1
|
Van Poucke C, Verdegem E, Mangelinckx S, Stevens CV. Synthesis and unambiguous NMR characterization of linear and branched N-alkyl chitosan derivatives. Carbohydr Polym 2024; 337:122131. [PMID: 38710547 DOI: 10.1016/j.carbpol.2024.122131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024]
Abstract
Chitosan, sourced from abundant chitin-rich waste streams, emerges as a promising candidate in the realm of future functional materials and chemicals. While showing numerous advantageous properties, chitosan sometimes falls short of competing with today's non-renewable alternatives. Chemical derivatization, particularly through N-alkylation, proves promising in enhancing hydrophobic functionalities. This study synthesizes fifteen chitosan derivatives (degree of substitution = 2-10 %) using an improved reductive amination method. Next, selective depolymerization through acid hydrolysis reduced the chain rigidity imposed by the polymer backbone. This facilitated unambiguous structural characterization of the synthesized compounds using a combination of common NMR techniques. Two potential side reactions are identified for the first time, emphasizing the need for detailed structural information to unlock the true potential of these derivatives in future applications. HYPOTHESIS: The increase in chain mobility induced by the selective depolymerization of aliphatic N-alkyl chitosan derivatives allows for an unambiguous NMR characterization.
Collapse
Affiliation(s)
- Casper Van Poucke
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Evert Verdegem
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Sven Mangelinckx
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Christian V Stevens
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
2
|
Frey C, Arad M, Ku K, Hare R, Balagtas R, Shi Y, Moon KM, Foster LJ, Ghafourifar G. Development of automated proteomic workflows utilizing silicon-based coupling agents. J Proteomics 2024; 303:105215. [PMID: 38843981 DOI: 10.1016/j.jprot.2024.105215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Automated methods for enzyme immobilization via 4-triethoxysilylbutyraldehyde (TESB) derived silicone-based coupling agents were developed. TESB and its oxidized derivative, 4-triethoxysilylbutanoic acid (TESBA), were determined to be the most effective. The resulting immobilized enzyme particles (IEPs) displayed robustness, rapid digestion, and immobilization efficiency of 51 ± 8%. Furthermore, we automated the IEP procedure, allowing for multiple enzymes, and/or coupling agents to be fabricated at once, in a fraction of the time via an Agilent Bravo. The automated trypsin TESB and TESBA IEPs were shown to rival a classical in-gel digestion method. Moreover, pepsin IEPs favored cleavage at leucine (>50%) over aromatic and methionine residues. The IEP method was then adapted for an in-situ immobilized enzyme microreactor (IMER) fabrication. We determined that TESBA could functionalize the silica capillary's inner wall while simultaneously acting as an enzyme coupler. The IMER digestion of bovine serum albumin (BSA), mirroring IEP digestion conditions, yielded a 33-40% primary sequence coverage per LC-MS/MS analysis in as little as 15 min. Overall, our findings underscore the potential of both IEP and IMER methods, paving the way for automated analysis and a reduction in enzyme waste through reuse, thereby contributing to a more cost-effective and timely study of the proteome. SIGNIFICANCE: This research introduces 4-triethoxysilylbutyraldehyde (TESB) and its derivatives as silicon-based enzyme coupling agents and an automated liquid handling method for bottom-up proteomics (BUP) while streamlining sample preparation for high-throughput processing. Additionally, immobilized enzyme particle (IEP) fabrication and digestion within the 96-well plate allows for flexibility in protocol where different enzyme-coupler combinations can be employed simultaneously. By enabling the digestion of entire microplates and reducing manual labor, the proposed method enhances reproducibility and offers a more efficient alternative to classical in-gel techniques. Furthermore, pepsin IEPs were noted to favor cleavage at leucine residues which represents an interesting finding when compared to the literature that warrants further study. The capability of immobilized enzyme microreactors (IMER) for rapid digestion (in as little as 15 min) demonstrated the system's efficiency and potential for rapid proteomic analysis. This advancement in BUP not only improves efficiency, but also opens avenues for a fully automated, mass spectrometry-integrated proteomics workflow, promising to expedite research and discoveries in complex biological studies.
Collapse
Affiliation(s)
- Connor Frey
- Department of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M8, Canada; Faculty of Medicine, University of British Columbia, 2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Maor Arad
- Department of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M8, Canada; Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Kenneth Ku
- Department of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M8, Canada
| | - Rhien Hare
- Department of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M8, Canada; Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| | - Ronald Balagtas
- Department of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M8, Canada.
| | - Yuming Shi
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Golfam Ghafourifar
- Department of Chemistry, University of the Fraser Valley, 33844 King Road, Abbotsford, BC V2S 7M8, Canada.
| |
Collapse
|
3
|
Wang L, Qiu L, Li B, Reis RL, Kundu SC, Duan L, Xiao B, Yang X. Tissue adhesives based on chitosan for skin wound healing: Where do we stand in this era? A review. Int J Biol Macromol 2024; 258:129115. [PMID: 38163498 DOI: 10.1016/j.ijbiomac.2023.129115] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Chitosan has been commonly used as an adhesive dressing material due to its excellent biocompatibility, degradability, and renewability. Tissue adhesives are outstanding among wound dressings because they can close the wound, absorb excess tissue exudate from the wound site, provide a moist environment, and act as a carrier for loading various bioactive molecules. They have been widely used in both preclinical and clinical treatment of skin wounds. This review summarizes recent research progresses in the application of chitosan and its derivatives for tissue adhesives. We also introduce their biomedical effects on wound adhesion, contamination isolation, antibacterial, immune regulation, and wound healing, and the strategies to achieve these functions when used as wound dressings. Finally, challenges and future perspectives of chitosan-based tissue adhesives are discussed for wound healing.
Collapse
Affiliation(s)
- Lingshuang Wang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Libin Qiu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Baoyi Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco 4805-017, Guimaraes, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco 4805-017, Guimaraes, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Lian Duan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Xiao Yang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Desai N, Rana D, Salave S, Gupta R, Patel P, Karunakaran B, Sharma A, Giri J, Benival D, Kommineni N. Chitosan: A Potential Biopolymer in Drug Delivery and Biomedical Applications. Pharmaceutics 2023; 15:pharmaceutics15041313. [PMID: 37111795 PMCID: PMC10144389 DOI: 10.3390/pharmaceutics15041313] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Chitosan, a biocompatible and biodegradable polysaccharide derived from chitin, has surfaced as a material of promise for drug delivery and biomedical applications. Different chitin and chitosan extraction techniques can produce materials with unique properties, which can be further modified to enhance their bioactivities. Chitosan-based drug delivery systems have been developed for various routes of administration, including oral, ophthalmic, transdermal, nasal, and vaginal, allowing for targeted and sustained release of drugs. Additionally, chitosan has been used in numerous biomedical applications, such as bone regeneration, cartilage tissue regeneration, cardiac tissue regeneration, corneal regeneration, periodontal tissue regeneration, and wound healing. Moreover, chitosan has also been utilized in gene delivery, bioimaging, vaccination, and cosmeceutical applications. Modified chitosan derivatives have been developed to improve their biocompatibility and enhance their properties, resulting in innovative materials with promising potentials in various biomedical applications. This article summarizes the recent findings on chitosan and its application in drug delivery and biomedical science.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Raghav Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Pranav Patel
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Bharathi Karunakaran
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Amit Sharma
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | | |
Collapse
|
5
|
Petroni S, Tagliaro I, Antonini C, D’Arienzo M, Orsini SF, Mano JF, Brancato V, Borges J, Cipolla L. Chitosan-Based Biomaterials: Insights into Chemistry, Properties, Devices, and Their Biomedical Applications. Mar Drugs 2023; 21:md21030147. [PMID: 36976196 PMCID: PMC10059909 DOI: 10.3390/md21030147] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Chitosan is a marine-origin polysaccharide obtained from the deacetylation of chitin, the main component of crustaceans’ exoskeleton, and the second most abundant in nature. Although this biopolymer has received limited attention for several decades right after its discovery, since the new millennium chitosan has emerged owing to its physicochemical, structural and biological properties, multifunctionalities and applications in several sectors. This review aims at providing an overview of chitosan properties, chemical functionalization, and the innovative biomaterials obtained thereof. Firstly, the chemical functionalization of chitosan backbone in the amino and hydroxyl groups will be addressed. Then, the review will focus on the bottom-up strategies to process a wide array of chitosan-based biomaterials. In particular, the preparation of chitosan-based hydrogels, organic–inorganic hybrids, layer-by-layer assemblies, (bio)inks and their use in the biomedical field will be covered aiming to elucidate and inspire the community to keep on exploring the unique features and properties imparted by chitosan to develop advanced biomedical devices. Given the wide body of literature that has appeared in past years, this review is far from being exhaustive. Selected works in the last 10 years will be considered.
