1
|
Km S, Ravishankar K, Lobo NP, Baskar R, Raghavachari D. Solvent-less carboxymethylation-induced electrostatic crosslinking of chitosan. Int J Biol Macromol 2023; 253:126633. [PMID: 37659501 DOI: 10.1016/j.ijbiomac.2023.126633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
The successful N-carboxymethylation and concomitant crosslinking of solid chitosan upon heating its mixture with solid monochloroacetic acid, without the use of solvents or catalysts, is reported. The N-carboxymethylation was confirmed through the analysis of the partially depolymerized product using NMR spectroscopy, as well as a control reaction with lysine. This transformation was facilitated by the nucleophilic nature of the free amine group in the repeating unit of chitosan, which possesses lone pair of electrons capable of attacking the carbon center bearing the leaving group and displacing the leaving group in a concerted manner. The crosslinking, on the other hand, was established by the observed insolubility in aqueous acidic solutions, even when subjected to prolonged heating at 60 °C. This crosslinking occurs due to the electrostatic interactions between the carboxylate groups and the adjacent ammonium groups, as supported by evidence from FTIR spectroscopy and a control reaction involving ethyl chloroacetate. The resulting crosslinked carboxymethyl chitosan demonstrated its usefulness in the adsorption of methyl orange and fluorescein, as well as functioning as an organic catalyst for aza-Michael addition, Hantzsch reaction, and substituted perimidine synthesis.
Collapse
Affiliation(s)
- Shelly Km
- Department of Chemistry, Indian Institute of Technology Madras (IIT Madras), Chennai 600 036, Tamil Nadu, India
| | - Kartik Ravishankar
- Polymer Science and Technology Division, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600 020, Tamil Nadu, India
| | - Nitin Prakash Lobo
- Centre for Analysis, Testing, Evaluation & Reporting Services (CATERS), CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600 020, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Ramaganthan Baskar
- Department of Chemistry, Indian Institute of Technology Madras (IIT Madras), Chennai 600 036, Tamil Nadu, India
| | - Dhamodharan Raghavachari
- Department of Chemistry, Indian Institute of Technology Madras (IIT Madras), Chennai 600 036, Tamil Nadu, India.
| |
Collapse
|
2
|
Carboxymethyl chitin and chitosan derivatives: synthesis, characterization and antibacterial activity. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
3
|
Zhang B, Lan W, Xie J. Chemical modifications in the structure of marine polysaccharide as serviceable food processing and preservation assistant: A review. Int J Biol Macromol 2022; 223:1539-1555. [PMID: 36370860 DOI: 10.1016/j.ijbiomac.2022.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Marine polysaccharides are a kind of natural polysaccharides which isolated and extracted from marine organisms. Now some marine polysaccharides, such as chitosan, sodium alginate and agar, have been proven to exhibit antibacterial, antioxidant functions and biocompatibility, which are often used to preserve food or improve the physicochemical properties of food. However, they still have the defects of unsatisfactory preservation effect and biological activity, which can be remedied by its modification. Chemical modification is the most effective of all modification methods. The advances in common chemical modification methods of chitosan, sodium alginate, agar and other marine polysaccharides and research progress of modified products in food processing and preservation were summarized, and the influence of additional reaction conditions on the existence of chemical modification sites of polysaccharides was discussed. The modification of functional groups in natural marine polysaccharides leads to the change of molecular structure, which can improve the physical, chemical and biological properties of marine polysaccharides. Chemically modified products have been used in various fields of food applications, such as food preservatives, food additives, food packaging, and food processing aids. In general, chemical modification has excellent potential for food processing and preservation, which can improve the function of marine polysaccharides.
Collapse
Affiliation(s)
- Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
4
|
Khan Z, Ahmad AL-Thabaiti S. Chitosan capped silver nanoparticles: Adsorption and photochemical activities. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
5
|
Mathew GM, Ulaeto SB, Reshmy R, Sukumaran RK, Binod P, Pandey A, Sindhu R. Chitosan Derivatives: Properties and Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
6
|
Lin Z, Cheng X. Synthesis and properties of pH sensitive carboxymethylated hydroxypropyl chitosan nanocarriers for delivery of doxorubicin. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1920332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Zhu Lin
- School of Chemistry and Chemical Engineering, Key Laboratory Environment-friendly Polymer Materials of Anhui Province, Anhui University, Hefei, China
| | - Xiaomin Cheng
- School of Chemistry and Chemical Engineering, Key Laboratory Environment-friendly Polymer Materials of Anhui Province, Anhui University, Hefei, China
| |
Collapse
|
7
|
Effects and Mechanisms of Chitosan and ChitosanOligosaccharide on Hepatic Lipogenesis and Lipid Peroxidation, Adipose Lipolysis, and Intestinal Lipid Absorption in Rats with High-Fat Diet-Induced Obesity. Int J Mol Sci 2021; 22:ijms22031139. [PMID: 33498889 PMCID: PMC7869010 DOI: 10.3390/ijms22031139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 01/09/2023] Open
Abstract
Chitosan and its derivative, chitosan oligosaccharide (CO), possess hypolipidemic and anti-obesity effects. However, it is still unclear if the mechanisms are different or similar between chitosan and CO. This study was designed to investigate and compare the effects of CO and high-molecular-weight chitosan (HC) on liver lipogenesis and lipid peroxidation, adipose lipolysis, and intestinal lipid absorption in high-fat (HF) diet-fed rats for 12 weeks. Rats were divided into four groups: normal control diet (NC), HF diet, HF diet+5% HC, and HF diet+5% CO. Both HC and CO supplementation could reduce liver lipid biosynthesis, but HC had a better effect than CO on improving liver lipid accumulation in HF diet-fed rats. The increased levels of triglyceride decreased lipolysis rate, and increased lipoprotein lipase activity in the perirenal adipose tissue of HF diet-fed rats could be significantly reversed by both HC and CO supplementation. HC, but not CO, supplementation promoted liver antioxidant enzymes glutathione peroxidase and superoxide dismutase activities and reduced liver lipid peroxidation. In the intestines, CO, but not HC, supplementation reduced lipid absorption by reducing the expression of fabp2 and fatp4 mRNA. These results suggest that HC and CO have different mechanisms for improving lipid metabolism in HF diet-fed rats.
