1
|
Kassimu KR, Ali AM, Omolo JJ, Mdemu A, Machumi F, Ngasala B. The effect of an anti-malarial herbal remedy, Maytenus senegalensis, on electrocardiograms of healthy Tanzanian volunteers. Malar J 2024; 23:103. [PMID: 38609987 PMCID: PMC11015626 DOI: 10.1186/s12936-024-04935-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The emergence of resistance to artemisinin-based combination therapy necessitates the search for new, more potent antiplasmodial compounds, including herbal remedies. The whole extract of Maytenus senegalensis has been scientifically investigated for potential biological activities both in vitro and in vivo, demonstrating strong antimalarial activity. However, there is a lack of data on the electrocardiographic effects of M. senegalensis in humans, which is a crucial aspect in the investigation of malaria treatment. Assessing the electrocardiographic effects of M. senegalensis is essential, as many anti-malarial drugs can inadvertently prolong the QT interval on electrocardiograms. Therefore, the study's objective was to evaluate the electrocardiographic effects of M. senegalensis in healthy adult volunteers. METHODS This study is a secondary analysis of an open-label single-arm dose escalation. Twelve healthy eligible Tanzanian males, aged 18 to 45, were enrolled in four study dose groups. A single 12-lead electrocardiogram (ECG) was performed at baseline and on days 3, 7, 14, 28, and 56. RESULTS No QTcF adverse events occurred with any drug dose. Only one volunteer who received the highest dose (800 mg) of M. senegalensis experienced a moderate transient change (△QTcF > 30 ms; specifically, the value was 37 ms) from baseline on day 28. There was no difference in maximum QTcF and maximum △QTcF between volunteers in all four study dose groups. CONCLUSIONS A four-day regimen of 800 mg every 8 h of M. senegalensis did not impact the electrocardiographic parameters in healthy volunteers. This study suggests that M. senegalensis could be a valuable addition to malaria treatment, providing a safer alternative and potentially aiding in the battle against artemisinin-resistant malaria. The results of this study support both the traditional use and the modern therapeutic potential of M. senegalensis. They also set the stage for future research involving larger and more diverse populations to explore the safety profile of M. senegalensis in different demographic groups. This is especially important considering the potential use of M. senegalensis as a therapeutic agent and its widespread utilization as traditional medicine. Trial registration ClinicalTrials.gov, NCT04944966. Registered 30 June 2021-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04944966?term=kamaka&draw=2&rank=1.
Collapse
Affiliation(s)
- Kamaka R Kassimu
- Bagamoyo Clinical Trial Facility, Ifakara Health Institute, 74, Bagamoyo, Tanzania.
- Department of Parasitology, Muhimbili University of Health and Allied Sciences, 65001, Dar es Salaam, Tanzania.
| | - Ali M Ali
- Bagamoyo Clinical Trial Facility, Ifakara Health Institute, 74, Bagamoyo, Tanzania
| | - Justin J Omolo
- Traditional Medicine Research and Development Center, National Institute for Medical Research, 9653, Dar es Salaam, Tanzania
| | - Abel Mdemu
- Traditional Medicine Research and Development Center, National Institute for Medical Research, 9653, Dar es Salaam, Tanzania
| | - Francis Machumi
- Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences, 65001, Dar es Salaam, Tanzania
| | - Billy Ngasala
- Department of Parasitology, Muhimbili University of Health and Allied Sciences, 65001, Dar es Salaam, Tanzania
| |
Collapse
|
2
|
Das N, Bhattacharya D, Bandopadhyay P, Dastidar UG, Paul B, Rahaman O, Hoque I, Patra B, Ganguly D, Talukdar A. Mitigating hERG Liability of Toll-Like Receptor 9 and 7 Antagonists through Structure-Based Design. ChemMedChem 2023; 18:e202300069. [PMID: 36999630 DOI: 10.1002/cmdc.202300069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/01/2023]
Abstract
hERG is considered to be a primary anti-target in the drug development process, as the K+ channel encoded by hERG plays an important role in cardiac re-polarization. It is desirable to address the hERG safety liability during early-stage development to avoid the expenses of validating leads that will eventually fail at a later stage. We have previously reported the development of highly potent quinazoline-based TLR7 and TLR9 antagonists for possible application against autoimmune disease. Initial experimental hERG assessment showed that most of the lead TLR7 and TLR9 antagonists suffer from hERG liability rendering them ineffective for further development. The present study herein describes a coordinated strategy to integrate the understanding from structure-based protein-ligand interaction to develop non- hERG binders with IC50 >30 μM with retention of TLR7/9 antagonism through a single point change in the scaffold. This structure-guided strategy can serve as a prototype for abolishing hERG liability during lead optimization.
Collapse
Affiliation(s)
- Nirmal Das
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Debomita Bhattacharya
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
| | - Purbita Bandopadhyay
- IICB-Translational Research Unit of Excellence Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology Salt Lake, Kolkata, 700091, WB, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Uddipta Ghosh Dastidar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Barnali Paul
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Oindrila Rahaman
- IICB-Translational Research Unit of Excellence Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology Salt Lake, Kolkata, 700091, WB, India
| | - Israful Hoque
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
| | - Binita Patra
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
| | - Dipyaman Ganguly
- IICB-Translational Research Unit of Excellence Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology Salt Lake, Kolkata, 700091, WB, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
3
|
Okombo J, Kumar M, Redhi D, Wicht KJ, Wiesner L, Egan TJ, Chibale K. Pyrido-Dibemequine Metabolites Exhibit Improved Druglike Features, Inhibit Hemozoin Formation in Plasmodium falciparum, and Synergize with Clinical Antimalarials. ACS Infect Dis 2023; 9:653-667. [PMID: 36802523 DOI: 10.1021/acsinfecdis.2c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Structural modification of existing chemical scaffolds to afford new molecules able to circumvent drug resistance constitutes one of the rational approaches to antimalarial drug discovery. Previously synthesized compounds based on the 4-aminoquinoline core hybridized with a chemosensitizing dibenzylmethylamine side group showed in vivo efficacy in Plasmodium berghei-infected mice despite low microsomal metabolic stability, suggesting a contribution from their pharmacologically active metabolites. Here, we report on a series of these dibemequine (DBQ) metabolites with low resistance indices against chloroquine-resistant parasites and improved metabolic stability in liver microsomes. The metabolites also exhibit improved pharmacological properties including lower lipophilicity, cytotoxicity, and hERG channel inhibition. Using cellular heme fractionation experiments, we also demonstrate that these derivatives inhibit hemozoin formation by causing a buildup of toxic "free" heme in a similar manner to chloroquine. Finally, assessment of drug interactions also revealed synergy between these derivatives and several clinically relevant antimalarials, thus highlighting their potential interest for further development.
Collapse
Affiliation(s)
- John Okombo
- Department of Chemistry, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | - Malkeet Kumar
- Department of Chemistry, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | - Devasha Redhi
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Kathryn J Wicht
- Department of Chemistry, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit, Holistic Drug Discovery and Development (H3D) Centre, Rondebosch, 7701 Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit, Holistic Drug Discovery and Development (H3D) Centre, Rondebosch, 7701 Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| |
Collapse
|
4
|
Saadeh K, Nantha Kumar N, Fazmin IT, Edling CE, Jeevaratnam K. Anti-malarial drugs: Mechanisms underlying their proarrhythmic effects. Br J Pharmacol 2022; 179:5237-5258. [PMID: 36165125 PMCID: PMC9828855 DOI: 10.1111/bph.15959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 01/12/2023] Open
Abstract
Malaria remains the leading cause of parasitic death in the world. Artemisinin resistance is an emerging threat indicating an imminent need for novel combination therapy. Given the key role of mass drug administration, it is pivotal that the safety of anti-malarial drugs is investigated thoroughly prior to widespread use. Cardiotoxicity, most prominently arrhythmic risk, has been a concern for anti-malarial drugs. We clarify the likely underlying mechanisms by which anti-malarial drugs predispose to arrhythmias. These relate to disruption of (1) action potential upstroke due to effects on the sodium currents, (2) action potential repolarisation due to effects on the potassium currents, (3) cellular calcium homeostasis, (4) mitochondrial function and reactive oxygen species production and (5) cardiac fibrosis. Together, these alterations promote arrhythmic triggers and substrates. Understanding these mechanisms is essential to assess the safety of these drugs, stratify patients based on arrhythmic risk and guide future anti-malarial drug development.
Collapse
Affiliation(s)
- Khalil Saadeh
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK,School of Clinical Medicine, Addenbrooke's HospitalUniversity of CambridgeCambridgeUK
| | | | - Ibrahim Talal Fazmin
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK,School of Clinical Medicine, Addenbrooke's HospitalUniversity of CambridgeCambridgeUK
| | | | | |
Collapse
|
5
|
Ma S, Sun Z, Jing Y, McGann M, Vajda S, Enyedy IJ. Use of Solvent Mapping for Characterizing the Binding Site and for Predicting the Inhibition of the Human Ether-á-Go-Go-Related K + Channel. Chem Res Toxicol 2022; 35:1359-1369. [PMID: 35895844 PMCID: PMC9805671 DOI: 10.1021/acs.chemrestox.2c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Molecular dynamics was used to optimize the droperidol-hERG complex obtained from docking. To accommodate the inhibitor, residues T623, S624, V625, G648, Y652, and F656 did not move significantly during the simulation, while F627 moved significantly. Binding sites in cryo-EM structures and in structures obtained from molecular dynamics simulations were characterized using solvent mapping and Atlas ligands, which were negative images of the binding site, were generated. Atlas ligands were found to be useful for identifying human ether-á-go-go-related potassium channel (hERG) inhibitors by aligning compounds to them or by guiding the docking of compounds in the binding site. A molecular dynamics optimized structure of hERG led to improved predictions using either compound alignment to the Atlas ligand or docking. The structure was also found to be suitable to define a strategy for lowering inhibition based on the proposed binding mode of compounds in the channel.
Collapse
Affiliation(s)
- Shifan Ma
- Biogen, Cambridge, Massachusetts 02142, United States
| | - Zhuyezi Sun
- Biogen, Cambridge, Massachusetts 02142, United States
| | - Yankang Jing
- Biogen, Cambridge, Massachusetts 02142, United States
| | - Mark McGann
- OpenEye Scientific, Santa Fe, New Mexico 87507, United States
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | | |
Collapse
|
6
|
Comment on Weitzman et al. Resistance to Antimalarial Monotherapy Is Cyclic. J. Clin. Med. 2022, 11, 781. J Clin Med 2022; 11:jcm11102934. [PMID: 35629060 PMCID: PMC9143316 DOI: 10.3390/jcm11102934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/17/2022] [Accepted: 05/19/2022] [Indexed: 01/27/2023] Open
Abstract
Weitzman et al. used PubMed text mining to determine the trends of antimalarial resistance over the last 40 years [...]