Collapse
Affiliation(s)
- Simona Petroni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Irene Tagliaro
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | | | - Sara Fernanda Orsini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | - João F. Mano
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Virginia Brancato
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - João Borges
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (J.B.); (L.C.); Tel.: +351-234372585 (J.B.); +39-0264483460 (L.C.)
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
- Correspondence: (J.B.); (L.C.); Tel.: +351-234372585 (J.B.); +39-0264483460 (L.C.)
| |
Collapse
|
6
|
Saeedi M, Vahidi O, Moghbeli MR, Ahmadi S, Asadnia M, Akhavan O, Seidi F, Rabiee M, Saeb MR, Webster TJ, Varma RS, Sharifi E, Zarrabi A, Rabiee N. Customizing nano-chitosan for sustainable drug delivery. J Control Release 2022; 350:175-192. [PMID: 35914615 DOI: 10.1016/j.jconrel.2022.07.038] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/12/2022]
Abstract
Chitosan is a natural polymer with acceptable biocompatibility, biodegradability, and mechanical stability; hence, it has been widely appraised for drug and gene delivery applications. However, there has been no comprehensive assessment to tailor-make chitosan cross-linkers of various types and functionalities as well as complex chitosan-based semi- and full-interpenetrating networks for drug delivery systems (DDSs). Herein, various fabrication methods developed for chitosan hydrogels are deliberated, including chitosan crosslinking with and without diverse cross-linkers. Tripolyphosphate, genipin and multi-functional aldehydes, carboxylic acids, and epoxides are common cross-linkers used in developing biomedical chitosan for DDSs. Methods deployed for modifying the properties and performance of chitosan hydrogels, via their composite production (semi- and full-interpenetrating networks), are also cogitated here. In addition, recent advances in the fabrication of advanced chitosan hydrogels for drug delivery applications such as oral drug delivery, transdermal drug delivery, and cancer therapy are discussed. Lastly, thoughts on what is needed for the chitosan field to continue to grow is also debated in this comprehensive review article.
Collapse
Affiliation(s)
- Mostafa Saeedi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Narmak, P.O. Box 16846, Tehran, Iran
| | - Omid Vahidi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Narmak, P.O. Box 16846, Tehran, Iran
| | - Mohammad Reza Moghbeli
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Narmak, P.O. Box 16846, Tehran, Iran
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - Farzad Seidi
- Provincial Key Lab of Pulp and Paper Science and Technology and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mohammad Rabiee
- Biomaterial Groups, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China; School of Engineering, Saveetha University, Chennai, India; Department of Materials Engineering, UFPI, Teresina, Brazil
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea.
| |
Collapse
|
7
|
Secondary Metabolism Rearrangements in Linum usitatissimum L. after Biostimulation of Roots with COS Oligosaccharides from Fungal Cell Wall. Molecules 2022; 27:molecules27072372. [PMID: 35408773 PMCID: PMC9000297 DOI: 10.3390/molecules27072372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
In vitro culture of flax (Linum usitatissimum L.) was exposed to chitosan oligosaccharides (COS) in order to investigate the effects on the growth and secondary metabolites content in roots and shoots. COS are fragments of chitosan released from the fungal cell wall during plant–pathogen interactions. They can be perceived by the plant as pathogen-associated signals, mediating local and systemic innate immune responses. In the present study, we report a novel COS oligosaccharide fraction with a degree of polymerization (DP) range of 2–10, which was produced from fungal chitosan by a thermal degradation method and purified by an alcohol-precipitation process. COS was dissolved in hydroponic medium at two different concentrations (250 and 500 mg/L) and applied to the roots of growing flax seedlings. Our observations indicated that the growth of roots and shoots decreased markedly in COS-treated flax seedlings compared to the control. In addition, the results of a metabolomics analysis showed that COS treatment induced the accumulation of (neo)lignans locally at roots, flavones luteolin C-glycosides, and chlorogenic acid in systemic responses in the shoots of flax seedlings. These phenolic compounds have been previously reported to exhibit a strong antioxidant and antimicrobial activities. COS oligosaccharides, under the conditions applied in this study (high dose treatment with a much longer exposure time), can be used to indirectly trigger metabolic response modifications in planta, especially secondary metabolism, because during fungal pathogen attack, COS oligosaccharides are among the signals exchanged between the pathogen and host plant.
Collapse
|
8
|
Owoseni O, Su Y, Raghavan S, Bose A, John VT. Hydrophobically modified chitosan biopolymer connects halloysite nanotubes at the oil-water interface as complementary pair for stabilizing oil droplets. J Colloid Interface Sci 2022; 620:135-143. [PMID: 35421750 DOI: 10.1016/j.jcis.2022.03.142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
The integration of cationic and hydrophobic functionalities into hydrophobically modified chitosan (HMC) biopolymer facilitates complementary emulsion stabilization with negatively charged halloysite clay nanotubes (HNT). Oil-in-water emulsions with smaller droplet sizes and significantly improved interfacial resistance to droplet coalescence are obtained on complementary emulsion stabilization by HNT and HMC compared to the individual emulsifiers alone. Contact angle measurements shows that the adsorption of the cationic HMC onto the negatively charged HNT modifies the surface wettability of the nanotubes, facilitating the attachment of the nanotubes to the oil-water interface. High resolution cryo-SEM imaging reveals that free HMC chains locks the nanotubes together at the oil-water interface, creating a high barrier to droplet coalescence. The emulsion stability is an order of magnitude higher for conditions in which the aqueous HNT dispersion is stabilized by the HMC compared to conditions where the negatively charged HNT is strongly flocculated by the cationic HMC. The hydrophobic interaction between HMC chains, insertion of HMC hydrophobes into the oil phase and electrostatic interactions between HMC and HNT are proposed as key mechanisms driving the increased emulsion stability. For potential application as a dispersant system for crude oil spill treatment, the nanotubular morphology of HNT was further exploited for the encapsulation of the water-insoluble surfactant, sorbitan monooleate (Span 80). The HMC and HNT sterically strengthens the oil-water interfacial layer while release of the Span 80 surfactant from the HNT lumen lowers the oil-water interfacial tension. The concepts advanced here are relevant in the development of environmentally-benign dispersants for oil spill remediation.