Collapse
|
8
|
Cao Q, Zhao J, Xing M, Xiao H, Zhang Q, Liang H, Ji A, Song S. Current Research Landscape of Marine-Derived Anti-Atherosclerotic Substances. Mar Drugs 2020; 18:md18090440. [PMID: 32854344 PMCID: PMC7551282 DOI: 10.3390/md18090440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is a chronic disease characterized by lipid accumulation and chronic inflammation of the arterial wall, which is the pathological basis for coronary heart disease, cerebrovascular disease and thromboembolic disease. Currently, there is a lack of low-cost therapeutic agents that effectively slow the progression of atherosclerosis. Therefore, the development of new drugs is urgently needed. The research and development of marine-derived drugs have gained increasing interest from researchers across the world. Many marine organisms provide a rich material basis for the development of atherosclerotic drugs. This review focuses on the latest technological advances in the structures and mechanisms of action of marine-derived anti-atherosclerotic substances and the challenges of the application of these substances including marine polysaccharides, proteins and peptides, polyunsaturated fatty acids and small molecule compounds. Here, we describe the theoretical basis of marine biological resources in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Qi Cao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Han Xiao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Qian Zhang
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Hao Liang
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- Correspondence: (A.J.); (S.S.)
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
- Correspondence: (A.J.); (S.S.)
| |
Collapse
|
9
|
Carboxymethyl chitosan has sensitive two-way CO2-responsive hydrophilic/hydrophobic feature. Carbohydr Polym 2020; 241:116408. [DOI: 10.1016/j.carbpol.2020.116408] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/17/2020] [Accepted: 04/30/2020] [Indexed: 11/21/2022]
|
10
|
Jelinkova P, Mazumdar A, Sur VP, Kociova S, Dolezelikova K, Jimenez AMJ, Koudelkova Z, Mishra PK, Smerkova K, Heger Z, Vaculovicova M, Moulick A, Adam V. Nanoparticle-drug conjugates treating bacterial infections. J Control Release 2019; 307:166-185. [DOI: 10.1016/j.jconrel.2019.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/19/2022]
|
11
|
Sautrot-Ba P, Razza N, Breloy L, Andaloussi SA, Chiappone A, Sangermano M, Hélary C, Belbekhouche S, Coradin T, Versace DL. Photoinduced chitosan–PEG hydrogels with long-term antibacterial properties. J Mater Chem B 2019; 7:6526-6538. [DOI: 10.1039/c9tb01170f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The photo-induced synthesis of chitosan–PEG hydrogels with tremendous antibacterial and anti-adhesive properties even after 6 months’ storage.
Collapse
|
12
|
|
13
|
Zhu L, Zou DQ, Fan ZQ, Wang N, Bo YY, Zhang YQ, Guo G. Properties of a novel carboxymethyl chitosan derived from silkworm pupa. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21499. [PMID: 30076774 DOI: 10.1002/arch.21499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
In this study, a carboxymethyl chitosan derived from silkworm pupa (SP-carboxymethyl chitosan) was prepared. The physical characteristics of the SP chitin, chitosan, and carboxymethyl chitosan were analyzed. The scanning electron microscopy results showed that the surfaces of the samples from SP were more uneven, with more surface fractures compared with those of the reference substance (RS). Thermal analysis, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy analysis showed that the main molecular chain structures of SP samples and RSs had no substantial differences. However, the crystallinity and thermal decomposition temperature of the SP samples were lower compared with those of the RSs. All of these results provide a theoretical basis for the development of applications for the SP-carboxymethyl chitosan.