Collapse
|
7
|
Mansoor R, Commons RJ, Douglas NM, Abuaku B, Achan J, Adam I, Adjei GO, Adjuik M, Alemayehu BH, Allan R, Allen EN, Anvikar AR, Arinaitwe E, Ashley EA, Ashurst H, Asih PBS, Bakyaita N, Barennes H, Barnes KI, Basco L, Bassat Q, Baudin E, Bell DJ, Bethell D, Bjorkman A, Boulton C, Bousema T, Brasseur P, Bukirwa H, Burrow R, Carrara VI, Cot M, D’Alessandro U, Das D, Das S, Davis TME, Desai M, Djimde AA, Dondorp AM, Dorsey G, Drakeley CJ, Duparc S, Espié E, Etard JF, Falade C, Faucher JF, Filler S, Fogg C, Fukuda M, Gaye O, Genton B, Ghulam Rahim A, Gilayeneh J, Gonzalez R, Grais RF, Grandesso F, Greenwood B, Grivoyannis A, Hatz C, Hodel EM, Humphreys GS, Hwang J, Ishengoma D, Juma E, Kachur SP, Kager PA, Kamugisha E, Kamya MR, Karema C, Kayentao K, Kazienga A, Kiechel JR, Kofoed PE, Koram K, Kremsner PG, Lalloo DG, Laman M, Lee SJ, Lell B, Maiga AW, Mårtensson A, Mayxay M, Mbacham W, McGready R, Menan H, Ménard D, Mockenhaupt F, Moore BR, Müller O, Nahum A, Ndiaye JL, Newton PN, Ngasala BE, Nikiema F, Nji AM, Noedl H, Nosten F, Ogutu BR, Ojurongbe O, Osorio L, Ouédraogo JB, Owusu-Agyei S, Pareek A, Penali LK, Piola P, Plucinski M, Premji Z, Ramharter M, Richmond CL, Rombo L, Roper C, Rosenthal PJ, Salman S, Same-Ekobo A, Sibley C, Sirima SB, Smithuis FM, Somé FA, Staedke SG, Starzengruber P, Strub-Wourgaft N, Sutanto I, Swarthout TD, Syafruddin D, Talisuna AO, Taylor WR, Temu EA, Thwing JI, Tinto H, Tjitra E, Touré OA, Tran TH, Ursing J, Valea I, Valentini G, van Vugt M, von Seidlein L, Ward SA, Were V, White NJ, Woodrow CJ, Yavo W, Yeka A, Zongo I, Simpson JA, Guerin PJ, Stepniewska K, Price RN. Haematological consequences of acute uncomplicated falciparum malaria: a WorldWide Antimalarial Resistance Network pooled analysis of individual patient data. BMC Med 2022; 20:85. [PMID: 35249546 PMCID: PMC8900374 DOI: 10.1186/s12916-022-02265-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/18/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Plasmodium falciparum malaria is associated with anaemia-related morbidity, attributable to host, parasite and drug factors. We quantified the haematological response following treatment of uncomplicated P. falciparum malaria to identify the factors associated with malarial anaemia. METHODS Individual patient data from eligible antimalarial efficacy studies of uncomplicated P. falciparum malaria, available through the WorldWide Antimalarial Resistance Network data repository prior to August 2015, were pooled using standardised methodology. The haematological response over time was quantified using a multivariable linear mixed effects model with nonlinear terms for time, and the model was then used to estimate the mean haemoglobin at day of nadir and day 7. Multivariable logistic regression quantified risk factors for moderately severe anaemia (haemoglobin < 7 g/dL) at day 0, day 3 and day 7 as well as a fractional fall ≥ 25% at day 3 and day 7. RESULTS A total of 70,226 patients, recruited into 200 studies between 1991 and 2013, were included in the analysis: 50,859 (72.4%) enrolled in Africa, 18,451 (26.3%) in Asia and 916 (1.3%) in South America. The median haemoglobin concentration at presentation was 9.9 g/dL (range 5.0-19.7 g/dL) in Africa, 11.6 g/dL (range 5.0-20.0 g/dL) in Asia and 12.3 g/dL (range 6.9-17.9 g/dL) in South America. Moderately severe anaemia (Hb < 7g/dl) was present in 8.4% (4284/50,859) of patients from Africa, 3.3% (606/18,451) from Asia and 0.1% (1/916) from South America. The nadir haemoglobin occurred on day 2 post treatment with a mean fall from baseline of 0.57 g/dL in Africa and 1.13 g/dL in Asia. Independent risk factors for moderately severe anaemia on day 7, in both Africa and Asia, included moderately severe anaemia at baseline (adjusted odds ratio (AOR) = 16.10 and AOR = 23.00, respectively), young age (age < 1 compared to ≥ 12 years AOR = 12.81 and AOR = 6.79, respectively), high parasitaemia (AOR = 1.78 and AOR = 1.58, respectively) and delayed parasite clearance (AOR = 2.44 and AOR = 2.59, respectively). In Asia, patients treated with an artemisinin-based regimen were at significantly greater risk of moderately severe anaemia on day 7 compared to those treated with a non-artemisinin-based regimen (AOR = 2.06 [95%CI 1.39-3.05], p < 0.001). CONCLUSIONS In patients with uncomplicated P. falciparum malaria, the nadir haemoglobin occurs 2 days after starting treatment. Although artemisinin-based treatments increase the rate of parasite clearance, in Asia they are associated with a greater risk of anaemia during recovery.
Collapse
|
8
|
Täubel J, Lorch U, Ferber G, Spencer CS, Freier A, Coates S, El Gaaloul M, Donini C, Chughlay MF, Chalon S. Concentration-QT modelling of the novel DHFR inhibitor P218 in healthy male volunteers. Br J Clin Pharmacol 2022; 88:128-137. [PMID: 34075612 PMCID: PMC9292718 DOI: 10.1111/bcp.14933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 11/29/2022] Open
Abstract
AIMS Given the increasing emergence of drug resistance in Plasmodium, new antimalarials are urgently required. P218 is an aminopyridine that inhibits dihydrofolate reductase being developed as a malaria chemoprotective drug. Assessing the effect of new compounds on cardiac intervals is key during early drug development to determine their cardiac safety. METHODS This double-blind, randomized, placebo-controlled, parallel group study evaluated the effect of P218 on electrocardiographic parameters following oral administration of seven single-ascending doses up to 1000 mg in 56 healthy volunteers. Participants were randomized to treatment or placebo at a 3:1 ratio. P218 was administered in the fasted state with standardized lunch served 4 hours after dosing. 12-lead ECGs were recorded in triplicate at regular intervals on the test day, and at 48, 72, 120, 168, 192 and 240 hours thereafter. Blood samples for pharmacokinetic evaluations were collected at similar time points. Concentration-effect modelling was used to assess the effect of P218 and its metabolites on cardiac intervals. RESULTS Concentration-effect analysis showed that P218 does not prolong the QTcF, J-Tpeak or TpTe interval at all doses tested. No significant changes in QRS or PR intervals were observed. Two-sided 90% confidence intervals of subinterval effects of P218 and its metabolites were consistently below the regulatory concern threshold for all doses. Study sensitivity was confirmed by significant shortening of QTcF after a meal. CONCLUSION Oral administration of P218 up to 1000 mg does not prolong QTcF and does not significantly change QRS or PR intervals, suggesting low risk for drug-induced proarrhythmia.
Collapse
Affiliation(s)
- Jӧrg Täubel
- Richmond Pharmacology LtdLondonUK
- Cardiovascular and Cell Sciences Research InstituteSt George's University of LondonLondonUK
| | | | | | | | - Anne Freier
- Richmond Research InstituteSt George's University of LondonLondonUK
| | | | | | | | | | | |
Collapse
|
9
|
Wang G, Lu CJ, Trafford AW, Tian X, Flores HM, Maj P, Zhang K, Niu Y, Wang L, Du Y, Ji X, Xu Y, Wu L, Li D, Herring N, Paterson D, Huang CLH, Zhang H, Lei M, Hao G. Electrophysiological and Proarrhythmic Effects of Hydroxychloroquine Challenge in Guinea-Pig Hearts. ACS Pharmacol Transl Sci 2021; 4:1639-1653. [PMID: 34661080 PMCID: PMC8506600 DOI: 10.1021/acsptsci.1c00166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 12/27/2022]
Abstract
Hydroxychloroquine (HCQ), clinically established in antimalarial and autoimmune therapy, recently raised cardiac arrhythmogenic concerns when used alone or with azithromycin (HCQ+AZM) in Covid-19. We report complementary, experimental, studies of its electrophysiological effects. In patch clamped HEK293 cells expressing human cardiac ion channels, HCQ inhibited IKr and IK1 at a therapeutic concentrations (IC50s: 10 ± 0.6 and 34 ± 5.0 μM). INa and ICaL showed higher IC50s; Ito and IKs were unaffected. AZM slightly inhibited INa, ICaL, IKs, and IKr, sparing IK1 and Ito. (HCQ+AZM) inhibited IKr and IK1 (IC50s: 7.7 ± 0.8 and 30.4 ± 3.0 μM), sparing INa, ICaL, and Ito. Molecular induced-fit docking modeling confirmed potential HCQ-hERG but weak AZM-hERG binding. Effects of μM-HCQ were studied in isolated perfused guinea-pig hearts by multielectrode, optical RH237 voltage, and Rhod-2 mapping. These revealed reversibly reduced left atrial and ventricular action potential (AP) conduction velocities increasing their heterogeneities, increased AP durations (APDs), and increased durations and dispersions of intracellular [Ca2+] transients, respectively. Hearts also became bradycardic with increased electrocardiographic PR and QRS durations. The (HCQ+AZM) combination accentuated these effects. Contrastingly, (HCQ+AZM) and not HCQ alone disrupted AP propagation, inducing alternans and torsadogenic-like episodes on voltage mapping during forced pacing. O'Hara-Rudy modeling showed that the observed IKr and IK1 effects explained the APD alterations and the consequently prolonged Ca2+ transients. The latter might then downregulate INa, reducing AP conduction velocity through recently reported INa downregulation by cytosolic [Ca2+] in a novel scheme for drug action. The findings may thus prompt future investigations of HCQ's cardiac safety under particular, chronic and acute, clinical situations.
Collapse
Affiliation(s)
- Gongxin Wang
- Henan
SCOPE Research Institute of Electrophysiology Co. Ltd., Kaifeng 475000, China
| | - Chieh-Ju Lu
- Henan
SCOPE Research Institute of Electrophysiology Co. Ltd., Kaifeng 475000, China
| | - Andrew W. Trafford
- Unit
of Cardiac Physiology, Institute of Cardiovascular Sciences, Manchester
Academic Health Sciences Centre, The University
of Manchester, Manchester M13 9PL, U.K.
| | - Xiaohui Tian
- Department
of Pharmacy, Huaihe Hospital and College of Medicine, Henan University, Kaifeng 475000, China
| | - Hannali M Flores
- Biological
Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, U.K.
| | - Piotr Maj
- Department
of Pharmacology, University of Oxford, Oxford OX1 2JD, U.K.
| | - Kevin Zhang
- School of
Medicine, Imperial College of London, London SW7 2AZ, U.K.
| | - Yanhong Niu
- Fuwai
Central China Cardiovascular Hospital, Zhengzhou 450003, China
| | - Luxi Wang
- Henan
SCOPE Research Institute of Electrophysiology Co. Ltd., Kaifeng 475000, China
| | - Yimei Du
- Department
of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinying Ji
- Department
of Pharmacy, Huaihe Hospital and College of Medicine, Henan University, Kaifeng 475000, China
| | - Yanfang Xu
- Department
of Pharmacology, Hebei Medical University, Shijiazhuang City 050017, China
| | - Lin Wu
- Department
of Cardiology, Peking University First Hospital, Beijing 100034, China
| | - Dan Li
- Department
of Physiology, Anatomy and Genetics, University
of Oxford, Oxford OX1 2JD, U.K.
| | - Neil Herring
- Department
of Physiology, Anatomy and Genetics, University
of Oxford, Oxford OX1 2JD, U.K.
| | - David Paterson
- Department
of Physiology, Anatomy and Genetics, University
of Oxford, Oxford OX1 2JD, U.K.
| | - Christopher L.-H. Huang
- Physiological
Laboratory and Department of Biochemistry, University of Cambridge, Cambridge CB2 3EG, U.K.
- Key
Laboratory of Medical Electrophysiology of the Ministry of Education
and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Henggui Zhang
- Biological
Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, U.K.
- Peng
Cheng Laboratory, Shenzhen 518066, China
- Key
Laboratory of Medical Electrophysiology of the Ministry of Education
and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Ming Lei
- Department
of Pharmacology, University of Oxford, Oxford OX1 2JD, U.K.