Collapse
Affiliation(s)
- Olasehinde Owoseni
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, United States
| | - Yang Su
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, United States
| | - Srinivasa Raghavan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, United States
| | - Arijit Bose
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, United States
| | - Vijay T John
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, United States.
| |
Collapse
|
9
|
Silvestre J, Delattre C, Michaud P, de Baynast H. Optimization of Chitosan Properties with the Aim of a Water Resistant Adhesive Development. Polymers (Basel) 2021; 13:polym13224031. [PMID: 34833330 PMCID: PMC8622511 DOI: 10.3390/polym13224031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan is a bio-sourced polysaccharide widely used in different fields from health to wastewater treatment through food supplements. Another important use of this polymer is adhesion. Indeed, the current demand to replace non-natural and hazardous polymers by greener ones is well present in the adhesive field and open good opportunities for chitosan and its derivatives. However, chitosan is water soluble and exhibits a poor water-resistance in the field of adhesion which reduces the possibilities of its utilization within the paste field. This review focuses on exploration of different ways available to modify the chitosan and transform it into a water-resistant adhesive. The first part concerns the chitosan itself and gives important information from the discovery of chitin to the pure chitosan ready to use. The second part reviews the background information relative to adhesion theories, ideal properties of adhesives and the characteristics of chitosan as an adhesive. The last part focuses on exploration of the possible modification of chitosan to make it a water-resistant chemical adhesive.
Collapse
Affiliation(s)
- Jeanne Silvestre
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, 63000 Clermont-Ferrand, France; (J.S.); (C.D.); (P.M.)
| | - Cédric Delattre
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, 63000 Clermont-Ferrand, France; (J.S.); (C.D.); (P.M.)
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, 63000 Clermont-Ferrand, France; (J.S.); (C.D.); (P.M.)
| | - Hélène de Baynast
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, 63000 Clermont-Ferrand, France; (J.S.); (C.D.); (P.M.)
- Correspondence: ; Tel.: +33-473-405-265
| |
Collapse
|
10
|
Kaur K, Paiva SS, Caffrey D, Cavanagh BL, Murphy CM. Injectable chitosan/collagen hydrogels nano-engineered with functionalized single wall carbon nanotubes for minimally invasive applications in bone. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112340. [PMID: 34474890 DOI: 10.1016/j.msec.2021.112340] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Mechanical robustness is an essential consideration in the development of hydrogel platforms for bone regeneration, and despite significant advances in the field of injectable hydrogels, many fail in this regard. Inspired by the mechanical properties of carboxylated single wall carbon nanotubes (COOH-SWCNTs) and the biological advantages of natural polymers, COOH-SWCNTs were integrated into chitosan and collagen to formulate mechanically robust, injectable and thermoresponsive hydrogels with interconnected molecular structure for load-bearing applications. This study presents a complete characterisation of the structural and biological properties, and mechanism of gelation of these novel formulated hydrogels. Results demonstrate that β-glycerophosphate (β-GP) and temperature play important roles in attaining gelation at physiological conditions, and the integration with COOH-SWCNTs significantly changed the structural morphology of the hydrogels to a more porous and aligned network. This led to a crystalline structure and significantly increased the mechanical strength of the hydrogels from kPa to MPa, which is closer to the mechanical strength of the bone. Moreover, increased osteoblast proliferation and rapid adsorption of hydroxyapatite on the surface of the hydrogels indicates increased bioactivity with addition of COOH-SWCNTs. Therefore, these nano-engineered hydrogels are expected to have wide utility in the area of bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Kulwinder Kaur
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland
| | - Silvia Sa' Paiva
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland
| | - David Caffrey
- School of Physics and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, D02 PN40, Ireland
| | - Brenton L Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin D02YN77, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin D02YN7, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
11
|
Akopova TA, Demina TS, Khavpachev MA, Popyrina TN, Grachev AV, Ivanov PL, Zelenetskii AN. Hydrophobic Modification of Chitosan via Reactive Solvent-Free Extrusion. Polymers (Basel) 2021; 13:2807. [PMID: 34451348 PMCID: PMC8399264 DOI: 10.3390/polym13162807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/31/2023] Open
Abstract
Hydrophobic derivatives of polysaccharides possess an amphiphilic behavior and are widely used as rheological modifiers, selective sorbents, and stabilizers for compositions intended for various applications. In this work, we studied the mechanochemical reactions of chitosan alkylation when interacting with docosylglycidyl and hexadecylglycidyl ethers in the absence of solvents at shear deformation in a pilot twin-screw extruder. The chemical structure and physical properties of the obtained derivatives were characterized by elemental analysis, FT-IR spectroscopy, dynamic light scattering, scanning electron microscopy, and mechanical tests. According to calculations for products soluble in aqueous media, it was possible to introduce about 5-12 hydrophobic fragments per chitosan macromolecule with a degree of polymerization of 500-2000. The length of the carbon chain of the alkyl substituent significantly affects its reactivity under the chosen conditions of mechanochemical synthesis. It was shown that modification disturbs the packing ability of the macromolecules, resulting in an increase of plasticity and drop in the elastic modulus of the film made from the hydrophobically modified chitosan samples.
Collapse
Affiliation(s)
- Tatiana A. Akopova
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsoyuznaya St., 117393 Moscow, Russia; (T.S.D.); (M.A.K.); (T.N.P.); (P.L.I.); (A.N.Z.)
| | - Tatiana S. Demina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsoyuznaya St., 117393 Moscow, Russia; (T.S.D.); (M.A.K.); (T.N.P.); (P.L.I.); (A.N.Z.)
| | - Mukhamed A. Khavpachev
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsoyuznaya St., 117393 Moscow, Russia; (T.S.D.); (M.A.K.); (T.N.P.); (P.L.I.); (A.N.Z.)
| | - Tatiana N. Popyrina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsoyuznaya St., 117393 Moscow, Russia; (T.S.D.); (M.A.K.); (T.N.P.); (P.L.I.); (A.N.Z.)
| | - Andrey V. Grachev
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina St., 119991 Moscow, Russia;
| | - Pavel L. Ivanov
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsoyuznaya St., 117393 Moscow, Russia; (T.S.D.); (M.A.K.); (T.N.P.); (P.L.I.); (A.N.Z.)
| | - Alexander N. Zelenetskii
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsoyuznaya St., 117393 Moscow, Russia; (T.S.D.); (M.A.K.); (T.N.P.); (P.L.I.); (A.N.Z.)
| |
Collapse
|
12
|
Ahmed R, Wang M, Qi Z, Hira NUA, Jiang J, Zhang H, Iqbal S, Wang J, Stuart MA, Guo X. Pickering Emulsions Based on the pH-Responsive Assembly of Food-Grade Chitosan. ACS OMEGA 2021; 6:17915-17922. [PMID: 34308026 PMCID: PMC8295998 DOI: 10.1021/acsomega.1c01490] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/07/2021] [Indexed: 05/07/2023]
Abstract
Few natural, biocompatible, and inexpensive emulsifiers are available because such emulsifiers must satisfy severe requirements, be produced synthetically rather than naturally, be nontoxic, and require minimal effort to produce. Therefore, the synthesis of food-grade and biocompatible nanoparticles as an alternative to surfactants has recently received attention in the industry. However, many previous efforts involved chemical modification of materials or the introduction of secondary cocomponents for emulsion formation. To achieve the goal of simple preparation, we consider here chitosan nanoparticles to prepare Pickering emulsions of food-grade oil through the control of pH, without further chemical modification or extra additives. A mild process can prepare nanoparticles from chitosan by simply increasing the pH from 3.0 to 6.0. The results showed that the average radius of chitosan at pH 6.0 was 170 nm, while large aggregates were formed at pH 6.5. These nanoparticles were utilized to prepare the Pickering emulsion. The average size of emulsion droplets decreased upon increasing the pH from 3.0 to 6.0. Moreover, Pickering emulsions at different oil fractions and nanoparticle concentrations were stable and showed a low creaming index for 45 days. The emulsions were stable against coalescence and flocculation and behaved rheologically as gel-like, shear-thinning fluids (G' > G″). Pickering emulsion prevents the growth of the microorganism (Staphylococcus aureus) at different pH values and chitosan concentrations. These results demonstrate that chitosan nanoparticles could be a cost-effective and biocompatible emulsifier for the food or pharmaceutical industry for encapsulation and bioactive compounds, and Pickering emulsions have promising antibacterial effects for further applications.