Collapse
Affiliation(s)
- Lin Zhu
- Functional Food Laboratory, Shandong Institute of Sericulture, Yantai, China
| | - De-Qing Zou
- Functional Food Laboratory, Shandong Institute of Sericulture, Yantai, China
| | - Zuo-Qing Fan
- Functional Food Laboratory, Shandong Institute of Sericulture, Yantai, China
| | - Na Wang
- Functional Food Laboratory, Shandong Institute of Sericulture, Yantai, China
| | - Ying-Ying Bo
- Functional Food Laboratory, Shandong Institute of Sericulture, Yantai, China
| | - Yu-Qing Zhang
- Silk Biotechnology Laboratory, Soochow University, Suzhou, China
| | - Guang Guo
- Functional Food Laboratory, Shandong Institute of Sericulture, Yantai, China
| |
Collapse
|
14
|
Croce M, Conti S, Maake C, Patzke GR. Nanocomposites of Polyoxometalates and Chitosan-Based Polymers as Tuneable Anticancer Agents. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Matteo Croce
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Simona Conti
- Institute of Anatomy; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Caroline Maake
- Institute of Anatomy; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Greta R. Patzke
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
15
|
Gonçalves RC, da Silva DP, Signini R, Naves PLF. Inhibition of bacterial biofilms by carboxymethyl chitosan combined with silver, zinc and copper salts. Int J Biol Macromol 2017; 105:385-392. [PMID: 28756196 DOI: 10.1016/j.ijbiomac.2017.07.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/20/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
Abstract
Investigation of the antimicrobial action of carboxymethyl chitosan (CMCh) is among the alternative approaches in the control of pathogenic microorganisms. This study aimed to screen the toxicity using the brine shrimp lethality assay and to investigate the inhibitory activity of carboxymethyl in isolation or in combination with silver nitrate, copper sulfate and zinc sulfate on biofilm formation by Staphylococcus aureus ATCC 6538, Staphylococcus epidermidis ATCC 12228, Kocuria rhizophila ATCC 9341, Pseudomonas aeruginosa ATCC 9027, Escherichia coli ATCC 25312, and Burkholderia cepacia ATCC 17759. The CMCh was obtained by reacting chitosan with monochloroacetic acid under alkaline conditions, and the occurrence of carboxymethylation was evidenced by FTIR and 1H NMR spectroscopy. The CMCh was combined with metallic salts (AgNO3, CuSO4·5H2O and ZnSO4) to perform the bioassays to screen the toxicity, to determine the minimum inhibitory concentration and the impact of sub-inhibitory concentrations against biofilm formation. Although CMCh did not show inhibitory activity against bacterial growth, it had an interesting level of inhibition of bacterial biofilm. The results suggest that sub-inhibitory concentrations of compounds were effective against biofilm formation.
Collapse
Affiliation(s)
- Randys Caldeira Gonçalves
- Universidade Estadual de Goiás, Campus de Anápolis de Ciências Exatas e Tecnológicas, BR-153, Fazenda Barreiro do Meio, 3105, 75132-903 Anápolis, Goiás, Brazil.
| | - Diego Pereira da Silva
- Universidade Estadual de Goiás, Campus de Anápolis de Ciências Exatas e Tecnológicas, BR-153, Fazenda Barreiro do Meio, 3105, 75132-903 Anápolis, Goiás, Brazil.
| | - Roberta Signini
- Universidade Estadual de Goiás, Campus de Anápolis de Ciências Exatas e Tecnológicas, BR-153, Fazenda Barreiro do Meio, 3105, 75132-903 Anápolis, Goiás, Brazil.
| | - Plínio Lázaro Faleiro Naves
- Universidade Estadual de Goiás, Campus de Anápolis de Ciências Exatas e Tecnológicas, BR-153, Fazenda Barreiro do Meio, 3105, 75132-903 Anápolis, Goiás, Brazil.
| |
Collapse
|
16
|
Matsumoto M, Udomsinprasert W, Laengee P, Honsawek S, Patarakul K, Chirachanchai S. A Water-Based Chitosan-Maleimide Precursor for Bioconjugation: An Example of a Rapid Pathway for an In Situ Injectable Adhesive Gel. Macromol Rapid Commun 2016; 37:1618-1622. [DOI: 10.1002/marc.201600257] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/30/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Masahiro Matsumoto
- The Petroleum and Petrochemical College; Chulalongkorn University; Bangkok 10330 Thailand
| | - Wanvisa Udomsinprasert
- Department of Biochemistry; Faculty of Medicine; Chulalongkorn University; Bangkok 10330 Thailand
| | - Prayoon Laengee
- Department of Microbiology; Faculty of Medicine; Chulalongkorn University; Bangkok 10330 Thailand
| | - Sittisak Honsawek
- Department of Biochemistry; Faculty of Medicine; Chulalongkorn University; Bangkok 10330 Thailand
| | - Kanitha Patarakul
- Department of Microbiology; Faculty of Medicine; Chulalongkorn University; Bangkok 10330 Thailand
| | - Suwabun Chirachanchai
- The Petroleum and Petrochemical College; Chulalongkorn University; Bangkok 10330 Thailand
| |
Collapse
|
17
|
Muzzarelli RAA, Biagini G, Belmonte MM, Talassi O, Gandolfi MG, Solmi R, Carraro S, Giardino R, Fini M, Nicoli-Aldini N. Osteoinduction by Chitosan-Complexed BMP: Morpho-Structural Responses in an Osteoporotic Model. J BIOACT COMPAT POL 2016. [DOI: 10.1177/088391159701200405] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bone quality is the result of a complex relationship between bone mass, bone structure, and mechanical characteristics of these individual components. The mass of bone tissue is affected by nutritional factors and other causes, such as bone growth factors like bone morphogenetic proteins (BMPs). Since chitosans promote ordered regeneration of soft tissue and osteoinduction, an osteoporotic model was studied to evaluate the pattern of bone regeneration in the presence of BMP linked to chitosan. BMP was released from the chitosan matrix as a consequence of chitosan biodegradation. Our data show that the association of BMP with chitosan seemed to improve the bone tissue regeneration in a surgical bone defect. This result provides validity to biochemical approaches for therapeutical correction of afflictions in the elderly, such as osteoporosis.