- Key
Laboratory of Medical Electrophysiology of the Ministry of Education
and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Guoliang Hao
- Henan
SCOPE Research Institute of Electrophysiology Co. Ltd., Kaifeng 475000, China
- Department
of Physiology, Anatomy and Genetics, University
of Oxford, Oxford OX1 2JD, U.K.
| |
Collapse
|
10
|
Efforts Made to Eliminate Drug-Resistant Malaria and Its Challenges. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5539544. [PMID: 34497848 PMCID: PMC8421183 DOI: 10.1155/2021/5539544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023]
Abstract
Since 2000, a good deal of progress has been made in malaria control. However, there is still an unacceptably high burden of the disease and numerous challenges limiting advancement towards its elimination and ultimate eradication. Among the challenges is the antimalarial drug resistance, which has been documented for almost all antimalarial drugs in current use. As a result, the malaria research community is working on the modification of existing treatments as well as the discovery and development of new drugs to counter the resistance challenges. To this effect, many products are in the pipeline and expected to be marketed soon. In addition to drug and vaccine development, mass drug administration (MDA) is under scientific scrutiny as an important strategy for effective utilization of the developed products. This review discusses the challenges related to malaria elimination, ongoing approaches to tackle the impact of drug-resistant malaria, and upcoming antimalarial drugs.
Collapse
|
11
|
Chan XHS, Haeusler IL, Win YN, Pike J, Hanboonkunupakarn B, Hanafiah M, Lee SJ, Djimdé A, Fanello CI, Kiechel JR, Lacerda MVG, Ogutu B, Onyamboko MA, Siqueira AM, Ashley EA, Taylor WRJ, White NJ. The cardiovascular effects of amodiaquine and structurally related antimalarials: An individual patient data meta-analysis. PLoS Med 2021; 18:e1003766. [PMID: 34492005 PMCID: PMC8454971 DOI: 10.1371/journal.pmed.1003766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 09/21/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Amodiaquine is a 4-aminoquinoline antimalarial similar to chloroquine that is used extensively for the treatment and prevention of malaria. Data on the cardiovascular effects of amodiaquine are scarce, although transient effects on cardiac electrophysiology (electrocardiographic QT interval prolongation and sinus bradycardia) have been observed. We conducted an individual patient data meta-analysis to characterise the cardiovascular effects of amodiaquine and thereby support development of risk minimisation measures to improve the safety of this important antimalarial. METHODS AND FINDINGS Studies of amodiaquine for the treatment or prevention of malaria were identified from a systematic review. Heart rates and QT intervals with study-specific heart rate correction (QTcS) were compared within studies and individual patient data pooled for multivariable linear mixed effects regression. The meta-analysis included 2,681 patients from 4 randomised controlled trials evaluating artemisinin-based combination therapies (ACTs) containing amodiaquine (n = 725), lumefantrine (n = 499), piperaquine (n = 716), and pyronaridine (n = 566), as well as monotherapy with chloroquine (n = 175) for uncomplicated malaria. Amodiaquine prolonged QTcS (mean = 16.9 ms, 95% CI: 15.0 to 18.8) less than chloroquine (21.9 ms, 18.3 to 25.6, p = 0.0069) and piperaquine (19.2 ms, 15.8 to 20.5, p = 0.0495), but more than lumefantrine (5.6 ms, 2.9 to 8.2, p < 0.001) and pyronaridine (-1.2 ms, -3.6 to +1.3, p < 0.001). In individuals aged ≥12 years, amodiaquine reduced heart rate (mean reduction = 15.2 beats per minute [bpm], 95% CI: 13.4 to 17.0) more than piperaquine (10.5 bpm, 7.7 to 13.3, p = 0.0013), lumefantrine (9.3 bpm, 6.4 to 12.2, p < 0.001), pyronaridine (6.6 bpm, 4.0 to 9.3, p < 0.001), and chloroquine (5.9 bpm, 3.2 to 8.5, p < 0.001) and was associated with a higher risk of potentially symptomatic sinus bradycardia (≤50 bpm) than lumefantrine (risk difference: 14.8%, 95% CI: 5.4 to 24.3, p = 0.0021) and chloroquine (risk difference: 8.0%, 95% CI: 4.0 to 12.0, p < 0.001). The effect of amodiaquine on the heart rate of children aged <12 years compared with other antimalarials was not clinically significant. Study limitations include the unavailability of individual patient-level adverse event data for most included participants, but no serious complications were documented. CONCLUSIONS While caution is advised in the use of amodiaquine in patients aged ≥12 years with concomitant use of heart rate-reducing medications, serious cardiac conduction disorders, or risk factors for torsade de pointes, there have been no serious cardiovascular events reported after amodiaquine in widespread use over 7 decades. Amodiaquine and structurally related antimalarials in the World Health Organization (WHO)-recommended dose regimens alone or in ACTs are safe for the treatment and prevention of malaria.
Collapse
Affiliation(s)
- Xin Hui S. Chan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ilsa L. Haeusler
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Yan Naung Win
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Health and Diseases Control Unit, Naypyidaw, Myanmar
| | - James Pike
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Borimas Hanboonkunupakarn
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok Thailand
| | - Maryam Hanafiah
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sue J. Lee
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Abdoulaye Djimdé
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, University of Science Techniques and Technologies of Bamako, Bamako, Mali
| | - Caterina I. Fanello
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Marcus VG Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas e Maria Deane (FIOCRUZ-Amazonas), Fundacão Oswaldo Cruz, Manaus, Brazil
| | | | - Marie A. Onyamboko
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - André M. Siqueira
- Instituto Leônidas e Maria Deane (FIOCRUZ-Amazonas), Fundacão Oswaldo Cruz, Manaus, Brazil
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Elizabeth A. Ashley
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Walter RJ Taylor
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Slater L, Betson M, Ashraf S, Sargison N, Chaudhry U. Current methods for the detection of antimalarial drug resistance in Plasmodium parasites infecting humans. Acta Trop 2021; 216:105828. [PMID: 33465353 DOI: 10.1016/j.actatropica.2021.105828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/19/2022]
Abstract
Malaria is the world's deadliest parasitic disease. Great progress has been made in the fight against malaria over the past two decades, but this has recently begun to plateau, in part due to the global development of antimalarial drug resistance. The ability to track drug resistance is necessary to achieve progress in treatment, disease surveillance and epidemiology, which has prompted the development of advanced diagnostic methods. These new methods provide unprecedented access to information that can help to guide public health policies. Development of new technologies increases the potential for high throughput and reduced costs of diagnostic tests; improving the accessibility of tools to investigate the forces driving disease dynamics and, ultimately, clinical outcomes for malaria patients and public health. This literature review provides a summary of the methods currently available for the detection of antimalarial drug resistance from the examination of patients' blood samples. While no single method is perfect for every application, many of the newly developed methods give promise for more reliable and efficient characterisation of Plasmodium resistance in a range of settings. By exploiting the strengths of the tools available, we can develop a deeper understanding of the evolutionary and spatiotemporal dynamics of this disease. This will translate into more effective disease control, better-informed policy, and more timely and successful treatment for malaria patients.
Collapse
|
13
|
Randomized Controlled Trial of the Electrocardiographic Effects of Four Antimalarials for Pregnant Women with Uncomplicated Malaria on the Thailand-Myanmar Border. Antimicrob Agents Chemother 2021; 65:AAC.02473-20. [PMID: 33495217 PMCID: PMC8097415 DOI: 10.1128/aac.02473-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/10/2021] [Indexed: 12/13/2022] Open
Abstract
Quinoline antimalarials cause drug-induced electrocardiograph QT prolongation, a potential risk factor for torsade de pointes. The effects of currently used antimalarials on the electrocardiogram (ECG) were assessed in pregnant women with malaria. Quinoline antimalarials cause drug-induced electrocardiographic QT prolongation, a potential risk factor for torsade de pointes. The effects of currently used antimalarials on the electrocardiogram (ECG) were assessed in pregnant women with malaria. Pregnant women with microscopy-confirmed parasitemia of any malaria species were enrolled in an open-label randomized controlled trial on the Thailand-Myanmar border from 2010 to 2016. Patients were randomized to the standard regimen of dihydroartemisinin-piperaquine (DP) or artesunate-mefloquine (ASMQ) or an extended regimen of artemether-lumefantrine (AL+). Recurrent Plasmodium vivax infections were treated with chloroquine. Standard 12-lead electrocardiograms were assessed on day 0, 4 to 6 h following the last dose, and day 7. QT was corrected for the heart rate by a linear mixed-effects model-derived population-based correction formula (QTcP = QT/RR0.381). A total of 86 AL+, 82 ASMQ, 88 DP, and 21 chloroquine-treated episodes were included. No patients had an uncorrected QT interval nor QTcP of >480 ms at any time. QTcP corresponding to peak drug concentration was longer in the DP group (adjusted predicted mean difference, 17.84 ms; 95% confidence interval [CI], 11.58 to 24.10; P < 0.001) and chloroquine group (18.31 ms; 95% CI, 8.78 to 27.84; P < 0.001) than in the AL+ group, but not different in the ASMQ group (2.45 ms; 95% CI, −4.20 to 9.10; P = 0.47) by the multivariable linear mixed-effects model. There was no difference between DP and chloroquine (P = 0.91). QTc prolongation resulted mainly from widening of the JT interval. In pregnant women, none of the antimalarial drug treatments exceeded conventional thresholds for an increased risk of torsade de pointes.
Collapse
|
14
|
Al-Quraishy S, Abdel-Maksoud MA, Al-Shaebi EM, Dkhil MA. Botanical candidates from Saudi Arabian flora as potential therapeutics for Plasmodium infection. Saudi J Biol Sci 2021; 28:1374-1379. [PMID: 33613066 PMCID: PMC7878689 DOI: 10.1016/j.sjbs.2020.11.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/21/2023] Open
Abstract
Malaria is a lethal parasitic disease affecting over two hundred million people worldwide and kills almost half a million people per year. Until now, there is no curative treatment for this disease that has a substantial morbidity. The available chemotherapeutic agents are unable to completely control the infection with the continuous appearance of drug resistance. Consequently, the search for new therapeutic agents with high safety profiles and low side effects is of paramount importance. Several natural products have been investigated and proven to have antimalarial effects either in vivo or in vitro. A large number of plants have been studied globally for their antimalarial activities. However, studies that have been conducted in this field in Saudi Arabia are not enough. This article presents global and local research on the need for novel natural antimalarial agents with a particular emphasis on studies involving plants from Saudi Arabian flora.
Collapse
Affiliation(s)
- Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| | | | - Esam M Al-Shaebi
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| | - Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University, Saudi Arabia.,Department of Zoology and Entomology, Faculty of Science, Helwan University, Egypt
| |
Collapse
|
15
|
Dolton MJ, Chiang PC, Chen Y. Mechanistic Oral Absorption Modeling of Halofantrine: Exploring the Role of Intestinal Lymphatic Transport. J Pharm Sci 2020; 110:1427-1430. [PMID: 33359312 DOI: 10.1016/j.xphs.2020.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022]
Abstract
Absorption via the intestinal lymphatic system is known to be important for some highly lipophilic compounds, and can be associated with unique pharmacokinetic properties due to evasion of hepatic first-pass metabolism. This work aimed to develop a physiologically-based pharmacokinetic model incorporating the role of lymphatic transport in a physiologically-based, mechanistic oral absorption model, using halofantrine as a model compound. Simcyp V19 was used for model development; oral absorption was characterized using the multi-layer gut wall (M-ADAM) model, and the model was constructed and verified using parameters derived from in vitro experiments and clinical PK data. The final model appeared to adequately capture halofantrine pharmacokinetics in the fasted state and the magnitude of the effect of food on halofantrine total exposure; the effect of food on peak exposure was slightly underpredicted, which may be due to transient post-prandial changes in protein binding. The model simulated halofantrine fraction absorbed (fa) via the lymph in the fed state was 0.26, representing 62% of the increase in fa in the fed state over fasting. This work demonstrates that a PBPK modeling approach can be used to mechanistically describe oral absorption incorporating intestinal lymphatic transport.