Collapse
Affiliation(s)
- Rizwan Ahmed
- State-Key
Laboratory of Chemical Engineering and Shanghai Key Laboratory of
Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Mingwei Wang
- State-Key
Laboratory of Chemical Engineering and Shanghai Key Laboratory of
Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhiyao Qi
- State-Key
Laboratory of Chemical Engineering and Shanghai Key Laboratory of
Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Noor ul ain Hira
- State
Key Laboratory of Advanced Polymeric Material, School of Materials
Science and Engineering, East China University
of Science and Technology, Shanghai 200237, P. R. China
| | - Jiahui Jiang
- College
of Life Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Hongsen Zhang
- College
of Life Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Shahid Iqbal
- School
of Chemical and Environmental Engineering, College of Chemistry, Chemical
Engineering and Materials Science, Soochow
University, Suzhou, Jiangsu 215123, P.
R. China
| | - Junyou Wang
- State-Key
Laboratory of Chemical Engineering and Shanghai Key Laboratory of
Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Martien Abraham
Cohen Stuart
- State-Key
Laboratory of Chemical Engineering and Shanghai Key Laboratory of
Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuhong Guo
- State-Key
Laboratory of Chemical Engineering and Shanghai Key Laboratory of
Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- International
Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Engineering
Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang 832000, P. R.
China
| |
Collapse
|
13
|
Liu L, Ma Q, Cao J, Gao Y, Han S, Liang Y, Zhang T, Song Y, Sun Y. Recent progress of graphene oxide-based multifunctional nanomaterials for cancer treatment. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00087-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
In the last decade, graphene oxide-based nanomaterials, such as graphene oxide (GO) and reduced graphene oxide (rGO), have attracted more and more attention in the field of biomedicine. Due to the versatile surface functionalization, ultra-high surface area, and excellent biocompatibility of graphene oxide-based nanomaterials, which hold better promise for potential applications than among other nanomaterials in biomedical fields including drug/gene delivery, biomolecules detection, tissue engineering, especially in cancer treatment.
Results
Here, we review the recent progress of graphene oxide-based multifunctional nanomaterials for cancer treatment. A comprehensive and in-depth depiction of unique property of graphene oxide-based multifunctional nanomaterials is first interpreted, with particular descriptions about the suitability for applying in cancer therapy. Afterward, recently emerging representative applications of graphene oxide-based multifunctional nanomaterials in antitumor therapy, including as an ideal carrier for drugs/genes, phototherapy, and bioimaging, are systematically summarized. Then, the biosafety of the graphene oxide-based multifunctional nanomaterials is reviewed.
Conclusions
Finally, the conclusions and perspectives on further advancing the graphene oxide-based multifunctional nanomaterials toward potential and versatile development for fundamental researches and nanomedicine are proposed.
Graphic abstract
Collapse
|
14
|
Clotrimazole-loaded N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan nanoparticles for topical treatment of vulvovaginal candidiasis. Acta Biomater 2021; 125:312-321. [PMID: 33639312 DOI: 10.1016/j.actbio.2021.02.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 01/15/2023]
Abstract
Vulvovaginal candidiasis (VVC) represents a considerable health burden for women. Despite the availability of a significant array of antifungal drugs and topical products, the management of the infection is not always effective, and new approaches are needed. Here, we explored cationic N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan nanoparticles (NPs) as carriers of clotrimazole (CLT) for the topical treatment of VVC. CLT-NPs with approximately 280 nm in diameter were obtained by self-assembly in water and subsequent stabilization by ionic crosslinking with tripolyphosphate. The nanosystem featured pH-independent sustained drug release up to 24 h, which affected both in vitro anti-Candida activity and cytotoxicity. The CLT-loaded nanostructured platform yielded favorable selectivity index values for a panel of standard strains and clinical isolates of Candida spp. and female genital tract cell lines (HEC-1-A, Ca Ski and HeLa), as compared to the free drug. CLT-NPs also improved in vitro drug permeability across HEC-1-A and Ca Ski cell monolayers, thus suggesting that the nanocarrier may provide higher mucosal tissue levels of the active compound. Overall, data support that CLT-NPs may be a valuable asset for the topical treatment of VVC. STATEMENT OF SIGNIFICANCE: Topical azoles such as clotrimazole (CLT) are first line antifungal drugs for the management of vulvovaginal candidiasis (VVC), but their action may be limited by issues such as toxicity and poor capacity to penetrate the genital mucosa. Herein, we report on the ability of a new cationic N-(2‑hydroxy)-propyl-3-trimethylammonium, O-dipalmitoyl chitosan derivative (DPCat35) to yield tripolyphosphate-reinforced micelle-like nanostructures that are suitable carriers for CLT. In particular, these nanosystems were able to improve the in vitro selectivity index of the drug and to provide enhanced epithelial drug permeability when tested in cell monolayer models. These data support that CLT-loaded DPCat35 nanoparticles feature favorable properties for the development of new nanomedicines for the topical management of VVC.
Collapse
|
15
|
Silva DS, Facchinatto WM, Dos Santos DM, Boni FI, Valdes TA, Leitão A, Gremião MPD, Colnago LA, Campana-Filho SP, Ribeiro SJL. N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan: Synthesis, physicochemical and biological properties. Int J Biol Macromol 2021; 178:558-568. [PMID: 33577816 DOI: 10.1016/j.ijbiomac.2021.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/14/2021] [Accepted: 02/04/2021] [Indexed: 12/18/2022]
Abstract
Two samples of N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan (DPCat) with different average degrees of quaternization named as DPCat35 (DQ¯ = 35%) and DPCat80 (DQ¯ = 80%), were successfully synthesized by reacting glycidyltrimethylammonium chloride (GTMAC) with O-palmitoyl chitosan (DPCh) derivative (DS¯ = 12%). Such amphiphilic derivatives of chitosan were fully water-soluble at 1.0 < pH < 12.0 and showed significant electrostatic stability enhancement of a self-assembly micellar nanostructure (100-320 nm) due to its positively-charged out-layer. In vitro mucoadhesive and cytotoxicity essays toward healthy fibroblast cells (Balb/C 3T3 clone A31 cell), human prostate cancer (DU145) and liver cancer (HepG2/C3A) cell lines revealed that the biological properties of DPCat derivatives were strongly dependent on DQ¯. Additionally, DPCat35 had better interactions with the biological tissue and with mucin glycoproteins at pH 7.4 as well as exhibited potential to be used on the development of drug delivery systems for prostate and liver cancer treatment.
