1 gene for the affected patients and fetuses suspected to have SMA. Results: Of 243 families, 195 were classified as SMA type I, 30 as type II, and 18 as type III according to their family histories. The analysis of exon 7 deletion among living affected children showed that 94% of the patients with SMA type I, 95% with type II families and 100% with type III had homozygous deletions. Of the prenatal diagnoses, 21 (22.8%) of the 92 fetuses were found to be affected and these pregnancies were terminated. Conclusions: The homozygosity frequency for the deletion of SMN1 exon 7 for all 3 types was (94%), similar to those of Western Europe, China, Japan and Kuwait. Key words: Iranian patients, SMN1
Collapse
Affiliation(s)
- Mandana Hasanzad
- Kariminejad-Najmabadi Pathology & Genetics Center, 14665/154, Tehran, Iran
| | - Zahra Golkar
- Kariminejad-Najmabadi Pathology & Genetics Center, 14665/154, Tehran, Iran
| | - Roxana Kariminejad
- Kariminejad-Najmabadi Pathology & Genetics Center, 14665/154, Tehran, Iran
| | - Valeh Hadavi
- Kariminejad-Najmabadi Pathology & Genetics Center, 14665/154, Tehran, Iran
| | - Navid Almadani
- Kariminejad-Najmabadi Pathology & Genetics Center, 14665/154, Tehran, Iran
| | - Fariba Afroozan
- Kariminejad-Najmabadi Pathology & Genetics Center, 14665/154, Tehran, Iran
| | - Iman Salahshurifar
- Kariminejad-Najmabadi Pathology & Genetics Center, 14665/154, Tehran, Iran
| | - Yousef Shafeghati
- University of Social Welfare & Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- University of Social Welfare & Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Kariminejad-Najmabadi Pathology & Genetics Center, 14665/154, Tehran, Iran
| |
Collapse
|
48
|
Bosboom WMJ, Vrancken AFJE, van den Berg LH, Wokke JHJ, Iannaccone ST. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 2009:CD006282. [PMID: 19160275 DOI: 10.1002/14651858.cd006282.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type II do not develop the ability to walk without support and have a shortened life expectancy, whereas children with SMA type III develop the ability to walk and have a normal life expectancy. There are no known efficacious drug treatments that influence the disease course of SMA. OBJECTIVES To evaluate if drug treatment is able to slow or arrest the disease progression of SMA type II and III, and to assess if such therapy can be given safely. Drug treatment for SMA type I will be the topic of a separate Cochrane review. SEARCH STRATEGY We searched the Cochrane Neuromuscular Disease Group Trials Register (September 30 2008), The Cochrane Library (Issue 3, 2008), MEDLINE (January 1966 to June 2008), EMBASE (January 1980 to June 2008), ISI (January 1988 to June 2008), and ACP Journal Club (January 1991 to June 2008). SELECTION CRITERIA We sought all randomized or quasi-randomized trials that examined the efficacy of drug treatment for SMA type II and III. Participants had to fulfil the clinical criteria and, in studies including genetic analysis to confirm the diagnosis, have a deletion or mutation of the SMN1 gene (5q11.2-13.2)The primary outcome measure was to be change in disability score within one year after the onset of treatment. Secondary outcome measures within one year after the onset of treatment were to be change in muscle strength, ability to stand or walk, change in quality of life, time from the start of treatment until death or full time ventilation, and adverse events attributable to treatment during the trial period. DATA COLLECTION AND ANALYSIS Two authors independently reviewed and extracted data from all potentially relevant trials. Pooled relative risks and pooled weighted standardized mean differences were to be calculated to assess treatment efficacy MAIN RESULTS Four randomized placebo-controlled trials on treatment for SMA type II and III were found and included in the review. The treatments were creatine, phenylbutyrate, gabapentin and thyrotropin releasing hormone. None of these trials showed any effect on the outcome measures in patients with SMA type II and III. None of the patients in any of the four trials died or reached the state of full time ventilation and serious side effects were infrequent. AUTHORS' CONCLUSIONS There is no proven efficacious drug treatment for SMA type II and III.
Collapse
Affiliation(s)
- Wendy M J Bosboom
- Department of Neurology, Sint Lucas Andreas Hospital, Jan Tooropstraat 164, Amsterdam, Netherlands, 1061 AE.
| | | | | | | | | |
Collapse
|
49
|
Bosboom WMJ, Vrancken AFJE, van den Berg LH, Wokke JHJ, Iannaccone ST. Drug treatment for spinal muscular atrophy type I. Cochrane Database Syst Rev 2009:CD006281. [PMID: 19160274 DOI: 10.1002/14651858.cd006281.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type I will never be able to sit without support and usually die by the age of two years. There are no known efficacious drug treatments that influence the disease course. OBJECTIVES To evaluate if drug treatment is able to slow or arrest the disease progression of SMA type I, and to assess if such therapy can be given safely. Drug treatment for SMA type II and III will be will be the topic of a separate Cochrane review. SEARCH STRATEGY We searched the Cochrane Neuromuscular Disease Group Trials Register (September 30 2008, The Cochrane Library (Issue 3, 2008), MEDLINE (January 1966 to June 2008), EMBASE (January 1980 to June 2008), ISI (January 1988 to June 2008), and ACP Journal Club (January 1991 to June 2008). SELECTION CRITERIA All randomized or quasi-randomized trials that examined the efficacy of drug treatment for SMA type 1 were sought. Participants had to fulfil clinical criteria and, in studies including genetic analysis to confirm the diagnosis, have a deletion or mutation of the SMN1 gene (5q11.2-13.2)The primary outcome measure was to be time from birth until death or full time ventilation. Secondary outcome measures were to be development of rolling, sitting or standing within one year after the onset of treatment, and adverse events attributable to treatment during the trial period. DATA COLLECTION AND ANALYSIS Two authors (WB and AV) independently reviewed and extracted data from all potentially relevant trials. For included studies pooled relative risks and pooled weighted standardized mean differences were to be calculated to assess treatment efficacy MAIN RESULTS One small randomized-controlled study comparing riluzole treatment to placebo for SMA type 1 was identified and included in the review. Regarding the primary outcome measure three of seven children treated with riluzole were still alive at the age of 30, 48 and 64 months, whereas all three children in the placebo group died, but the difference was not statistically significant. Regarding the secondary outcome measures none of the patients in the riluzole or placebo group developed the ability to roll, sit or stand, and no adverse effects were observed. AUTHORS' CONCLUSIONS No drug treatment for SMA type I has been proven to have significant efficacy.
Collapse
Affiliation(s)
- Wendy M J Bosboom
- Department of Neurology, Sint Lucas Andreas Hospital, Jan Tooropstraat 164, Amsterdam, Netherlands, 1061 AE.
| | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Victor Dubowitz
- The Dubowitz Neuromuscular Centre, UCL Institute of Child Health, 30 Guilford St., London WC1N 1EH, UK
| |
Collapse
|