Collapse
Affiliation(s)
- R. A. A. Muzzarelli
- Center for Innovative Biomaterials, Faculty of Medicine, University of Ancona, IT-60131 Ancona, Italy
| | - G. Biagini
- Center for Innovative Biomaterials, Faculty of Medicine, University of Ancona, IT-60131 Ancona, Italy
| | - M. Mattioli Belmonte
- Center for Innovative Biomaterials, Faculty of Medicine, University of Ancona, IT-60131 Ancona, Italy
| | - O. Talassi
- Institute of Histology and Embryology, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy
| | - M. G. Gandolfi
- Institute of Histology and Embryology, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy
| | - R. Solmi
- Institute of Histology and Embryology, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy
| | - S. Carraro
- Institute of Histology and Embryology, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy
| | - R. Giardino
- Experimental Surgery I.O.R., Via di Barbiano 1/10, Bologna, Italy
| | - M. Fini
- Experimental Surgery I.O.R., Via di Barbiano 1/10, Bologna, Italy
| | - N. Nicoli-Aldini
- Experimental Surgery I.O.R., Via di Barbiano 1/10, Bologna, Italy
| |
Collapse
|
18
|
Selective and full derivatization of amino group in chitosan with alkyl chloroformate of low stereo-hindrance. Macromol Res 2016. [DOI: 10.1007/s13233-016-4079-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Jirawutthiwongchai J, Klaharn IY, Hobang N, Mai-ngam K, Klaewsongkram J, Sereemaspun A, Chirachanchai S. Chitosan-phenylalanine-mPEG nanoparticles: From a single step water-based conjugation to the potential allergen delivery system. Carbohydr Polym 2016; 141:41-53. [DOI: 10.1016/j.carbpol.2015.12.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 10/22/2022]
|
20
|
Optimization of carboxymethyl chitosan synthesis using response surface methodology and desirability function. Int J Biol Macromol 2016; 85:615-24. [DOI: 10.1016/j.ijbiomac.2016.01.017] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/04/2016] [Accepted: 01/04/2016] [Indexed: 12/12/2022]
|
21
|
Han Z, Zeng Y, Zhang M, Zhang Y, Zhang L. Monosaccharide compositions of sulfated chitosans obtained by analysis of nitrous acid degraded and pyrazolone-labeled products. Carbohydr Polym 2016; 136:376-83. [DOI: 10.1016/j.carbpol.2015.07.087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/26/2015] [Accepted: 07/27/2015] [Indexed: 10/23/2022]
|
22
|
Cyanoethylated Carboxymethyl Chitosan as Water Soluble Binder with Enhanced Adhesion Capability and electrochemical performances for LiFePO4 Cathode. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Gohil SV, Brittain SB, Kan HM, Drissi H, Rowe DW, Nair LS. Evaluation of enzymatically crosslinked injectable glycol chitosan hydrogel. J Mater Chem B 2015; 3:5511-5522. [PMID: 32262522 DOI: 10.1039/c5tb00663e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Enzymatically cross-linkable phenol-conjugated glycol chitosan was prepared by reacting glycol chitosan with 3-(4-hydroxyphenyl)propionic acid (HPP). The chemical modification was confirmed by FTIR, 1H-NMR and UV spectroscopy. Glycol chitosan hydrogels (HPP-GC) with or without rhBMP-2 were prepared by the oxidative coupling of the substituted phenol groups in the presence of hydrogen peroxide and horse radish peroxidase. Rheological characterization demonstrated the feasibility of developing hydrogels with varying storage moduli by changing the polymer concentration. The gel presented a microporous structure with pore sizes ranging from 50-350 μm. The good viability of encapsulated 7F2 osteoblasts indicated non-toxicity of the gelation conditions. In vitro release of rhBMP-2 in phosphate buffer solution showed ∼11% release in 360 h. The ability of the hydrogel to maintain the in vivo bioactivity of rhBMP-2 was evaluated in a bilateral critical size calvarial bone defect model in Col3.6 transgenic fluorescent reporter mice. The presence of fluorescent green osteoblast cells with overlying red alizarin complexone and yellow stain indicating osteoclast TRAP activity confirmed active cell-mediated mineralization and remodelling process at the implantation site. The complete closure of the defect site at 4 and 8 weeks post implantation demonstrated the potent osteoinductivity of the rhBMP-2 containing gel.
