Álvarez Porebski PW, Gyssels E, Madder A, Lynen F. Hyphenation of a Deoxyribonuclease I immobilized enzyme reactor with liquid chromatography for the online stability evaluation of oligonucleotides.
J Chromatogr A 2015;
1422:18-26. [PMID:
26515385 DOI:
10.1016/j.chroma.2015.10.015]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
The stability of antisense oligonucleotides (ONs) toward nucleases is a key aspect for their possible implementation as therapeutic agents. Typically, ON stability studies are performed off-line, where the ONs are incubated with nucleases in solution, followed by their analysis. The problematics of off-line processing render the detailed comparison of relative ON stability quite challenging. Therefore, the development of an online platform based on an immobilized enzyme reactor (IMER) coupled to liquid chromatography (LC) was developed as an alternative for improved ON stability testing. More in detail, Deoxyribonuclease I (DNase I) was immobilized on epoxy-silica particles of different pore sizes and packed into a column for the construction of an IMER. Subsequently, the hyphenation of the IMER with ion-pair chromatography (IPC) and ion-exchange chromatography (IEC) was evaluated, leading to the successful development of two online methodologies: IMER-IPC and IMER-IEC. More specifically, natural and modified DNA and RNA oligonucleotides were used for testing the performance of the methodologies. Both methodologies proved to be simple, automatable, fast and highly reproducible for the quantitative and qualitative evaluation of ON degradation. In addition, the extended IMER life time in combination with a more straightforward control of the reaction kinetics substantiate the applicability of the IMER-LC platform for ON stability tests and its implementation in routine and research laboratories.
Collapse