Collapse
Affiliation(s)
- Daniella Souza Silva
- Institute of Chemistry, Sao Paulo State University, Av. Prof. Francisco Degni 55, CEP 14800-900, 237 Araraquara, SP, Brazil
| | - William Marcondes Facchinatto
- Sao Carlos Institute of Chemistry, University of Sao Paulo, Av. Trabalhador sao-carlense 400, CEP 13566-590, 780 São Carlos, SP, Brazil.
| | - Danilo Martins Dos Santos
- Brazilian Corporation for Agricultural Research, Embrapa Instrumentation, Rua XV de Novembro 1452, CEP 13560-970 São Carlos, SP, Brazil
| | - Fernanda Isadora Boni
- School of Pharmaceutical Sciences, Sao Paulo State University, Rod. Araraquara Jau Km 01 s/n, CEP 14800-903 Araraquara, SP, Brazil
| | - Talita Alvarenga Valdes
- Sao Carlos Institute of Chemistry, University of Sao Paulo, Av. Trabalhador sao-carlense 400, CEP 13566-590, 780 São Carlos, SP, Brazil
| | - Andrei Leitão
- Sao Carlos Institute of Chemistry, University of Sao Paulo, Av. Trabalhador sao-carlense 400, CEP 13566-590, 780 São Carlos, SP, Brazil
| | - Maria Palmira Daflon Gremião
- School of Pharmaceutical Sciences, Sao Paulo State University, Rod. Araraquara Jau Km 01 s/n, CEP 14800-903 Araraquara, SP, Brazil
| | - Luiz Alberto Colnago
- Brazilian Corporation for Agricultural Research, Embrapa Instrumentation, Rua XV de Novembro 1452, CEP 13560-970 São Carlos, SP, Brazil
| | - Sérgio Paulo Campana-Filho
- Sao Carlos Institute of Chemistry, University of Sao Paulo, Av. Trabalhador sao-carlense 400, CEP 13566-590, 780 São Carlos, SP, Brazil
| | - Sidney José Lima Ribeiro
- Institute of Chemistry, Sao Paulo State University, Av. Prof. Francisco Degni 55, CEP 14800-900, 237 Araraquara, SP, Brazil
| |
Collapse
|
16
|
Pourshahrestani S, Zeimaran E, Kadri NA, Mutlu N, Boccaccini AR. Polymeric Hydrogel Systems as Emerging Biomaterial Platforms to Enable Hemostasis and Wound Healing. Adv Healthc Mater 2020; 9:e2000905. [PMID: 32940025 DOI: 10.1002/adhm.202000905] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Broad interest in developing new hemostatic technologies arises from unmet needs in mitigating uncontrolled hemorrhage in emergency, surgical, and battlefield settings. Although a variety of hemostats, sealants, and adhesives are available, development of ideal hemostatic compositions that offer a range of remarkable properties including capability to effectively and immediately manage bleeding, excellent mechanical properties, biocompatibility, biodegradability, antibacterial effect, and strong tissue adhesion properties, under wet and dynamic conditions, still remains a challenge. Benefiting from tunable mechanical properties, high porosity, biocompatibility, injectability and ease of handling, polymeric hydrogels with outstanding hemostatic properties have been receiving increasing attention over the past several years. In this review, after shedding light on hemostasis and wound healing processes, the most recent progresses in hydrogel systems engineered from natural and synthetic polymers for hemostatic applications are discussed based on a comprehensive literature review. Most studies described used in vivo models with accessible and compressible wounds to assess the hemostatic performance of hydrogels. The challenges that need to be tackled to accelerate the translation of these novel hemostatic hydrogel systems to clinical practice are emphasized and future directions for research in the field are presented.
Collapse
Affiliation(s)
- Sara Pourshahrestani
- Department of Biomedical Engineering Faculty of Engineering University of Malaya Kuala Lumpur 50603 Malaysia
| | - Ehsan Zeimaran
- Department of Biomedical Engineering Faculty of Engineering University of Malaya Kuala Lumpur 50603 Malaysia
| | - Nahrizul Adib Kadri
- Department of Biomedical Engineering Faculty of Engineering University of Malaya Kuala Lumpur 50603 Malaysia
| | - Nurshen Mutlu
- FunGlass – Centre for Functional and Surface Functionalized Glass Alexander Dubcek University of Trencin Trencin 911 50 Slovakia
| | - Aldo R. Boccaccini
- Institute of Biomaterials Department of Materials Science and Engineering University of Erlangen‐Nuremberg Erlangen 91058 Germany
| |
Collapse
|
17
|
Paulin M, Miot-Sertier C, Dutilh L, Brasselet C, Delattre C, Pierre G, Dubessay P, Michaud P, Doco T, Ballestra P, Albertin W, Masneuf-Pomarède I, Moine V, Coulon J, Vallet-Courbin A, Maupeu J, Dols-Lafargue M. + Brettanomyces bruxellensis Displays Variable Susceptibility to Chitosan Treatment in Wine. Front Microbiol 2020; 11:571067. [PMID: 33013803 PMCID: PMC7498638 DOI: 10.3389/fmicb.2020.571067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/17/2020] [Indexed: 11/13/2022] Open
Abstract
Brettanomyces bruxellensis is the main spoilage microbial agent in red wines. The use of fungal chitosan has been authorized since 2009 as a curative treatment to eliminate this yeast in conventional wines and in 2018 in organic wines. As this species is known to exhibit great genetic and phenotypic diversity, we examined whether all the strains responded the same way to chitosan treatment. A collection of 53 strains of B. bruxellensis was used. In the conditions of the reference test, all were at least temporarily affected by the addition of chitosan to wine, with significant decrease of cultivable population. Some (41%) were very sensitive and no cultivable yeast was detected in wine or lees after 3 days of treatment, while others (13%) were tolerant and, after a slight drop in cultivability, resumed growth between 3 and 10 days and remained able to produce spoilage compounds. There were also many strains with intermediate behavior. The strain behavior was only partially linked to the strain genetic group. This behavior was little modulated by the physiological state of the strain or the dose of chitosan used (within the limits of the authorized doses). On the other hand, for a given strain, the sensitivity to chitosan treatment was modulated by the chitosan used and by the properties of the wine in which the treatment was carried out.
Collapse
Affiliation(s)
- Margot Paulin
- EA 4577 OEnologie, INRA, USC 1366, ISVV, Bordeaux INP, Université de Bordeaux, Bordeaux, France
| | - Cécile Miot-Sertier
- EA 4577 OEnologie, INRA, USC 1366, ISVV, Bordeaux INP, Université de Bordeaux, Bordeaux, France
| | - Lucie Dutilh
- Microflora-ADERA, EA 4577 OEnologie, ISVV, Bordeaux, France
| | - Clément Brasselet
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Cédric Delattre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, Clermont-Ferrand, France.,Institut Universitaire de France, Paris, France
| | - Guillaume Pierre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pascal Dubessay
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Philippe Michaud
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Thierry Doco
- INRA, SupAgro, UM1, UMR 1083, UMR Sciences pour l'Oenologie, Montpellier, France
| | - Patricia Ballestra
- EA 4577 OEnologie, INRA, USC 1366, ISVV, Bordeaux INP, Université de Bordeaux, Bordeaux, France
| | - Warren Albertin
- EA 4577 OEnologie, INRA, USC 1366, ISVV, Bordeaux INP, Université de Bordeaux, Bordeaux, France
| | | | | | | | | | - Julie Maupeu
- Microflora-ADERA, EA 4577 OEnologie, ISVV, Bordeaux, France
| | | |
Collapse
|
18
|
MacIntire IC, Dowling MB, Raghavan SR. How Do Amphiphilic Biopolymers Gel Blood? An Investigation Using Optical Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8357-8366. [PMID: 32678610 DOI: 10.1021/acs.langmuir.0c00409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amphiphilic biopolymers such as hydrophobically modified chitosan (hmC) have been shown to convert liquid blood into elastic gels. This interesting property could make hmC useful as a hemostatic agent in treating severe bleeding. The mechanism for blood gelling by hmC is believed to involve polymer-cell self-assembly, i.e., insertion of hydrophobic side chains from the polymer into the lipid bilayers of blood cells, thereby creating a network of cells bridged by hmC. Here, we probe the above mechanism by studying dilute mixtures of blood cells and hmC in situ using optical microscopy. Our results show that the presence of hydrophobic side chains on hmC induces significant clustering of blood cells. The extent of clustering is quantified from the images in terms of the area occupied by the 10 largest clusters. Clustering increases as the fraction of hydrophobic side chains increases; conversely, clustering is negligible in the case of the parent chitosan that lacks hydrophobes. Moreover, the longer the hydrophobic side chains, the greater the clustering (i.e., C12 > C10 > C8 > C6). Clustering is negligible at low hmC concentrations but becomes substantial above a certain threshold. Finally, clustering due to hmC can be reversed by adding the supramolecule α-cyclodextrin, which is known to capture hydrophobes in its binding pocket. Overall, the results from this work are broadly consistent with the earlier mechanism, albeit with a few modifications.