Collapse
Affiliation(s)
- Shalini V Gohil
- Department of Orthopaedic Surgery, UConn Health, E-7041, MC-3711, 263 Farmington Avenue, Farmington, Connecticut 06030, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Boamah PO, Huang Y, Hua M, Zhang Q, Wu J, Onumah J, Sam-Amoah LK, Boamah PO. Sorption of heavy metal ions onto carboxylate chitosan derivatives--a mini-review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 116:113-120. [PMID: 25791666 DOI: 10.1016/j.ecoenv.2015.01.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
Chitosan is of importance for the elimination of heavy metals due to their outstanding characteristics such as the presence of NH2 and -OH functional groups, non-toxicity, low cost and, large available quantities. Modifying a chitosan structure with -COOH group improves it in terms of solubility at pH ≤7 without affecting the aforementioned characteristics. Chitosan modified with a carboxylic group possess carboxyl, amino and hydroxyl multifunctional groups which are good for elimination of metal ions. The focal point of this mini-review will be on the preparation and characterization of some carboxylate chitosan derivatives as a sorbent for heavy metal sorption.
Collapse
Affiliation(s)
- Peter Osei Boamah
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Ecological Agriculture, Bolgatanga Polytechnic, P.O. Box 767, Bolgatanga, Ghana
| | - Yan Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mingqing Hua
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Hainan Provincial Key Lab of Fine Chemistry, Hainan University, Haikou 570228, China.
| | - Jingbo Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jacqueline Onumah
- Department of Ecological Agriculture, Bolgatanga Polytechnic, P.O. Box 767, Bolgatanga, Ghana
| | | | - Paul Osei Boamah
- Geology Department, MMG, Golden Grove, PMB 7 Geraldton, WA, Australia
| |
Collapse
|
25
|
Liu Y, Zou C, Yan X, Xiao R, Wang T, Li M. β-Cyclodextrin Modified Natural Chitosan as a Green Inhibitor for Carbon Steel in Acid Solutions. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b00930] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuan Liu
- College of Chemistry and
Chemical Engineering, Southwest Petroleum University, No. 8 Xindu
Road, Chengdu, 610500, P. R. China
| | - Changjun Zou
- College of Chemistry and
Chemical Engineering, Southwest Petroleum University, No. 8 Xindu
Road, Chengdu, 610500, P. R. China
| | - Xueling Yan
- College of Chemistry and
Chemical Engineering, Southwest Petroleum University, No. 8 Xindu
Road, Chengdu, 610500, P. R. China
| | - Renjie Xiao
- College of Chemistry and
Chemical Engineering, Southwest Petroleum University, No. 8 Xindu
Road, Chengdu, 610500, P. R. China
| | - Taiyang Wang
- College of Chemistry and
Chemical Engineering, Southwest Petroleum University, No. 8 Xindu
Road, Chengdu, 610500, P. R. China
| | - Ming Li
- College of Chemistry and
Chemical Engineering, Southwest Petroleum University, No. 8 Xindu
Road, Chengdu, 610500, P. R. China
| |
Collapse
|
26
|
Cabral JD, Roxburgh M, Shi Z, Liu L, McConnell M, Williams G, Evans N, Hanton LR, Simpson J, Moratti SC, Robinson BH, Wormald PJ, Robinson S. Synthesis, physiochemical characterization, and biocompatibility of a chitosan/dextran-based hydrogel for postsurgical adhesion prevention. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2743-2756. [PMID: 25085242 DOI: 10.1007/s10856-014-5292-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/21/2014] [Indexed: 06/03/2023]
Abstract
An amine-functionalized succinyl chitosan and an oxidized dextran were synthesized and mixed in aqueous solution to form an in situ chitosan/dextran injectable, surgical hydrogel for adhesion prevention. Rheological characterization showed that the rate of gelation and moduli were tunable based on amine and aldehyde levels, as well as polymer concentrations. The CD hydrogels have been shown to be effective post-operative aids in prevention of adhesions in ear, nose, and throat surgeries and abdominal surgeries in vivo. In vitro biocompatibility testing was performed on CD hydrogels containing one of two oxidized dextrans, an 80 % oxidized (CD-100) or 25 % (CD-25) oxidized dextran. However, the CD-100 hydrogel showed moderate cytotoxicity in vitro to Vero cells. SC component of the CD hydrogel, however, showed no cytotoxic effect. In order to increase the biocompatibility of the hydrogel, a lower aldehyde level hydrogel was developed. CD-25 was found to be non-cytotoxic to L929 fibroblasts. The in vivo pro-inflammatory response of the CD-25 hydrogel, after intraperitoneal injection in BALB/c mice, was also determined by measuring serum TNF-α levels and by histological analysis of tissues. TNF-α levels were similar in mice injected with CD-25 hydrogel as compared to the negative saline injected control; and were significantly different (P < 0.05) as compared to the positive, lipopolysaccharide, injected control. Histological examination revealed no inflammation seen in CD hydrogel injected mice. The results of these in vitro and in vivo studies demonstrate the biocompatibility of the CD hydrogel as a post-operative aid for adhesion prevention.