Collapse
Affiliation(s)
- Michael J Dolton
- Clinical Pharmacology, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Po-Chang Chiang
- Small Molecule Pharmaceutical Sciences, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yuan Chen
- Drug Metabolism and Pharmacokinetics, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
16
|
Chan XHS, Win YN, Haeusler IL, Tan JY, Loganathan S, Saralamba S, Chan SKS, Ashley EA, Barnes KI, Baiden R, Bassi PU, Djimde A, Dorsey G, Duparc S, Hanboonkunupakarn B, ter Kuile FO, Lacerda MVG, Nasa A, Nosten FH, Onyeji CO, Pukrittayakamee S, Siqueira AM, Tarning J, Taylor WRJ, Valentini G, van Vugt M, Wesche D, Day NPJ, Huang CLH, Brugada J, Price RN, White NJ. Factors affecting the electrocardiographic QT interval in malaria: A systematic review and meta-analysis of individual patient data. PLoS Med 2020; 17:e1003040. [PMID: 32134952 PMCID: PMC7058280 DOI: 10.1371/journal.pmed.1003040] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/05/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Electrocardiographic QT interval prolongation is the most widely used risk marker for ventricular arrhythmia potential and thus an important component of drug cardiotoxicity assessments. Several antimalarial medicines are associated with QT interval prolongation. However, interpretation of electrocardiographic changes is confounded by the coincidence of peak antimalarial drug concentrations with recovery from malaria. We therefore reviewed all available data to characterise the effects of malaria disease and demographic factors on the QT interval in order to improve assessment of electrocardiographic changes in the treatment and prevention of malaria. METHODS AND FINDINGS We conducted a systematic review and meta-analysis of individual patient data. We searched clinical bibliographic databases (last on August 21, 2017) for studies of the quinoline and structurally related antimalarials for malaria-related indications in human participants in which electrocardiograms were systematically recorded. Unpublished studies were identified by the World Health Organization (WHO) Evidence Review Group (ERG) on the Cardiotoxicity of Antimalarials. Risk of bias was assessed using the Pharmacoepidemiological Research on Outcomes of Therapeutics by a European Consortium (PROTECT) checklist for adverse drug events. Bayesian hierarchical multivariable regression with generalised additive models was used to investigate the effects of malaria and demographic factors on the pretreatment QT interval. The meta-analysis included 10,452 individuals (9,778 malaria patients, including 343 with severe disease, and 674 healthy participants) from 43 studies. 7,170 (68.6%) had fever (body temperature ≥ 37.5°C), and none developed ventricular arrhythmia after antimalarial treatment. Compared to healthy participants, patients with uncomplicated falciparum malaria had shorter QT intervals (-61.77 milliseconds; 95% credible interval [CI]: -80.71 to -42.83) and increased sensitivity of the QT interval to heart rate changes. These effects were greater in severe malaria (-110.89 milliseconds; 95% CI: -140.38 to -81.25). Body temperature was associated independently with clinically significant QT shortening of 2.80 milliseconds (95% CI: -3.17 to -2.42) per 1°C increase. Study limitations include that it was not possible to assess the effect of other factors that may affect the QT interval but are not consistently collected in malaria clinical trials. CONCLUSIONS Adjustment for malaria and fever-recovery-related QT lengthening is necessary to avoid misattributing malaria-disease-related QT changes to antimalarial drug effects. This would improve risk assessments of antimalarial-related cardiotoxicity in clinical research and practice. Similar adjustments may be indicated for other febrile illnesses for which QT-interval-prolonging medications are important therapeutic options.
Collapse
Affiliation(s)
- Xin Hui S. Chan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Yan Naung Win
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Health and Diseases Control Unit, Naypyidaw, Myanmar
| | - Ilsa L. Haeusler
- WorldWide Antimalarial Research Network, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jireh Y. Tan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Shanghavie Loganathan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Christ Church College, University of Oxford, Oxford, United Kingdom
| | - Sompob Saralamba
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Shu Kiat S. Chan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Singapore Armed Forces Medical Corps, Singapore
| | - Elizabeth A. Ashley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Lao PDR
| | - Karen I. Barnes
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- WorldWide Antimalarial Resistance Network, Cape Town, South Africa
| | | | - Peter U. Bassi
- Department of Internal Medicine, Faculty of Clinical Sciences, College of Health Sciences, University of Abuja, Abuja, Nigeria
| | - Abdoulaye Djimde
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, University of Science Techniques and Technologies of Bamako, Bamako, Mali
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | | | - Borimas Hanboonkunupakarn
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Feiko O. ter Kuile
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Marcus V. G. Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas e Maria Deane (FIOCRUZ-Amazonas), Fundação Oswaldo Cruz, Manaus, Brazil
| | - Amit Nasa
- Sun Pharmaceutical Industries Ltd, Gurgaon, Haryana, India
| | - François H. Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | | | - Sasithon Pukrittayakamee
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- The Royal Society of Thailand, Dusit, Bangkok, Thailand
| | - André M. Siqueira
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- WorldWide Antimalarial Research Network, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Walter R. J. Taylor
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Michèle van Vugt
- Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - David Wesche
- Certara, Princeton, New Jersey, United States of America
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Josep Brugada
- Cardiovascular Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Ric N. Price
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
High-Dose Chloroquine for Uncomplicated Plasmodium falciparum Malaria Is Well Tolerated and Causes Similar QT Interval Prolongation as Standard-Dose Chloroquine in Children. Antimicrob Agents Chemother 2020; 64:AAC.01846-19. [PMID: 31907183 DOI: 10.1128/aac.01846-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/20/2019] [Indexed: 01/08/2023] Open
Abstract
Higher chloroquine doses can effectively treat up to 93 to 96% of malaria infections caused by Plasmodium falciparum carrying the resistance-conferring chloroquine resistance transporter (pfcrt) 76T allele. The tolerability of 50 (double the standard dose) and 70 mg/kg total chloroquine doses were assessed in this study. Fifteen 4- to 8-year-old children with uncomplicated malaria were given 10 mg/kg of chloroquine twice daily for 2 days and 5 mg/kg twice daily on the third day. Fifteen additional children were given 5 mg/kg twice daily for 2 more days. Chloroquine concentrations, blood pressure, electrocardiograms (ECGs), parasite density, and adverse events were assessed until day 28. Both dosages were well tolerated, and symptoms resolved by day 3 in parallel with increasing chloroquine concentrations. The median corrected QT (QTc) interval was 12 to 26 ms higher at expected peak concentrations than at day 0 (P < 0.001). Pfcrt 76T was associated with delayed parasite clearance. Day 28 clinical and parasitological responses against P. falciparum with pfcrt 76T were 57% (4/7) and 67% (4/6) after treatment with 50 and 70 mg/kg, respectively. Dosages were well tolerated, and no severe cardiac adverse events occurred. The QTc interval increase was similar to that found in adults taking 25 mg/kg of chloroquine. (This study has been registered at ClinicalTrials.gov under identifier NCT01814423.).
Collapse
|
18
|
Sequential Open-Label Study of the Safety, Tolerability, and Pharmacokinetic Interactions between Dihydroartemisinin-Piperaquine and Mefloquine in Healthy Thai Adults. Antimicrob Agents Chemother 2019; 63:AAC.00060-19. [PMID: 31182525 PMCID: PMC6658739 DOI: 10.1128/aac.00060-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/25/2019] [Indexed: 11/26/2022] Open
Abstract
Artemisinin-based combination therapies (ACTs) have contributed substantially to the global decline in Plasmodium falciparum morbidity and mortality, but resistance to artemisinins and their partner drugs is increasing in Southeast Asia, threatening malaria control. New antimalarial compounds will not be generally available soon. Artemisinin-based combination therapies (ACTs) have contributed substantially to the global decline in Plasmodium falciparum morbidity and mortality, but resistance to artemisinins and their partner drugs is increasing in Southeast Asia, threatening malaria control. New antimalarial compounds will not be generally available soon. Combining three existing antimalarials in the form of triple ACTs, including dihydroartemisinin (DHA)-piperaquine + mefloquine, is a potential treatment option for multidrug-resistant Plasmodium falciparum malaria. In a sequential open-label study, healthy Thai volunteers were treated with DHA-piperaquine (120 to 960 mg), mefloquine (500 mg), and DHA-piperaquine + mefloquine (120 to 960 mg + 500 mg), and serial symptom questionnaires, biochemistry, full blood counts, pharmacokinetic profiles, and electrocardiographic measurements were performed. Fifteen healthy subjects were enrolled. There was no difference in the incidence or severity of adverse events between the three treatment arms. The slight prolongation in QTc (QT interval corrected for heart rate) associated with DHA-piperaquine administration did not increase after administration of DHA-piperaquine + mefloquine. The addition of mefloquine had no significant effect on the pharmacokinetic properties of piperaquine. However, coadministration of mefloquine significantly reduced the exposures to dihydroartemisinin for area under the concentration-time curve (−22.6%; 90% confidence interval [CI], −33.1, −10.4; P = 0.0039) and maximum concentration of drug in serum (−29.0%; 90% CI, −40.6, −15.1; P = 0.0079). Mefloquine can be added safely to dihydroartemisinin-piperaquine in malaria treatment. (This study has been registered at ClinicalTrials.gov under identifier NCT02324738.)
Collapse
|
19
|
Sarmiento BE, Santos Menezes LF, Schwartz EF. Insulin Release Mechanism Modulated by Toxins Isolated from Animal Venoms: From Basic Research to Drug Development Prospects. Molecules 2019; 24:E1846. [PMID: 31091684 PMCID: PMC6571724 DOI: 10.3390/molecules24101846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/23/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Venom from mammals, amphibians, snakes, arachnids, sea anemones and insects provides diverse sources of peptides with different potential medical applications. Several of these peptides have already been converted into drugs and some are still in the clinical phase. Diabetes type 2 is one of the diseases with the highest mortality rate worldwide, requiring specific attention. Diverse drugs are available (e.g., Sulfonylureas) for effective treatment, but with several adverse secondary effects, most of them related to the low specificity of these compounds to the target. In this context, the search for specific and high-affinity compounds for the management of this metabolic disease is growing. Toxins isolated from animal venom have high specificity and affinity for different molecular targets, of which the most important are ion channels. This review will present an overview about the electrical activity of the ion channels present in pancreatic β cells that are involved in the insulin secretion process, in addition to the diversity of peptides that can interact and modulate the electrical activity of pancreatic β cells. The importance of prospecting bioactive peptides for therapeutic use is also reinforced.
Collapse
Affiliation(s)
- Beatriz Elena Sarmiento
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Luis Felipe Santos Menezes
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Elisabeth F Schwartz
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
20
|
Haeusler IL, Chan XHS, Guérin PJ, White NJ. The arrhythmogenic cardiotoxicity of the quinoline and structurally related antimalarial drugs: a systematic review. BMC Med 2018; 16:200. [PMID: 30400791 PMCID: PMC6220451 DOI: 10.1186/s12916-018-1188-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/09/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Several quinoline and structurally related antimalarial drugs are associated with cardiovascular side effects, particularly hypotension and electrocardiographic QT interval prolongation. A prolonged QT interval is a sensitive but not specific risk marker for the development of Torsade de Pointes-a potentially lethal polymorphic ventricular tachyarrhythmia. The increasing use of quinoline and structurally related antimalarials in mass treatments to eliminate malaria rapidly highlights the need to review their cardiovascular safety profiles. METHODS The primary objective of this systematic review was to describe the documented clinical and electrocardiographic cardiovascular side effects of quinine, mefloquine, lumefantrine, piperaquine, halofantrine, chloroquine, sulfadoxine-pyrimethamine, amodiaquine, and primaquine. Trials in healthy subjects or patients with Plasmodium falciparum or P. vivax infection were included if at least two ECGs were conducted during the trial. All trial designs were included except case reports and pooled analyses. Secondary outcomes were the methods adopted by trials for measuring and reporting the QT interval. RESULTS Data from trials published between 1982 and July 2016 were included. A total of 177 trials met the inclusion criteria. 35,448 participants received quinoline antimalarials in these trials, of which 18,436 participants underwent ECG evaluation. Subjects with co-medication use or comorbidities including cardiovascular disease were excluded from the majority of trials. Dihydroartemisinin-piperaquine was the drug most studied (5083 participants). Despite enormous use over the past 60 years, only 1076, 452, and 150 patients had ECG recordings reported in studies of chloroquine, amodiaquine, and primaquine respectively. Transiently high concentrations of quinine, quinidine, and chloroquine following parenteral administration have all been associated with hypotension, but there were no documented reports of death or syncope attributable to a cardiovascular cause, nor of electrocardiographic recordings of ventricular arrhythmia in these trials. The large volume of missing outcome information and the heterogeneity of ECG interval reporting and measurement methodology did not allow pooled quantitative analysis of QT interval changes. CONCLUSIONS No serious cardiac adverse effects were recorded in malaria clinical trials of 35,548 participants who received quinoline and structurally related antimalarials with close follow-up including 18,436 individuals who underwent ECG evaluation. While these findings provide further evidence of the rarity of serious cardiovascular events after treatment with these drugs, they also underscore the need for continued strengthening of pharmacovigilance systems for robust detection of rare drug adverse events in real-world populations. A standardised approach to measurement and reporting of ECG data in malaria trials is also needed. TRIAL REGISTRATION PROSPERO CRD42016036678.