Collapse
Affiliation(s)
- Ian C MacIntire
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Matthew B Dowling
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Srinivasa R Raghavan
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
19
|
Matsumura K, Hatakeyama S, Naka T, Ueda H, Rajan R, Tanaka D, Hyon SH. Molecular Design of Polyampholytes for Vitrification-Induced Preservation of Three-Dimensional Cell Constructs without Using Liquid Nitrogen. Biomacromolecules 2020; 21:3017-3025. [PMID: 32659086 DOI: 10.1021/acs.biomac.0c00293] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Current slow-freezing methods are too inefficient for cryopreservation of three-dimensional (3D) tissue constructs. Additionally, conventional vitrification methods use liquid nitrogen, which is inconvenient and increases the chance of cross-contamination. Herein, we have developed polyampholytes with various degrees of hydrophobicity and showed that they could successfully vitrify cell constructs including spheroids and cell monolayers without using liquid nitrogen. The polyampholytes prevented ice crystallization during both cooling and warming, demonstrating their potential to prevent freezing-induced damage. Monolayers and spheroids vitrified in the presence of polyampholytes yielded high viabilities post-thawing with monolayers vitrified with PLL-DMGA exhibiting more than 90% viability. Moreover, spheroids vitrified in the presence of polyampholytes retained their fusibilities, thus revealing the propensity of these polyampholytes to stabilize 3D cell constructs. This study is expected to open new avenues for the development of off-the-shelf tissue engineering constructs that can be prepared and preserved until needed.
Collapse
Affiliation(s)
- Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Sho Hatakeyama
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Toshiaki Naka
- Shibuya Corporation, Ko-58 Mameda-Honmachi, Kanazawa, Ishikawa, 920-8681, Japan
| | - Hiroshi Ueda
- Shibuya Corporation, Ko-58 Mameda-Honmachi, Kanazawa, Ishikawa, 920-8681, Japan
| | - Robin Rajan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Daisuke Tanaka
- Genetic Resources Center, National Agriculture and Food Research Organization, 212, Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Suong-Hyu Hyon
- The Joint Graduate School of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan
| |
Collapse
|
20
|
Kumar R, Sirvi A, Kaur S, Samal SK, Roy S, Sangamwar AT. Polymeric micelles based on amphiphilic oleic acid modified carboxymethyl chitosan for oral drug delivery of bcs class iv compound: Intestinal permeability and pharmacokinetic evaluation. Eur J Pharm Sci 2020; 153:105466. [PMID: 32673792 DOI: 10.1016/j.ejps.2020.105466] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 10/23/2022]
Abstract
Chemical modification of chitosan derivatives with hydrophobic fatty acids to enhance their self-aggregation behavior is well established. Previously our group reported low molecular weight carboxymethyl chitosan (CMCS) which showed enhancement in apparent permeability of hydrophobic drug, tamoxifen. Further extension to this work, herein we synthesize a new polymer of oleic acid grafted low molecular weight carboxymethyl chitosan (OA-CMCS) for maneuvering biopharmaceutical performance of poorly water soluble drugs. This polymer was designed and synthesized via amidation reaction and well characterized by analytical tools like 1H-NMR and FT-IR spectroscopy. OA-CMCS conjugate easily self-organized into micelles like structure in an aqueous medium and showed a low critical micellar concentration of 1 µg/mL. Poorly water-soluble drug, docetaxel (DTX) was used as a model drug in this study. Optimization of variables resulted in the formation of spherical DTX loaded OA-CMCS micelles in the size range of 213.4 ± 9.6 nm with an entrapment efficiency of 57.26 ± 1.25%. DTX loaded OA-CMCS micelles showed slow and sustained DTX release behavior in simulated body fluid during in vitro release study. The permeability of DTX loaded OA-CMCS micelles across the gastrointestinal tract were investigated by in vitro Caco-2 cells model. The apparent permeability of DTX loaded OA-CMCS micelles improved up to 6.57-fold in comparison to free DTX suspension which indicates the increase in paracellular absorption of DTX. Additionally, in vivo pharmacokinetic study demonstrates an increase in Cmax (1.97-fold) and AUC (2.62-fold) for DTX loaded OA-CMCS micelles compared to free DTX suspension. Hence, we propose OA-CMCS as a promising cargo to incorporate drugs for enhancement of biopharmaceutical performance.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab 160062, India
| | - Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab 160062, India
| | - Shamandeep Kaur
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab 160062, India
| | - Sanjaya K Samal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab 160062, India
| | - Sabyasachi Roy
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab 160062, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab 160062, India.
| |
Collapse
|
21
|
Karam TK, Ortega S, Ueda Nakamura T, Auzély-Velty R, Nakamura CV. Development of chitosan nanocapsules containing essential oil of Matricaria chamomilla L. for the treatment of cutaneous leishmaniasis. Int J Biol Macromol 2020; 162:199-208. [PMID: 32565304 DOI: 10.1016/j.ijbiomac.2020.06.149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022]
Abstract
Matricaria chamomilla L. has been used for centuries in many applications, including antiparasitic activity. Leishmaniasis is a parasitic disease, with limited treatments, due to high cost and toxicity. Thus, there is a need to develop new treatments, and in this context, natural products are targets of these researches. We report the development of chitosan nanocapsules containing essential oil of M. chamomilla (CEO) from oil-in-water emulsions using chitosan modified with tetradecyl chains as biocompatible shell material. The nanocapsules of CEO (NCEO) were analyzed by optical microscopy and dynamic light scattering, which revealed spherical shape and an average size of 800 nm. Successful encapsulation of CEO was further confirmed by fluorescence microscopy observations taking advantage of the autofluorescence properties of CEO. The encapsulation efficiency was around 90%. The entrapment of CEO reduced its cytotoxicity towards normal cells. On the other hand, the CEO was active against promastigotes and intracellular amastigotes, exhibiting IC50 of 3.33 μg/mL and 14.56 μg/mL, respectively, while NCEO showed IC50 for promastigotes of 7.18 μg/mL and for intracellular amastigotes of 14.29 μg/mL. These results demonstrate that encapsulation of CEO in nanocapsules using an alkylated chitosan biosurfactant as a "green" stabilizer is a promising therapeutic strategy to treat leishmaniasis.