Collapse
Affiliation(s)
- Jaydee D Cabral
- Department of Chemistry, University of Otago, Dunedin, 9054, New Zealand,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yang Y, Wang S, Wang Y, Wang X, Wang Q, Chen M. Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol Adv 2014; 32:1301-1316. [PMID: 25109677 DOI: 10.1016/j.biotechadv.2014.07.007] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/24/2014] [Accepted: 07/30/2014] [Indexed: 02/06/2023]
Abstract
Nanomaterials based on chitosan have emerged as promising carriers of therapeutic agents for drug delivery due to good biocompatibility, biodegradability, and low toxicity. Chitosan originated nanocarriers have been prepared by mini-emulsion, chemical or ionic gelation, coacervation/precipitation, and spray-drying methods. As alternatives to these traditional fabrication methods, self-assembled chitosan nanomaterials show significant advantages and have received growing scientific attention in recent years. Self-assembly is a spontaneous process by which organized structures with particular functions and properties could be obtained without additional complicated processing or modification steps. In this review, we focus on recent progress in the design, fabrication and physicochemical aspects of chitosan-based self-assembled nanomaterials. Their applications in drug delivery of different therapeutic agents are also discussed in details.
Collapse
Affiliation(s)
- Yu Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Xiaohui Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
28
|
Kim JJ, Nam JP, Nah JW, Jang MK, Yee ST. Immunoadjuvant Efficacy of N-Carboxymethyl Chitosan for Vaccination via Dendritic Cell Activation. J Med Food 2014; 17:268-77. [DOI: 10.1089/jmf.2013.2921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jong-Jin Kim
- Department of Biology, Sunchon National University, Suncheon, Korea
| | - Joung-Pyo Nam
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon, Korea
| | - Jae-Woon Nah
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon, Korea
| | - Mi-Kyeong Jang
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon, Korea
| | - Sung-Tae Yee
- Department of Biology, Sunchon National University, Suncheon, Korea
- Department of Pharmacy, Sunchon National University, Suncheon, Korea
| |
Collapse
|
29
|
Jimtaisong A, Saewan N. Utilization of carboxymethyl chitosan in cosmetics. Int J Cosmet Sci 2013; 36:12-21. [PMID: 24152381 DOI: 10.1111/ics.12102] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/15/2013] [Indexed: 11/29/2022]
Abstract
Carboxymethyl chitosan is a chitosan derivative of the most intensively investigated due to its water solubility in wider pH range compared with the parent compound, thus extended its use in various applications. In this review, different preparation conditions, which resulting in the N- and O-carboxylated chitosan, diverse degree of substitution and water solubility are recapitulated. Five important features of carboxymethyl chitosan from recent studies, which are moisture absorption-retention, anti-microbial properties, antioxidant capacities, delivery system and emulsion stabilization, have been centred and emphasized for cosmetic utilization. Additionally, cytotoxicity information has been inclusively incorporated to ensure its safety in application.
Collapse
Affiliation(s)
- A Jimtaisong
- School of Cosmetic Science, Mae Fah Luang University, Muang, Chiangrai, 57100, Thailand
| | - N Saewan
- School of Cosmetic Science, Mae Fah Luang University, Muang, Chiangrai, 57100, Thailand
| |
Collapse
|
30
|
Sun X, Li F, Shen G, Huang J, Wang X. Aptasensor based on the synergistic contributions of chitosan-gold nanoparticles, graphene-gold nanoparticles and multi-walled carbon nanotubes-cobalt phthalocyanine nanocomposites for kanamycin detection. Analyst 2013; 139:299-308. [PMID: 24256770 DOI: 10.1039/c3an01840g] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An electrochemical aptasensor was developed for the detection of kanamycin based on the synergistic contributions of chitosan-gold nanoparticles (CS-AuNPs), graphene-gold nanoparticles (GR-AuNPs) and multi-walled carbon nanotubes-cobalt phthalocyanine (MWCNTs-CoPc) nanocomposites. The aptasensor was prepared by sequentially dripping CS-AuNPs, GR-AuNPs and MWCNTs-CoPc nanocomposites onto a gold electrode (GE) surface. During the above process, these nanomaterials showed a remarkable synergistic effect towards the aptasensor. CS-AuNPs, GR-AuNPs and MWCNTs-CoPc as the nanocomposites mediator improved electron relay during the entire electron transfer process and the aptasensor response speed. The electrochemical properties of the modified processes were characterized by cyclic voltammetry (CV). The morphologies of the nanocomposites were characterized by scanning electron microscopy (SEM). The experimental conditions such as the concentration of the aptamer, the time, temperature and the pH were optimized. Based on the synergistic contributions of CS-AuNPs, GR-AuNPs and MWCNTs-CoPc nanocomposites, the proposed aptasensor displayed high sensitivity, high specificity, a low detection limit (5.8 × 10(-9) M) (S/N = 3) and excellent stability. It was successfully applied to the detection of kanamycin in real milk spiked samples.