Collapse
Affiliation(s)
- Ilsa L Haeusler
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xin Hui S Chan
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Philippe J Guérin
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
21
|
Mvango S, Matshe WMR, Balogun AO, Pilcher LA, Balogun MO. Nanomedicines for Malaria Chemotherapy: Encapsulation vs. Polymer Therapeutics. Pharm Res 2018; 35:237. [PMID: 30324329 DOI: 10.1007/s11095-018-2517-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/03/2018] [Indexed: 12/29/2022]
Abstract
Malaria is one of the oldest infectious diseases that afflict humans and its history extends back for millennia. It was once prevalent throughout the globe but today it is mainly endemic to tropical regions like sub-Saharan Africa and South-east Asia. Ironically, treatment for malaria has existed for centuries yet it still exerts an enormous death toll. This contradiction is attributed in part to the rapid development of resistance by the malaria parasite to chemotherapeutic drugs. In turn, resistance has been fuelled by poor patient compliance to the relatively toxic antimalarial drugs. While drug toxicity and poor pharmacological potentials have been addressed or ameliorated with various nanomedicine drug delivery systems in diseases like cancer, no clinically significant success story has been reported for malaria. There have been several reviews on the application of nanomedicine technologies, especially drug encapsulation, to malaria treatment. Here we extend the scope of the collation of the nanomedicine research literature to polymer therapeutics technology. We first discuss the history of the disease and how a flurry of scientific breakthroughs in the latter part of the nineteenth century provided scientific understanding of the disease. This is followed by a review of the disease biology and the major antimalarial chemotherapy. The achievements of nanomedicine in cancer and other infectious diseases are discussed to draw parallels with malaria. A review of the current state of the research into malaria nanomedicines, both encapsulation and polymer therapeutics polymer-drug conjugation technologies, is covered and we conclude with a consideration of the opportunities and challenges offered by both technologies.
Collapse
Affiliation(s)
- Sindisiwe Mvango
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa.,Department of Chemistry, University of Pretoria, Pretoria, 0002, South Africa
| | - William M R Matshe
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa
| | - Abideen O Balogun
- Department of Medicine, Nottingham University Hospital, Nottingham, UK
| | - Lynne A Pilcher
- Department of Chemistry, University of Pretoria, Pretoria, 0002, South Africa
| | - Mohammed O Balogun
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa.
| |
Collapse
|
22
|
Munawar S, Windley MJ, Tse EG, Todd MH, Hill AP, Vandenberg JI, Jabeen I. Experimentally Validated Pharmacoinformatics Approach to Predict hERG Inhibition Potential of New Chemical Entities. Front Pharmacol 2018; 9:1035. [PMID: 30333745 PMCID: PMC6176658 DOI: 10.3389/fphar.2018.01035] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
The hERG (human ether-a-go-go-related gene) encoded potassium ion (K+) channel plays a major role in cardiac repolarization. Drug-induced blockade of hERG has been a major cause of potentially lethal ventricular tachycardia termed Torsades de Pointes (TdPs). Therefore, we presented a pharmacoinformatics strategy using combined ligand and structure based models for the prediction of hERG inhibition potential (IC50) of new chemical entities (NCEs) during early stages of drug design and development. Integrated GRid-INdependent Descriptor (GRIND) models, and lipophilic efficiency (LipE), ligand efficiency (LE) guided template selection for the structure based pharmacophore models have been used for virtual screening and subsequent hERG activity (pIC50) prediction of identified hits. Finally selected two hits were experimentally evaluated for hERG inhibition potential (pIC50) using whole cell patch clamp assay. Overall, our results demonstrate a difference of less than ±1.6 log unit between experimentally determined and predicted hERG inhibition potential (IC50) of the selected hits. This revealed predictive ability and robustness of our models and could help in correctly rank the potency order (lower μM to higher nM range) against hERG.
Collapse
Affiliation(s)
- Saba Munawar
- Research Center for Modeling and Simulation, National University of Science and Technology, Islamabad, Pakistan.,Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | | | - Edwin G Tse
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Matthew H Todd
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Adam P Hill
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | | | - Ishrat Jabeen
- Research Center for Modeling and Simulation, National University of Science and Technology, Islamabad, Pakistan
| |
Collapse
|
23
|
Phyo AP, von Seidlein L. Challenges to replace ACT as first-line drug. Malar J 2017; 16:296. [PMID: 28738892 PMCID: PMC5525298 DOI: 10.1186/s12936-017-1942-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/15/2017] [Indexed: 01/15/2023] Open
Abstract
The spread of artemisinin and partner drug resistance through Asia requires changes in first-line therapy. The traditional modus has been the replacement of one first-line anti-malarial regimen with another. The number of anti-malarial drug candidates currently in development may have given false confidence in the expectation that resistance to artemisinin-based combination therapy (ACT) can be solved with a switch to the next anti-malarial drug regimen. A number of promising anti-malarial drug regimens did not succeed in becoming first-line drugs due to safety concerns or rapid development of resistance. Currently promising candidates for inclusion in first-line regimens, such as KAE 609, KAF 156, OZ 439, and OZ 277, have already triggered safety concerns or fears that point mutations could render the drugs inefficacious. An additional challenge for a new first-line drug is finding an appropriate partner drug. There is hope that none of the above-mentioned concerns will be substantiated in larger, upcoming trials. Meanwhile, combining already licensed anti-malarials may be a promising stop-gap measure. Practitioners in Vietnam have empirically started to add mefloquine to the current dihydroartemisinin-piperaquine. Practitioners in Africa could do worse than empirically combine already licensed co-artemether and amodiaquine when treatment with ACT no longer clears Plasmodium falciparum. Both combinations are currently undergoing trials.
Collapse
Affiliation(s)
- Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
24
|
Wang W, MacKinnon R. Cryo-EM Structure of the Open Human Ether-à-go-go-Related K + Channel hERG. Cell 2017; 169:422-430.e10. [PMID: 28431243 DOI: 10.1016/j.cell.2017.03.048] [Citation(s) in RCA: 366] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/01/2017] [Accepted: 03/30/2017] [Indexed: 11/17/2022]
Abstract
The human ether-à-go-go-related potassium channel (hERG, Kv11.1) is a voltage-dependent channel known for its role in repolarizing the cardiac action potential. hERG alteration by mutation or pharmacological inhibition produces Long QT syndrome and the lethal cardiac arrhythmia torsade de pointes. We have determined the molecular structure of hERG to 3.8 Å using cryo-electron microscopy. In this structure, the voltage sensors adopt a depolarized conformation, and the pore is open. The central cavity has an atypically small central volume surrounded by four deep hydrophobic pockets, which may explain hERG's unusual sensitivity to many drugs. A subtle structural feature of the hERG selectivity filter might correlate with its fast inactivation rate, which is key to hERG's role in cardiac action potential repolarization.
Collapse
Affiliation(s)
- Weiwei Wang
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University and Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University and Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
25
|
Baruah UK, Gowthamarajan K, Vanka R, Karri VVSR, Selvaraj K, Jojo GM. Malaria treatment using novel nano-based drug delivery systems. J Drug Target 2017; 25:567-581. [PMID: 28166440 DOI: 10.1080/1061186x.2017.1291645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We reside in an era of technological innovation and advancement despite which infectious diseases like malaria remain to be one of the greatest threats to the humans. Mortality rate caused by malaria disease is a huge concern in the twenty-first century. Multiple drug resistance and nonspecific drug targeting of the most widely used drugs are the main reasons/drawbacks behind the failure in malarial therapy. Dose-related toxicity because of high doses is also a major concern. Therefore, to overcome these problems nano-based drug delivery systems are being developed to facilitate site-specific or target-based drug delivery and hence minimizing the development of resistance progress and dose-dependent toxicity issues. In this review, we discuss about the shortcomings in treating malaria and how nano-based drug delivery systems can help in curtailing the infectious disease malaria.
Collapse
Affiliation(s)
- Uday Krishna Baruah
- a Department of Pharmaceutics , JSS College of Pharmacy, Ootacamund, JSS University , Mysuru , India
| | - Kuppusamy Gowthamarajan
- a Department of Pharmaceutics , JSS College of Pharmacy, Ootacamund, JSS University , Mysuru , India
| | - Ravisankar Vanka
- a Department of Pharmaceutics , JSS College of Pharmacy, Ootacamund, JSS University , Mysuru , India
| | | | - Kousalya Selvaraj
- a Department of Pharmaceutics , JSS College of Pharmacy, Ootacamund, JSS University , Mysuru , India
| | - Gifty M Jojo
- a Department of Pharmaceutics , JSS College of Pharmacy, Ootacamund, JSS University , Mysuru , India
| |
Collapse
|
26
|
Wilairatana P, Kyle DE, Looareesuwan S, Chinwongprom K, Amradee S, White NJ, Watkins WM. Poor efficacy of antimalarial biguanide-dapsone combinations in the treatment of acute, uncomplicated, falciparum malaria in Thailand. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1997.11813121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Rowland M, Nosten F. Malaria epidemiology and control in refugee camps and complex emergencies. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.2001.11813694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Touze JE, Fourcade L, Peyron F, Heno P, Deharo JC. Is halofantrine still advisable in malaria attacks? ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1997.11813213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Wiśniowska B, Tylutki Z, Wyszogrodzka G, Polak S. Drug-drug interactions and QT prolongation as a commonly assessed cardiac effect - comprehensive overview of clinical trials. BMC Pharmacol Toxicol 2016; 17:12. [PMID: 26960809 PMCID: PMC4785617 DOI: 10.1186/s40360-016-0053-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/15/2016] [Indexed: 01/10/2023] Open
Abstract
Background Proarrhythmia assessment is one of the major concerns for regulatory bodies and pharmaceutical industry. ICH guidelines recommending preclinical tests have been established in attempt to eliminate the risk of drug-induced arrhythmias. However, in the clinic, arrhythmia occurrence is determined not only by the inherent property of a drug to block ion currents and disturb electrophysiological activity of cardiac myocytes, but also by many other factors modifying individual risk of QT prolongation and subsequent proarrhythmia propensity. One of those is drug-drug interactions. Since polypharmacy is a common practice in clinical settings, it can be anticipated that there is a relatively high risk that the patient will receive at least two drugs mutually modifying their proarrhythmic potential and resulting either in triggering the occurrence or mitigating the clinical symptoms. The mechanism can be observed either directly at the pharmacodynamic level by competing for the molecular targets, or indirectly by modifying the physiological parameters, or at the pharmacokinetic level by alteration of the active concentration of the victim drug. Methods This publication provides an overview of published clinical studies on pharmacokinetic and/or pharmacodynamic drug-drug interactions in humans and their electrophysiological consequences (QT interval modification). Databases of PubMed and Scopus were searched and combinations of the following keywords were used for Title, Abstract and Keywords fields: interaction, coadministration, combination, DDI and electrocardiographic, QTc interval, ECG. Only human studies were included. Over 4500 publications were retrieved and underwent preliminary assessment to identify papers accordant with the topic of this review. 76 papers reporting results for 96 drug combinations were found and analyzed. Results The results show the tremendous variability of drug-drug interaction effects, which makes one aware of complexity of the problem, and suggests the need for assessment of an additional risk factors and careful ECG monitoring before administration of drugs with anticipated QT prolongation. Conclusions DDIs can play significant roles in drugs’ cardiac safety, as evidenced by the provided examples. Assessment of the pharmacodynamic effects of the drug interactions is more challenging as compared to the pharmacokinetic due to the significant diversity in the endpoints which should be analyzed specifically for various clinical effects. Nevertheless, PD components of DDIs should be accounted for as PK changes alone do not allow to fully explain the electrophysiological effects in clinic situations. Electronic supplementary material The online version of this article (doi:10.1186/s40360-016-0053-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Wiśniowska
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Krakow, Poland.