Collapse
Affiliation(s)
- Thaysa Ksiaskiewcz Karam
- State University of Maringá, Laboratory of Microbiology Applied to Natural and Synthetic Products, Department of Pharmaceutical Sciences, Maringá, Brazil
| | - Sonia Ortega
- University Grenoble Alpes, Centre de Recherche de Macromolecules Végetales, CERMAV - CNRS, Grenoble, France
| | - Tania Ueda Nakamura
- State University of Maringá, Laboratory of Microbiology Applied to Natural and Synthetic Products, Department of Pharmaceutical Sciences, Maringá, Brazil
| | - Rachel Auzély-Velty
- University Grenoble Alpes, Centre de Recherche de Macromolecules Végetales, CERMAV - CNRS, Grenoble, France.
| | - Celso Vataru Nakamura
- State University of Maringá, Laboratory of Microbiology Applied to Natural and Synthetic Products, Department of Pharmaceutical Sciences, Maringá, Brazil.
| |
Collapse
|
22
|
Du X, Liu Y, Yan H, Rafique M, Li S, Shan X, Wu L, Qiao M, Kong D, Wang L. Anti-Infective and Pro-Coagulant Chitosan-Based Hydrogel Tissue Adhesive for Sutureless Wound Closure. Biomacromolecules 2020; 21:1243-1253. [PMID: 32045224 DOI: 10.1021/acs.biomac.9b01707] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multifunctional tissue adhesives with excellent adhesion, antibleeding, anti-infection, and wound healing properties are desperately needed in clinical surgery. However, the successful development of multifunctional tissue adhesives that simultaneously possess all these properties remains a challenge. We have prepared a novel chitosan-based hydrogel adhesive by integration of hydrocaffeic acid-modified chitosan (CS-HA) with hydrophobically modified chitosan lactate (hmCS lactate) and characterized its gelation time, mechanical properties, and microstructure. Tissue adhesion properties were evaluated using both pigskin and intestine models. In situ antibleeding efficacy was demonstrated via the rat hemorrhaging liver and full-thickness wound closure models. Good antibacterial activity and anti-infection capability toward S. aureus and P. aeruginosa were confirmed using in vitro contact-killing assays and an infected pigskin model. The result of coculturing with 3T3 fibroblast cells indicated that the hydrogels have no significant cytotoxicity. Most importantly, the biocompatible and biodegradable CS-HA/hmCS lactate hydrogel was able to close the wound in a sutureless way and promote wound healing. Our results demonstrate that this hydrogel has great promise for sutureless closure of surgical incisions.
Collapse
Affiliation(s)
- Xinchen Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Yujie Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Hongyu Yan
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Muhammad Rafique
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Shilin Li
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Xilu Shan
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Le Wu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Mingqiang Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Lianyong Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
23
|
Li S, Zhang F, Yu Y, Zhang Q. A dermatan sulfate-functionalized biomimetic nanocarrier for melanoma targeted chemotherapy. Carbohydr Polym 2020; 235:115983. [PMID: 32122513 DOI: 10.1016/j.carbpol.2020.115983] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Melanoma is a malignant tumor of melanocytes that is a serious threat to human health. Dermatan sulfate (DS) is a natural glycosaminoglycan. Inspired by the origin of DS, we report a DS-functionalized biomimetic chitosan nanocarrier (DCNP) for melanoma targeted chemotherapy. DS can anchor to the surface of the chitosan nanocarrier (CNP) by forming amide bond. The SN38/DCNP can rapidly release the anti-tumor drug under acidic conditions. The functionalization of DS not only promoted the specific uptake behavior of melanoma cells, but also up-regulated cleaved caspase-3 and PARP promote tumor cell apoptosis. In vivo model, DCNP reduced the non-specific distribution of SN38 in the circulation and other tissues, while shows superior tumor targeting ability. SN38/DCNP significantly inhibit tumor growth and improved the survival rate. Moreover, SN38/DCNP has a milder myelosuppressive effect. The above results indicated that DS could be used as an excellent targeting unit for the treatment of melanoma.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Pharmaceutical Engineering, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Fuzhong Zhang
- Chengdu Institute of Chinese Herbal Medicine, Chengdu 610000, China
| | - Yang Yu
- Department of Pharmaceutical Engineering, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qixiong Zhang
- Department of Pharmaceutics, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
24
|
Gelation in solutions of low deacetylated chitosan initiated by high shear stresses. Int J Biol Macromol 2019; 139:550-557. [DOI: 10.1016/j.ijbiomac.2019.07.164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/10/2019] [Accepted: 07/25/2019] [Indexed: 01/14/2023]
|
25
|
Alves ACRS, Lima AMF, Tiera MJ, Aparecida de Oliveira Tiera V. Biopolymeric Films of Amphiphilic Derivatives of Chitosan: A Physicochemical Characterization and Antifungal Study. Int J Mol Sci 2019; 20:ijms20174173. [PMID: 31454961 PMCID: PMC6747211 DOI: 10.3390/ijms20174173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 01/29/2023] Open
Abstract
The chemical modification of chitosan has been an active subject of research in order to improve the physicochemical and antifungal properties of chitosan-based films. The aim of this study was to evaluate the physiochemical and antifungal properties of films prepared with chitosan and its derivatives containing diethylaminoethyl (DEAE) and dodecyl groups (Dod). Chitosans and selected derivatives were synthesized and characterized, and their films blended with glycerol and sorbitol (5%, 10%, and 20%). They were studied by means of the evaluation of their mechanical, thermal, barrier, and antifungal properties. The collected data showed that molecular weight (Mw), degree of acetylation, and grafting with DEAE and Dod groups greatly affected the mechanical, thickness, color, and barrier properties, all of which could be tailored by the plasticizer percentage. The antifungal study against Aspergillus flavus, Alternaria alternata, Alternaria solani, and Penicillium expansum showed that the films containing DEAE and Dod groups exhibited higher antifungal activity than the non-modified chitosans. The mechanical properties of highly soluble films were improved by the plasticizers at percentages of 5% and 10%, indicating these derivatives as potential candidates for the coating of seeds, nuts and fruits of various crops.
Collapse
Affiliation(s)
- Anna Carolina Rodrigues Santos Alves
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil
| | - Aline Margarete Furuyama Lima
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil
| | - Marcio José Tiera
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil
| | - Vera Aparecida de Oliveira Tiera
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil.
| |
Collapse
|
26
|
Chitosan Nanocomposite Coatings for Food, Paints, and Water Treatment Applications. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9122409] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Worldwide, millions of tons of crustaceans are produced every year and consumed as protein-rich seafood. However, the shells of the crustaceans and other non-edible parts constituting about half of the body mass are usually discarded as waste. These discarded crustacean shells are a prominent source of polysaccharide (chitin) and protein. Chitosan is a de-acetylated form of chitin obtained from the crustacean waste that has attracted attention for applications in food, biomedical, and paint industries due to its characteristic properties, like solubility in weak acids, film-forming ability, pH-sensitivity, biodegradability, and biocompatibility. We present an overview of the application of chitosan in composite coatings for applications in food, paint, and water treatment. In the context of food industries, the main focus is on fabrication and application of chitosan-based composite films and coatings for prolonging the post-harvest life of fruits and vegetables, whereas anti-corrosion and self-healing properties are the main properties considered for antifouling applications in paints in this review.
Collapse
|
27
|
Alkyl-Chitosan-Based Adhesive: Water Resistance Improvement. Molecules 2019; 24:molecules24101987. [PMID: 31126129 PMCID: PMC6572013 DOI: 10.3390/molecules24101987] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 11/17/2022] Open
Abstract
A chemical modification by grafting alkyl chains using an octanal (C8) on chitosan was conducted with the aim to improve its water resistance for bonding applications. The chemical structure of the modified polymers was determined by NMR analyses revealing two alkylation degrees (10 and 15%). In this study, the flow properties of alkyl-chitosans were also evaluated. An increase in the viscosity was observed in alkyl-chitosan solutions compared with solutions of the same concentration based on native chitosan. Moreover, the evaluation of the adhesive strength (bond strength and shear stress) of both native and alkyl-chitosans was performed on two different double-lap adherends (aluminum and wood). Alkyl-chitosans (10 and 15%) maintain sufficient adhesive properties on wood and exhibit better water resistance compared to native chitosan.