Collapse
Affiliation(s)
- Xia Sun
- School of Agriculture and Food Engineering, Shandong University of Technology, Zibo 255049, P.R. China.
| | | | | | | | | |
Collapse
|
31
|
Joshi N, Saha R, Shanmugam T, Balakrishnan B, More P, Banerjee R. Carboxymethyl-chitosan-tethered lipid vesicles: hybrid nanoblanket for oral delivery of paclitaxel. Biomacromolecules 2013; 14:2272-82. [PMID: 23721348 DOI: 10.1021/bm400406x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe the development and evaluation of a hybrid lipopolymeric system comprising carboxymethyl chitosan (CMC), covalently tethered to phosphatidylethanolamine units on the surface of lipid nanovesicles, for oral delivery of paclitaxel. The bioploymer is intended to act as a blanket, thereby shielding the drug from harsh gastrointestinal conditions, whereas the lipid nanovesicle ensures high encapsulation efficiency of paclitaxel and its passive targeting to tumor. CMC-tethered nanovesicles (LN-C-PTX) in the size range of 200-300 nm improved the gastrointestinal resistance and mucoadhesion properties as compared with unmodified lipid nanovesicles (LN-PTX). Conjugation of CMC did not compromise the cytotoxic potential of paclitaxel yet facilitated the interaction and uptake of the nanovesicles by murine melanoma (B16F10) cells through an ATP-dependent process. CMC-conjugated nanovesicles, upon oral administration in rats, improved the plasma concentration profile of paclitaxel, with 1.5 fold increase in its bioavailability and 5.5 folds increase in elimination half life in comparison with Taxol. We also found that CMC in addition to providing a gastric resistant coating also imparted stealth character to the nanovesicles, thereby reducing their reticuloendothelial system (RES)-mediated uptake by liver and spleen and bypassing the need for PEGylation. In vivo efficacy in subcutaneous model of B16F10 showed significantly improved tumor growth inhibition and survival with CMC-tethered nanovesicles as compared with unmodified nanovesicles, both administered orally. LN-C-PTX exhibited therapeutic efficacy comparable to Taxol and Abraxane and also showed reduced toxicity and improved survival. Overall, these results suggest the therapeutic potential of CMC tethered nanovesicles as a platform for oral administration of paclitaxel and also unravel the ability of CMC to impart stealth character to the nanoparticles, thereby preventing their RES clearance.
Collapse
Affiliation(s)
- Nitin Joshi
- WRCBB, Department of Biosciences and Bioengineeering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | | | | | | | | |
Collapse
|
32
|
Mobarak N, Ahmad A, Abdullah M, Ramli N, Rahman M. Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.12.126] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Preparation of Chitosan and Water-Soluble Chitosan Microspheres via Spray-Drying Method to Lower Blood Lipids in Rats Fed with High-Fat Diets. Int J Mol Sci 2013; 14:4174-84. [PMID: 23429200 PMCID: PMC3588093 DOI: 10.3390/ijms14024174] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/30/2013] [Accepted: 02/01/2013] [Indexed: 11/25/2022] Open
Abstract
This experiment aimed to investigate the effects of the chitosan (CTS) and water-soluble chitosan (WSC) microspheres on plasma lipids in male Sprague-Dawley rats fed with high-fat diets. CTS microspheres and WSC microspheres were prepared by the spray-drying technique. Scanning electron microscopy (SEM) micrographs showed that the microspheres were nearly spherical in shape. The mean size of CTS microspheres was 4.07 μm (varying from 1.50 to 7.21 μm) and of WSC microspheres was 2.00 μm (varying from 0.85 to 3.58 μm). The rats were classified into eight groups (n = 8) and were fed with high-fat diets for two weeks to establish the hyperlipidemic condition and were then treated with CTS microspheres and WSC microspheres, CTS and WSC for four weeks. The results showed that CTS and WSC microspheres reduced blood lipids and plasma viscosity and increased the serum superoxide dismutase (SOD) levels significantly. This study is the first report of the lipid-lowering effects of CTS and WSC microspheres. CTS and WSC microspheres were found to be more effective in improving hyperlipidemia in rats than common CTS and WSC.