| | - Zofia Tylutki
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Krakow, Poland
| | - Gabriela Wyszogrodzka
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9 Street, 30-688, Kraków, Poland
| | - Sebastian Polak
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Krakow, Poland. .,Simcyp Ltd. (part of Certara), Blades Enterprise Centre, S2 4SU, Sheffield, UK.
| |
Collapse
|
30
|
Gunaydin H. Probabilistic Approach to Generating MPOs and Its Application as a Scoring Function for CNS Drugs. ACS Med Chem Lett 2016; 7:89-93. [PMID: 26819672 DOI: 10.1021/acsmedchemlett.5b00390] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/02/2015] [Indexed: 12/18/2022] Open
Abstract
Multiparameter optimization (MPO) scoring functions are popular tools for providing guidance on how to design desired molecules in medicinal chemistry. The utility of a new probabilistic MPO (pMPO) scoring function method and its application as a scoring function for CNS drugs are described in this letter. In this new approach, a minimal number of statistically determined empirical boundaries is combined with the probability distribution of the desired molecules to define desirability functions. This approach attempts to minimize the number of parameters that define MPO scores while maintaining a high level of predictive power. Results obtained from a test-set of orally approved drugs show that the pMPO approach described here can be used to separate desired molecules from undesired ones with accuracy comparable to a Bayesian model with the advantage of better human interpretability. The application of this pMPO approach for blood-brain barrier penetrant drugs is also described.
Collapse
Affiliation(s)
- Hakan Gunaydin
- Department of Structural Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
31
|
Affiliation(s)
- Frederique A Jacquerioz
- Tropical Medicine, Tulane School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, Louisiana, USA, LA 70112
| | | |
Collapse
|
32
|
Perez-Cortes E, Islas A, Arevalo J, Mancilla C, Monjaraz E, Salinas-Stefanon E. Modulation of the transient outward current (Ito) in rat cardiac myocytes and human Kv4.3 channels by mefloquine. Toxicol Appl Pharmacol 2015. [DOI: 10.1016/j.taap.2015.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Riedel M, Jou CJ, Lai S, Lux RL, Moreno AP, Spitzer KW, Christians E, Tristani-Firouzi M, Benjamin IJ. Functional and pharmacological analysis of cardiomyocytes differentiated from human peripheral blood mononuclear-derived pluripotent stem cells. Stem Cell Reports 2014; 3:131-41. [PMID: 25068127 PMCID: PMC4110777 DOI: 10.1016/j.stemcr.2014.04.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 12/22/2022] Open
Abstract
Advances in induced pluripotent stem cell (iPSC) technology have set the stage for routine derivation of patient- and disease-specific human iPSC-cardiomyocyte (CM) models for preclinical drug screening and personalized medicine approaches. Peripheral blood mononuclear cells (PBMCs) are an advantageous source of somatic cells because they are easily obtained and readily amenable to transduction. Here, we report that the electrophysiological properties and pharmacological responses of PBMC-derived iPSC CM are generally similar to those of iPSC CM derived from other somatic cells, using patch-clamp, calcium transient, and multielectrode array (MEA) analyses. Distinct iPSC lines derived from a single patient display similar electrophysiological features and pharmacological responses. Finally, we demonstrate that human iPSC CMs undergo acute changes in calcium-handling properties and gene expression in response to rapid electrical stimulation, laying the foundation for an in-vitro-tachypacing model system for the study of human tachyarrhythmias.
Collapse
Affiliation(s)
- Michael Riedel
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Chuanchau J Jou
- Division of Pediatric Cardiology, University of Utah School of Medicine, Salt Lake City, UT 83113, USA ; Nora Eccles Harrison CVRTI, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Shuping Lai
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Robert L Lux
- Nora Eccles Harrison CVRTI, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Alonso P Moreno
- Nora Eccles Harrison CVRTI, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kenneth W Spitzer
- Nora Eccles Harrison CVRTI, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Martin Tristani-Firouzi
- Division of Pediatric Cardiology, University of Utah School of Medicine, Salt Lake City, UT 83113, USA ; Nora Eccles Harrison CVRTI, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ivor J Benjamin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
34
|
Robert A, Dechy-Cabaret O, Cazelles JÉRǑM, Benoit-Vical F, Meunier B. Recent Advances in Malaria Chemotherapy. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200200046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Khobragade SB, Gupta P, Gurav P, Chaudhari G, Gatne MM, Shingatgeri VM. Assessment of proarrhythmic activity of chloroquine in in vivo and ex vivo rabbit models. J Pharmacol Pharmacother 2013; 4:116-24. [PMID: 23759957 PMCID: PMC3669570 DOI: 10.4103/0976-500x.110892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES To evaluate the prolongation of ventricular repolarization and proarrhythmic activity of antimalarial drug chloroquine in two rabbit proarrhythmia models viz., in vivo α1 adrenoceptor-stimulated anesthetized rabbit and ex vivo isolated Langendorff rabbit heart using clofilium as standard proarrhythmic agent. MATERIALS AND METHODS In the in vivo model, three groups of rabbits, anesthetized by pentobarbitone sodium and α-chloralose, sensitized with α1 agonist methoxamine followed by either continuous infusion of saline (control) or clofilium (3 mg/kg) or chloroquine (21 mg/kg) for 30 min. In ex vivo model, rabbit hearts were perfused with clofilium (10 μM) or chloroquine (300 μM) continuously after priming along with methoxamine, acetylcholine chloride and propranolol hydrochloride. RESULTS In these models, prolongation of repolarization during α1-adrenoceptor stimulation produced early after depolarization (EAD) and Torsade de pointes (TdP). Saline infusion did not induce any abnormality in the animals. Clofilium caused expected changes in the electrocardiogram in both the models including TdP (50.0% in in vivo and 66.67% in ex vivo). Chloroquine caused decrease in heart rate and increase in the corrected QT (QTc) interval in both the models. Further, apart from different stages of arrhythmia, TdP was evident in 33.33% in ex vivo model, whereas no TdP was observed in in vivo model. CONCLUSIONS The results indicated that proarrhythmic potential of chloroquine and clofilium was well evaluated in both the models; moreover, both the models can be used to assess the proarrhythmic potential of the new drug candidates.
Collapse
Affiliation(s)
- Shailaja B. Khobragade
- Department of Drug Safety Evaluation, Ranbaxy Research Laboratories, Gurgaon, Haryana, India
| | - Pankaj Gupta
- Department of Pharmacology, Central Research Institute for Homoeopathy, Noida, India
| | - Prashant Gurav
- Department of Pharmacology and Toxicology, Bombay Veterinary College, Mumbai, Maharashtra, India
| | - Girish Chaudhari
- Department of Pharmacology and Toxicology, Bombay Veterinary College, Mumbai, Maharashtra, India
| | - Madhumanjiri M. Gatne
- Department of Pharmacology and Toxicology, Bombay Veterinary College, Mumbai, Maharashtra, India
| | - Vyas M. Shingatgeri
- Department of Drug Safety Evaluation, Ranbaxy Research Laboratories, Gurgaon, Haryana, India
| |
Collapse
|
36
|
Adjei GO, Oduro-Boatey C, Rodrigues OP, Hoegberg LC, Alifrangis M, Kurtzhals JA, Goka BQ. Electrocardiographic study in Ghanaian children with uncomplicated malaria, treated with artesunate-amodiaquine or artemether-lumefantrine. Malar J 2012; 11:420. [PMID: 23244570 PMCID: PMC3536610 DOI: 10.1186/1475-2875-11-420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 12/12/2012] [Indexed: 01/08/2023] Open
Abstract
Background Several anti-malarial drugs are associated with adverse cardiovascular effects. These effects may be exacerbated when different anti-malarials are used in combination. There has been no report yet on the potential cardiac effects of the combination artesunate-amodiaquine. Methods Electrocardiographic (ECG) intervals in Ghanaian children with uncomplicated malaria treated with artesunate-amodiaquine (n=47), were compared with that of children treated with artemether-lumefantrine (n=30). The ECG measurements were repeated one, two, three, seven and 28 days after treatment. The ECG intervals of artesunate-amodiaquine treated subjects were correlated with plasma concentrations of desethylamodiaquine (DEAQ), the main metabolite of amodiaquine. Results The mean ECG intervals were similar in both groups before treatment. After treatment (day 3), ECG intervals changed significantly from baseline in all subjects, but there were no differences between the two treatment groups. A significantly higher proportion of children treated with artesunate-amodiaquine developed sinus bradycardia compared with artemether-lumefantrine treated subjects (7/47 vs 0/30; χ2 p=0.03). Subjects who developed bradycardia were significantly older, and had higher DEAQ concentrations than those who did not develop bradycardia. The proportion of subjects with QTc interval prolongations did not differ significantly between the groups, and no relationship between prolonged QTc intervals and DEAQ levels were observed. No clinically significant rhythm disturbances were observed in any of the subjects. Conclusion Artesunate-amodiaquine treatment resulted in a higher incidence of sinus bradycardia than artemether-lumefantrine treatment in children with uncomplicated malaria, but no clinically significant rhythm disturbances were induced by combining artesunate with amodiaquine. These findings, although reassuring, may imply that non-amodiaquine based artemisinin combination therapy may be preferable for malaria treatment in patients who are otherwise at risk of cardiac effects.
Collapse
Affiliation(s)
- George O Adjei
- Centre for Tropical Clinical Pharmacology & Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana.
| | | | | | | | | | | | | |
Collapse
|
37
|
Klein K, Aarons L, Ter Kuile FO, Nosten F, White NJ, Edstein MD, Teja-Isavadharm P. Population pharmacokinetics of halofantrine in healthy volunteers and patients with symptomatic falciparum malaria. ACTA ACUST UNITED AC 2012; 64:1603-13. [PMID: 23058047 DOI: 10.1111/j.2042-7158.2012.01554.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To investigate the population pharmacokinetics of the antimalarial halofantrine (HF) in healthy volunteers and patients with symptomatic falciparum malaria. METHODS Healthy volunteer data were obtained from six volunteers who received three different doses of HF (250, 500 and 1000 mg) after an overnight fast with a washout period of at least 6 weeks between doses. Patient data (n = 188) were obtained from randomised controlled trials conducted on the Thai-Burmese border in the early 1990s. They were either assigned to receive a total HF dose of 24 mg/kg (8 mg/kg every 6 h for 24 h) or 72 mg/kg (8 mg/kg every 6 to 10 h for 3 days). The population pharmacokinetics of HF were evaluated using non-linear mixed effects modelling with a two-compartment model with first-order absorption. KEY FINDINGS The population estimates of apparent clearance (CL), volume of compartment one (V1), distributional clearance (CLD) and volume of compartment two (V2) of HF in healthy volunteers were 2453 l/day (102 l/h), 2386 l, 716 l/day (29.8 l/h) and 2641 l, respectively. The population estimates of the PK parameters in patients were 429 l/day (17.9 l/h), 729 l, 178 l/day (7.42 l/h) and 1351 l, respectively. All PK parameters were significantly related to body weight and some were related to sex, sampling method, pre-treatment parasite density and whether patients vomited or not. When the two datasets were analysed jointly using a maximum likelihood method, the population estimates in patients were 196 l/day (8.17 l/h), 161 l, 65 l/day (2.71 l/h) and 89 l, respectively, and the parameters were significantly related to body weight and sex. Bayesian analysis of the patient data, with a diffuse prior based on the healthy volunteer data analysis results, yielded the population estimates 354 l/day (14.8 l/h), 728 l, 162 l/day (6.75 l/h) and 1939 l, respectively. CONCLUSIONS The pharmacokinetic properties of HF in patients with malaria are affected by several demographic variables as well as other relevant covariates. Apparent differences between the healthy volunteer and the patient data analysis results are not entirely due to differences in bioavailability. For the patient data analysis, the Bayesian method was preferred, as the fitting procedure was more stable, allowing random effects to be estimated for all four dispositional parameters.