Collapse
|
34
|
Li R, Hu P, Ren X, Worley S, Huang T. Antimicrobial N-halamine modified chitosan films. Carbohydr Polym 2013; 92:534-9. [DOI: 10.1016/j.carbpol.2012.08.115] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 10/27/2022]
|
35
|
Ifuku S, Matsumoto C, Wada M, Morimoto M, Saimoto H. Preparation of highly regioselective amphiprotic chitosan derivative via “click chemistry”. Int J Biol Macromol 2013; 52:72-6. [DOI: 10.1016/j.ijbiomac.2012.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 07/30/2012] [Accepted: 08/13/2012] [Indexed: 11/29/2022]
|
36
|
Biomedical applications of carboxymethyl chitosans. Carbohydr Polym 2013; 91:452-66. [DOI: 10.1016/j.carbpol.2012.07.076] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/16/2012] [Accepted: 07/29/2012] [Indexed: 01/27/2023]
|
37
|
Mansur HS, Mansur AAP, Curti E, De Almeida MV. Functionalized-chitosan/quantum dot nano-hybrids for nanomedicine applications: towards biolabeling and biosorbing phosphate metabolites. J Mater Chem B 2013; 1:1696-1711. [DOI: 10.1039/c3tb00498h] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
|
39
|
Hsieh YL, Yao HT, Cheng RS, Chiang MT. Chitosan Reduces Plasma Adipocytokines and Lipid Accumulation in Liver and Adipose Tissues and Ameliorates Insulin Resistance in Diabetic Rats. J Med Food 2012; 15:453-60. [DOI: 10.1089/jmf.2011.1882] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Yu-Lin Hsieh
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Hsien-Tsung Yao
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Ron-Shan Cheng
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Meng-Tsan Chiang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
40
|
Kong X. Simultaneous determination of degree of deacetylation, degree of substitution and distribution fraction of –COONa in carboxymethyl chitosan by potentiometric titration. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.12.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
41
|
An improved complex gel of modified gellan gum and carboxymethyl chitosan for chondrocytes encapsulation. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.11.058] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Shang BB, Sha J, Liu Y, Tu Q, Man-Lin L, Wang JY. Synthesis of a new chitosan derivative and assay of Escherichia coli adsorption. J Pharm Anal 2012; 1:39-45. [PMID: 29403680 PMCID: PMC5760778 DOI: 10.1016/s2095-1779(11)70007-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 08/13/2010] [Indexed: 10/28/2022] Open
Abstract
A new chitosan derivative is prepared using chitosan. Ethyl cholorocarbonate was first introduced to the hydroxyl group of phthaloylchitosan through a nucleophilic reaction. Hydrazine was then added to recover the amino groups of chitosan, and promote cross-linking. The structure of this new chitosan derivative was characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance (1H NMR) spectroscopy, and its physical properties were determined by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The thermal and chemical stabilities of the new derivative were improved compared with those of native chitosan. Assay of Escherichia coli adhesion on a film based on this chitosan derivative showed good adsorption and biofilm formation.
Collapse
Affiliation(s)
- Bing-Bing Shang
- College of Science, Northwest Agricultural & Forestry University, Yangling, Shaanxi 712100, China
| | - Jun Sha
- College of Science, Northwest Agricultural & Forestry University, Yangling, Shaanxi 712100, China
| | - Yang Liu
- College of Science, Northwest Agricultural & Forestry University, Yangling, Shaanxi 712100, China
| | - Qin Tu
- College of Science, Northwest Agricultural & Forestry University, Yangling, Shaanxi 712100, China
| | - Li Man-Lin
- College of Science, Northwest Agricultural & Forestry University, Yangling, Shaanxi 712100, China
| | - Jin-Yi Wang
- College of Science, Northwest Agricultural & Forestry University, Yangling, Shaanxi 712100, China.,Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest Agricultural & Forestry University, Yangling, Shaanxi 712100, China
| |
Collapse
|
43
|
Soucek MD, Yi Y. Synthesis and Characterization of Water Soluble Carboxymethyl Chitosan Grafted with Glycidyl Methacrylate. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2011. [DOI: 10.1080/10601325.2011.579819] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
|
45
|
Koutroumanis KP, Avgoustakis K, Bikiaris D. Synthesis of cross-linked N-(2-carboxybenzyl)chitosan pH sensitive polyelectrolyte and its use for drug controlled delivery. Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2010.04.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Jayakumar R, Prabaharan M, Nair S, Tamura H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 2010; 28:142-50. [DOI: 10.1016/j.biotechadv.2009.11.001] [Citation(s) in RCA: 739] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 10/27/2009] [Accepted: 11/04/2009] [Indexed: 01/19/2023]
|
47
|
Shen JN, Ruan HM, Gao CJ. Preparation and characterization of CMCS/PVA blend membranes and its sorption and pervaporation performance (I). J Appl Polym Sci 2009. [DOI: 10.1002/app.30902] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
|
49
|
Liu G, Shi Z, Kuriger T, Hanton L, Simpson J, Moratti S, Robinson B, Athanasiadis T, Valentine R, Wormald P, Robinson S. Synthesis and Characterization of Chitosan/ Dextran-Based Hydrogels for Surgical Use. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/masy.200950523] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Oliveira JM, Sousa RA, Kotobuki N, Tadokoro M, Hirose M, Mano JF, Reis RL, Ohgushi H. The osteogenic differentiation of rat bone marrow stromal cells cultured with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles. Biomaterials 2009; 30:804-13. [DOI: 10.1016/j.biomaterials.2008.10.024] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 10/21/2008] [Indexed: 12/27/2022]
|