Collapse
Affiliation(s)
- Kerenaftali Klein
- Queensland Clinical Trials and Biostatistics Centre, School of Population Health, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Malaria chemotherapy is under constant threat from the emergence and spread of multidrug resistance of Plasmodium falciparum. Resistance has been observed to almost all currently used antimalarials. Some drugs are also limited by toxicity. A fundamental component of the strategy for malaria chemotherapy is based on prompt, effective and safe antimalarial drugs. To counter the threat of resistance of P. falciparum to existing monotherapeutic regimens, current malaria treatment is based principally on the artemisinin group of compounds, either as monotherapy or artemisinin-based combination therapies for treatment of both uncomplicated and severe falciparum malaria. Key advantages of artemisinins over the conventional antimalarials include their rapid and potent action, with good tolerability profiles. Their action also covers transmissible gametocytes, resulting in decreased disease transmission. Up to now there has been no prominent report of drug resistance to this group of compounds. Treatment of malaria in pregnant women requires special attention in light of limited treatment options caused by potential teratogenicity coupled with a paucity of safety data for the mother and fetus. Treatment of other malaria species is less problematic and chloroquine is still the drug of choice, although resistance of P. vivax to chloroquine has been reported. Multiple approaches to the identification of new antimalarial targets and promising antimalarial drugs are being pursued in order to cope with drug resistance.
Collapse
Affiliation(s)
- Kesara Na-Bangchang
- Faculty of Allied Health Sciences, Thammasat University (Rangsit Campus), Paholyothin Road, Klong Luang District, Pathumtanee 12121, Thailand.
| |
Collapse
|
39
|
Bannister B, Hatz C, Toovey S, Price R, Zuckerman JN. The role of standby emergency medication for falciparum malaria: current opinion. Travel Med Infect Dis 2012; 2:119-26. [PMID: 17291973 DOI: 10.1016/j.tmaid.2004.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Accepted: 02/12/2004] [Indexed: 11/19/2022]
Abstract
Travellers to malaria-endemic destinations are at risk of significant disease and, sometimes, death. Current malaria protection strategies, including chemoprophylaxis, can never be completely effective. In some cases, protective measures are discontinued or misapplied while the risk of infection still exists. In others, suboptimal measures are used, or even no measures at all, because of poor information or inappropriate risk-benefit assessment. In very rare cases, inexplicable failure of prophylaxis occurs. If malaria is contracted whilst abroad the danger to the individual is often further compounded by a lack of high-quality medical facilities and an uncertain supply of effective drugs for treatment. The advent of newer, well tolerated, drugs for treating malaria provides an opportunity to review the role of standby emergency self-medication in travellers visiting or staying (for work or other reasons) in areas where there is a risk of contracting malaria. This article was prepared following a meeting convened in London on Africa Malaria Day in 2002, in which the current opinions of experts in travel medicine and specifically malaria were discussed. It reviews opinion on the current effectiveness and acceptance of prevention strategies, as well as the role of standby emergency medication for falciparum malaria.
Collapse
Affiliation(s)
- Barbara Bannister
- Infectious and Tropical Diseases, Royal Free Hampstead NHS Trust, Pond Street, London NW3 2QG, UK
| | | | | | | | | |
Collapse
|
40
|
Siriez JY, Lupoglazoff JM, Bouchy-Bagros ML, Pull L, Denjoy I. Effect of halofantrine on QT interval in children. Pathog Glob Health 2012; 106:124-5. [DOI: 10.1179/2047773212y.0000000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
41
|
Patel JP, Brocks DR. Effect of experimental hyperlipidaemia on the electrocardiographic effects of repeated doses of halofantrine in rats. Br J Pharmacol 2011; 161:1427-40. [PMID: 20698852 DOI: 10.1111/j.1476-5381.2010.00983.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Halofantrine can cause a prolongation of the cardiac QT interval, leading to serious ventricular arrhythmias. Hyperlipidaemia elevates plasma concentration of halofantrine and may influence its tissue uptake. The present study examined the effect of experimental hyperlipidaemia on QT interval prolongation induced by halofantrine in rats. EXPERIMENTAL APPROACH Normolipidaemic and hyperlipidaemic rats (induced with poloxamer 407) were given 4 doses of halofantrine (i.v., 4-40 mg·kg(-1)·d(-1)) or vehicle every 12 h. Under brief anaesthesia, ECGs were recorded before administration of the vehicle or drug and 12 h after the first and last doses. Blood samples were taken at the same time after the first and last dose of halofantrine. Hearts were also collected 12 h after the last dose. Plasma and heart samples were assayed for drug and desbutylhalofantrine using a stereospecific method. KEY RESULTS In the vehicle group, hyperlipidaemia by itself did not affect the ECG. Compared to baseline, QT intervals were significantly higher in both normolipidaemic and hyperlipidaemic rats after halofantrine. In hyperlipidaemic rats, plasma but not heart concentrations of the halofantrine enantiomers were significantly higher compared to those in normolipidaemic rats. Despite the lack of difference in the concentrations of halofantrine in heart, QT intervals were significantly higher in hyperlipidaemic compared to those in normolipidaemic rats. CONCLUSIONS AND IMPLICATIONS The unbound fraction of halofantrine appeared to be the controlling factor for drug uptake by the heart. Our data suggested a greater vulnerability to halofantrine-induced QT interval prolongation in the hyperlipidaemic state.
Collapse
Affiliation(s)
- Jigar P Patel
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
42
|
The antimalarial drug mefloquine inhibits cardiac inward rectifier K+ channels: evidence for interference in PIP2-channel interaction. J Cardiovasc Pharmacol 2011; 57:407-15. [PMID: 21502926 DOI: 10.1097/fjc.0b013e31820b7c03] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The antimalarial drug mefloquine was found to inhibit the KATP channel by an unknown mechanism. Because mefloquine is a Cationic amphiphilic drug and is known to insert into lipid bilayers, we postulate that mefloquine interferes with the interaction between PIP2 and Kir channels resulting in channel inhibition. We studied the inhibitory effects of mefloquine on Kir2.1, Kir2.3, Kir2.3(I213L), and Kir6.2/SUR2A channels expressed in HEK-293 cells, and on IK1 and IKATP from feline cardiac myocytes. The order of mefloquine inhibition was Kir6.2/SUR2A ≈ Kir2.3 (IC50 ≈ 2 μM) > Kir2.1 (IC50 > 30 μM). Similar results were obtained in cardiac myocytes. The Kir2.3(I213L) mutant, which enhances the strength of interaction with PIP2 (compared to WT), was significantly less sensitive (IC50 = 9 μM). In inside-out patches, continuous application of PIP2 strikingly prevented the mefloquine inhibition. Our results support the idea that mefloquine interferes with PIP2-Kir channels interactions.
Collapse
|
43
|
Krudsood S, Looareesuwan S, Wilairatama P, Leowattana W, Tangpukdee N, Chalermrut K, Ramanathan S, Navaratnam V, Olliaro P, Vaillant M, Kiechel JR, Taylor WRJ. Effect of artesunate and mefloquine in combination on the Fridericia corrected QT intervals in Plasmodium falciparum infected adults from Thailand. Trop Med Int Health 2011; 16:458-65. [PMID: 21219551 DOI: 10.1111/j.1365-3156.2010.02714.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To ascertain whether mefloquine (MQ) produces electrocardiogram (ECG) changes that could be a risk for Torsades de Pointe (TdP), a potentially malignant, ventricular tachyarrhythmia. METHODS We measured the Fridericia corrected QT (QTcF) intervals on 12 lead ECGs on days (D) 0, 3, 7 in Plasmodium falciparum infected adults, treated with oral artesunate (AS) and MQ as a new fixed dose (n = 25) combination or loose tablets (n = 25) over 3 days. Target total doses were 12 mg/kg of AS and 24-25 mg/kg of MQ. MQ concentrations ([MQ]) were measured by HPLC. RESULTS All ECG intervals were similar between drug arms and were combined for analysis. Mean QTcF values were 389 (D0), 407 (D3) and 399 (D7) ms (Ps < 0.003 vs. D0); corresponding heart rates and [MQ]s were 83, 67 and 73 beats/minute (Ps ≤ 0.0003 vs. D0) and 0, 3095 and 1721 ng/ml. One male patient (loose arm) had a D3 QTcF 504 ms (D0 406 ms, D7 433 ms). In the modelling of QTcF and JTcF from D0 to D7, significant effects were observed individually for [MQ], temperature and heart rate (HR). The MQ AUC(0-∞) was not a significant factor. Using a manual descending, model building approach to select variables, the HR was the only significant variable (P = 0.001) over time in the model that best explained the changes in the QTcF and JTcF intervals. CONCLUSIONS In this small group of patients, slowing heart rates due to malaria resolution best explained the observed increases in the QTcF intervals.
Collapse
Affiliation(s)
- S Krudsood
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kinoshita A, Yamada H, Kotaki H, Kimura M. Effects of anti-malarial drugs on the electrocardiographic QT interval modelled in the isolated perfused guinea pig heart system. Malar J 2010; 9:318. [PMID: 21067575 PMCID: PMC2992072 DOI: 10.1186/1475-2875-9-318] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 11/10/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Concern over the potential cardiotoxicity of anti-malarial drugs inducing a prolonged electrocardiographic QT interval has resulted in the almost complete withdrawal from the market of one anti-malarial drug - halofantrine. The effects on the QT interval of four anti-malarial drugs were examined, using the guinea pig heart. METHODS The guinea pig heart was isolated, mounted on a Langendorff apparatus, and was then perfused with pyruvate-added Klebs-Henseleit solutions containing graded concentrations of the four agents such as quinidine (0.15 - 1.2 μM), quinine (0.3 - 2.4 μM), halofantrine (0.1 - 2.0 μM) and mefloquine (0.1 - 2.0 μM). The heart rate-corrected QaTc intervals were measured to evaluate drug-induced QT prolongation effects. RESULTS Quinidine, quinine, and halofantrine prolonged the QaTc interval in a dose-dependent manner, whereas no such effect was found with mefloquine. The EC50 values for the QaTc prolongation effects, the concentration that gives a half-maximum effect, were quinidine < quinine ≈ halofantrine. CONCLUSIONS In this study, an isolated, perfused guinea pig heart system was constructed to assess the cardiotoxic potential of anti-malarial drugs. This isolated perfused guinea pig heart system could be used to test newly developed anti-malarial drugs for their inherent QT lengthening potential. More information is required on the potential variation in unbound drug concentrations in humans, and their role in cardiotoxicity.
Collapse
Affiliation(s)
- Atsushi Kinoshita
- Division of Drug Informatics, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiono, Himeji, Hyogo, 670-8524 Japan.
| | | | | | | |
Collapse
|
45
|
New fixed-dose artesunate-mefloquine formulation against multidrug-resistant Plasmodium falciparum in adults: a comparative phase IIb safety and pharmacokinetic study with standard-dose nonfixed artesunate plus mefloquine. Antimicrob Agents Chemother 2010; 54:3730-7. [PMID: 20547795 DOI: 10.1128/aac.01187-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A new fixed-dose artesunate (AS)-mefloquine (MQ) was assessed in adults hospitalized for 28 days with uncomplicated drug-resistant falciparum malaria. The patients (n = 25/arm) were treated with (i) two fixed-dose tablets (AS-MQ arm; 100 mg AS-200 mg MQ/tablet) daily for 3 days (days 0, 1, and 2) or (ii) nonfixed AS (AS-plus-MQ arm; 4 mg/kg of body weight/day for 3 days) plus MQ (15 mg/kg on day 1 and 10 mg/kg on day 2), dosed by weight. Clinical laboratory electrocardiogram (ECG), adverse events (AEs), efficacy, and pharmacokinetic parameters were assessed over 28 days. Both regimens were well tolerated. No AEs were drug related. Two serious AEs of malaria-induced hypotension occurring in the AS-MQ arm necessitated rescue treatment. There were no significant changes in hematology, biochemistry, or PR and QRS intervals. For all patients, mean Fridericia-corrected QT intervals were significantly (P < or = 0.0027) prolonged on day 3 (407 ms) and day 7 (399 ms) versus day 0 (389 ms), in parallel with significant (P < or = 0.0003) falls in heart rates (67 [day 3], 73 [day 7], and 83 [day 0] beats/minute). Fixed-nonfixed formulations were bioequivalent for MQ, but not for AS and dihydroartemisinin (DHA). One AS-MQ patient developed a new infection on day 28; his day 28 plasma MQ concentration was 503.8 ng/ml. Fixed-dose AS-MQ was well tolerated, had pharmacokinetic (PK) profiles broadly similar to those of nonfixed AS plus MQ, and is a suitable replacement.
Collapse
|
46
|
McIntosh MP, Batey AJ, Coker SJ, Porter CJH, Charman WN. Evaluation of the impact of altered lipoprotein binding conditions on halofantrine induced QTc interval prolongation in an anaesthetized rabbit model. J Pharm Pharmacol 2010; 56:69-77. [PMID: 14980003 DOI: 10.1211/0022357022520] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Halofantrine has been observed to cause QT interval prolongation in susceptible patients and the effect has most commonly been observed after post-prandial administration. Halofantrine-induced QT prolongation occurs in conjunction with a significant increase in plasma halofantrine concentrations and an increase in halofantrine association with post-prandial plasma lipoproteins. The increased association of halofantrine with post-prandial lipoproteins is accompanied by a marked change in drug distribution between the different plasma lipoprotein fractions. This study was designed to evaluate the putative role of myocardium-based lipoprotein receptor-mediated uptake of lipoproteins as a possible contributing factor to the observed effect of halofantrine on QT intervals. The extent of QT interval prolongation following intravenous halofantrine administration (10 mg kg−1) to normolipidaemic (fasted) or hyperlipidaemic (induced with Intralipid infusion) anaesthetized New Zealand White rabbits (n = 6) was determined, as was the distribution of halofantrine between the plasma lipoprotein classes. The results, however, were in contrast to the suggested hypothesis since the QT interval was reduced (and not increased) after halofantrine administration to hyperlipidaemic rabbits relative to fasted rabbits. Therefore, it is unlikely that lipoprotein-based uptake of halofantrine into the myocardium is a major contributor to the previously observed increase in QT prolongation after post-prandial administration of halofantrine.
Collapse
Affiliation(s)
- Michelle P McIntosh
- Department of Pharmaceutics, Victorian College of Pharmacy, Monash University, Parkville Campus, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | |
Collapse
|
47
|
Bouchaud O, Imbert P, Touze JE, Dodoo ANO, Danis M, Legros F. Fatal cardiotoxicity related to halofantrine: a review based on a worldwide safety data base. Malar J 2009; 8:289. [PMID: 20003315 PMCID: PMC2801676 DOI: 10.1186/1475-2875-8-289] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 12/10/2009] [Indexed: 11/23/2022] Open
Abstract
Background Halofantrine (HF) was considered an effective and safe treatment for multi-drug resistant falciparum malaria until 1993, when the first case of drug-associated death was reported. Since then, numerous studies have confirmed cardiac arrythmias, possibly fatal, in both adults and children. The aim of the study was to review fatal HF related cardiotoxicity. Methods In addition, to a systematic review of the literature, the authors have had access to the global safety database on possible HF related cardiotoxicity provided by GlaxoSmithKline. Results Thirty-five cases of fatal cardiotoxicity related to HF, including five children, were identified. Females (70%) and patients from developing countries (71%) were over-represented in this series. Seventy-four percent of the fatal events occurred within 24 hours of initial exposure to HF. Twenty six patients (74%) had at least one predisposing factor for severe cardiotoxicity, e.g., underlying cardiac disease, higher than recommended doses, or presence of a concomitant QT-lengthening drug. All (100%) of the paediatric cases had either a contraindication to HF or an improper dose was given. In six cases there was no malaria. Conclusion A distinction should be made between common but asymptomatic QT-interval prolongation and the much less common ventricular arrhythmias, such as torsades de pointes, which can be fatal and seem to occur in a very limited number of patients. The majority of reported cardiac events occurred either in patients with predisposing factors or with an improper dose. Therefore, in the rare situations in which HF is the only therapeutic option, it can still be given after carefully checking for contraindications, such as underlying cardiac disease, bradycardia, metabolic disorders, personal or family history of long QT-interval or concomitant use of another QT-prolonging drug (e.g., mefloquine), especially in females.
Collapse
Affiliation(s)
- Olivier Bouchaud
- Service des maladies infectieuses et tropicales, Hôpital Avicenne AP-HP et Université Paris 13, 125 rue de Stalingrad, 93009 Bobigny, France.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
BACKGROUND Malaria infects 10,000 to 30,000 international travellers each year. It can be prevented through anti-mosquito measures and drug prophylaxis. However, antimalaria drugs have adverse effects which are sometimes serious. OBJECTIVES To compare the effects of currently used antimalaria drugs when given as prophylaxis to non-immune adult and child travellers who are travelling to regions with Plasmodium falciparum resistance to chloroquine. Specifically, to assess the efficacy, safety, and tolerability of atovaquone-proguanil, doxycycline, and mefloquine compared to each other, and also when compared to chloroquine-proguanil and to primaquine. SEARCH STRATEGY In August 2009 we searched the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (The Cochrane Library 2008, Issue 4), MEDLINE, EMBASE, LILACS, BIOSIS, mRCT, and reference lists. We handsearched conference proceedings and one specialist journal, and contacted researchers and drug companies. We searched PubMed for drug-related deaths. SELECTION CRITERIA Randomized and quasi-randomized controlled trials of any antimalaria drug regimen currently used by non-immune international travellers. DATA COLLECTION AND ANALYSIS We independently extracted data and assessed eligibility and risk of bias using a standardized data collection form. We resolved any disagreement through discussion. We combined dichotomous outcomes using risk ratio (RR) and continuous data using mean difference (MD), presenting both with 95% confidence intervals (CI). MAIN RESULTS Eight trials (4240 participants) met the inclusion criteria. Evidence on comparative efficacy from head-to-head comparisons was limited. Atovaquone-proguanil compared to doxycycline had similar adverse events reported. Compared to mefloquine, atovaquone-proguanil users had fewer reports of any adverse effect (RR 0.72, 95% CI 0.6 to 0.85), gastrointestinal adverse effects (RR 0.54, 95% CI 0.42 to 0.7), neuropsychiatric adverse events (RR 0.86, 95% CI 0.75 to 0.99), and neuropsychiatric adverse effects (RR 0.49, 95% CI 0.38 to 0.63), besides a better total mood disturbance score (MD -7.20, 95% CI -10.79 to -3.61). Similarly, doxycycline users had fewer reported neuropsychiatric events than mefloquine users (RR 0.84, 95% CI 0.73 to 0.96). We also examined these three regimens against chloroquine-proguanil; this latter regimen had more reports of any adverse effect (RR 0.84, 95% CI 0.73 to 0.96) and of gastrointestinal adverse effects (RR 0.71, 95% CI 0.6 to 0.85). AUTHORS' CONCLUSIONS Atovaquone-proguanil and doxycycline are the best tolerated regimens, and mefloquine is associated with adverse neuropsychiatric outcomes.
Collapse
Affiliation(s)
- Frederique A Jacquerioz
- Center for Evidence-Based Global Health, Tulane School of Public Health and Tropical Medicine, 1440 Canal Street, TDW, Ste 1820, New Orleans, Louisiana, USA, 70115
| | | |
Collapse
|
49
|
Maude RJ, Plewes K, Faiz MA, Hanson J, Charunwatthana P, Lee SJ, Tärning J, Yunus EB, Hoque MG, Hasan MU, Hossain A, Lindegardh N, Day NPJ, White NJ, Dondorp AM. Does artesunate prolong the electrocardiograph QT interval in patients with severe malaria? Am J Trop Med Hyg 2009; 80:126-32. [PMID: 19141850 PMCID: PMC2843440 DOI: 10.4269/ajtmh.2009.08-0326] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several antimalarials can cause significant prolongation of the electrocardiograph QT interval, which can be associated with an increased risk of potentially lethal ventricular arrhythmias. High doses of artemether and artemotil have been associated with QT prolongation in dogs, raising the possibility of a class effect with the artemisinin derivatives. Serial electrocardiograms were recorded, and QTc interval was calculated before and after administration of artesunate by intravenous injection in patients with severe falciparum malaria in Bangladesh. Of 21 adult patients with severe malaria enrolled, 8 (38%) died. The mean QTc interval was unaffected by bolus intravenous artesunate (2.4 mg/kg). In two patients, the QTc interval exceeded 0.5 seconds, but in both cases, an alternative explanation was plausible. No effect was observed on the JTc or PR interval, QRS width, blood pressure, or heart rate. Intravenous artesunate does not have significant cardiovascular effects in patients with severe falciparum malaria.
Collapse
Affiliation(s)
- Richard J Maude
- Centre for Clinical Vaccinology and Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
BACKGROUND Women are more vulnerable to malaria during pregnancy, and malaria infection may have adverse consequences for the fetus. Identifying safe and effective treatments is important. OBJECTIVES To compare the effects of drug regimens for treating uncomplicated falciparum malaria in pregnant women. SEARCH STRATEGY We searched the Cochrane Infectious Diseases Group Specialized Register (February 2008), CENTRAL (The Cochrane Library 2008, Issue 1), MEDLINE (1966 to February 2008), EMBASE (1974 to February 2008), LILACS (February 2008), mRCT (February 2008), reference lists, and conference abstracts. We also contacted researchers in the field, organizations, and pharmaceutical companies. SELECTION CRITERIA Randomized and quasi-randomized controlled trials of antimalarial drugs for treating uncomplicated malaria in pregnant women. DATA COLLECTION AND ANALYSIS Two authors assessed trial eligibility and risk of bias, and extracted data. We performed a quantitative analysis only where we could combine the data. We combined dichotomous data using the risk ratio (RR) and presented each result with a 95% confidence interval (CI). MAIN RESULTS Ten trials (1805 participants) met the inclusion criteria. Two were quasi-randomized, seven did not describe allocation concealment, and all adjusted treatment failure to exclude new infections. One trial reported fewer treatment failures at day 63 with artesunate plus mefloquine compared with quinine (RR 0.09, 95% CI 0.02 to 0.38; 106 participants). One trial reported fewer treatment failures at day 63 with artesunate plus atovaquone-proguanil compared with quinine (RR 0.14, 95% CI 0.03 to 0.57; 80 participants). One trial reported fewer treatment failures at day 28 when amodiaquine was compared with chloroquine (RR 0.20, 95% CI 0.08 to 0.46; 420 participants) and when amodiaquine plus sulfadoxine-pyrimethamine was compared with chloroquine (RR 0.02, 95% CI 0.00 to 0.26; 418 participants). Compared with sulfadoxine-pyrimethamine given alone, one trial reported fewer treatment failures at delivery (or day 40) with artesunate plus sulfadoxine-pyrimethamine (RR 0.15, 95% CI 0.04 to 0.59; 79 participants) and azithromycin plus sulfadoxine-pyrimethamine (RR 0.27, 95% CI 0.10 to 0.76; 82 participants). AUTHORS' CONCLUSIONS Data are scant. Some combination treatments appear to be effective at treating malaria in pregnancy; however, safety data are limited.
Collapse
Affiliation(s)
- Lois C Orton
- School of Nursing, Midwifery and Social Work, University of Manchester, University Place, Oxford Road, Manchester, UK, M13 9PL.
| | | |
Collapse
|