Collapse
|
28
|
Modification of Chitosan for the Generation of Functional Derivatives. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071321] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Today, chitosan (CS) is probably considered as a biofunctional polysaccharide with the most notable growth and potential for applications in various fields. The progress in chitin chemistry and the need to replace additives and non-natural polymers with functional natural-based polymers have opened many new opportunities for CS and its derivatives. Thanks to the specific reactive groups of CS and easy chemical modifications, a wide range of physico-chemical and biological properties can be obtained from this ubiquitous polysaccharide that is composed of β-(1,4)-2-acetamido-2-deoxy-d-glucose repeating units. This review is presented to share insights into multiple native/modified CSs and chitooligosaccharides (COS) associated with their functional properties. An overview will be given on bioadhesive applications, antimicrobial activities, adsorption, and chelation in the wine industry, as well as developments in medical fields or biodegradability.
Collapse
|
29
|
Facchinatto WM, Fiamingo A, dos Santos DM, Campana-Filho SP. Characterization and physical-chemistry of methoxypoly(ethylene glycol)-g-chitosan. Int J Biol Macromol 2019; 124:828-837. [DOI: 10.1016/j.ijbiomac.2018.11.246] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
|
30
|
Vidal RRL, Desbrières J, Borsali R, Guibal E. Oil removal from crude oil-in-saline water emulsions using chitosan as biosorbent. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1575879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Rosangela Regia Lima Vidal
- Departamento de Físico-Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Instituto de Química, Bahia, Brazil
| | - Jacques Desbrières
- Institut des sciences analytiques et de physico-chimie pour l’environnement et les matériaux (IPREM), University of Pau and Pays l’Adour, Pau, France
| | - Redouane Borsali
- CERMAV, Univ. Grenoble Alpes, Grenoble, France
- Centre de Recherches sur les Macromolécules Végétales (CERMAV), CNRS, Université Grenoble Alpes, Grenoble, France
| | - Eric Guibal
- Centre des Matériaux des Mines d’Alès (C2MA/MPA), École des Mines d’Alès, France
| |
Collapse
|
31
|
Ilic IK, Meurer M, Chaleawlert-umpon S, Antonietti M, Liedel C. Vanillin decorated chitosan as electrode material for sustainable energy storage. RSC Adv 2019; 9:4591-4598. [PMID: 35520200 PMCID: PMC9060616 DOI: 10.1039/c9ra00140a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/30/2019] [Indexed: 11/26/2022] Open
Abstract
Energy storage materials made from bioresources are crucial to fulfil the need for truly sustainable energy storage. In this work, vanillin, being a lignin-derived molecule, is coupled to chitosan, a biobased polymer backbone, and used as a redox active electrode material. The structure of those electrodes is highly defined, leading to better product security than in lignin based electrodes, which have been presented as sustainable electrodes in the past. With over 60% of saccharide units in chitosan functionalised by vanillin, the concentration of redox functionalities in the copolymer is significantly higher than in lignin materials. Composites with carbon black require no further binders or additives to be used as electrode material and show reversible charge storage up to 80 mA h g−1 (respective to the total electrode material) and good stability. Consequently, these electrodes are amongst the best performing electrodes made from regrown organic matter. To replace dangerous and rare components in battery electrodes, more sustainable energy storage materials made from biowaste and wood-based vanillin are presented.![]()
Collapse
Affiliation(s)
- Ivan K. Ilic
- Department of Colloid Chemistry
- Max Planck Institute of Colloids and Interfaces
- Research Campus Golm
- 14476 Potsdam
- Germany
| | - Maren Meurer
- Department of Colloid Chemistry
- Max Planck Institute of Colloids and Interfaces
- Research Campus Golm
- 14476 Potsdam
- Germany
| | - Saowaluk Chaleawlert-umpon
- Department of Colloid Chemistry
- Max Planck Institute of Colloids and Interfaces
- Research Campus Golm
- 14476 Potsdam
- Germany
| | - Markus Antonietti
- Department of Colloid Chemistry
- Max Planck Institute of Colloids and Interfaces
- Research Campus Golm
- 14476 Potsdam
- Germany
| | - Clemens Liedel
- Department of Colloid Chemistry
- Max Planck Institute of Colloids and Interfaces
- Research Campus Golm
- 14476 Potsdam
- Germany
| |
Collapse
|
32
|
Zuñiga A, Forte Nerán R, Albertengo L, Rodríguez MS. Synthesis, characterization and evaluation of reactional parameters on substitution degree of N-hexyl-N-methylene phosphonic chitosan. Carbohydr Polym 2018; 202:1-10. [DOI: 10.1016/j.carbpol.2018.08.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 11/15/2022]
|
33
|
Rheological behavior of hybrid suspensions of chitin nanorods and siloxane oligomers. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Dias AM, dos Santos Cabrera MP, Lima AMF, Taboga SR, Vilamaior PSL, Tiera MJ, de Oliveira Tiera VA. Insights on the antifungal activity of amphiphilic derivatives of diethylaminoethyl chitosan against Aspergillus flavus. Carbohydr Polym 2018; 196:433-444. [DOI: 10.1016/j.carbpol.2018.05.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 11/29/2022]
|
35
|
Ouerghemmi S, Dimassi S, Tabary N, Leclercq L, Degoutin S, Chai F, Pierlot C, Cazaux F, Ung A, Staelens JN, Blanchemain N, Martel B. Synthesis and characterization of polyampholytic aryl-sulfonated chitosans and their in vitro anticoagulant activity. Carbohydr Polym 2018; 196:8-17. [DOI: 10.1016/j.carbpol.2018.05.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/20/2018] [Accepted: 05/07/2018] [Indexed: 10/17/2022]
|
36
|
Mizuta R, Taguchi T. Hemostatic properties of in situ gels composed of hydrophobically modified biopolymers. J Biomater Appl 2018; 33:315-323. [DOI: 10.1177/0885328218790313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hemorrhaging often occurs during cardiac surgery, and postoperative bleeding is associated with medical complications or even death. Medical complications resulting from hemorrhaging can lead to longer hospital stays, thus increasing costs. Hemostatic agents are the main treatment for bleeding. In the present study, hemostatic agents composed of aldehyde groups and hydrophobically modified with hyaluronic acid (ald-hm-HyA) and hydrophobically modified gelatin (hm-ApGltn) were developed and their hemostatic effects were evaluated. These modified hemostatic agents formed more stable blood clots compared with the nonhydrophobically modified HyA-based hemostatic agent. The bulk strength of the whole blood clot using the aldehyde and stearoyl group-modified hyaluronic acid (ald-C18-HyA)/hm-ApGltn-based hemostatic agent was higher than that of the aldehyde group only modified HyA (ald-HyA)/hm-ApGltn-based hemostatic agent. Rheological experiments using α-cyclodextrin showed that hydrophobic modification of HyA with C18 groups effectively enhanced anchoring to the red blood cell surface. Therefore, the ald-hm-HyA/hm-ApGltn-based hemostatic agent has potential applications in cardiac surgery.
Collapse
Affiliation(s)
- Ryo Mizuta
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Tetsushi Taguchi
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
37
|
Liang S, Sun Y, Dai X. A Review of the Preparation, Analysis and Biological Functions of Chitooligosaccharide. Int J Mol Sci 2018; 19:ijms19082197. [PMID: 30060500 PMCID: PMC6121578 DOI: 10.3390/ijms19082197] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022] Open
Abstract
Chitooligosaccharide (COS), which is acknowledged for possessing multiple functions, is a kind of low-molecular-weight polymer prepared by degrading chitosan via enzymatic, chemical methods, etc. COS has comprehensive applications in various fields including food, agriculture, pharmacy, clinical therapy, and environmental industries. Besides having excellent properties such as biodegradability, biocompatibility, adsorptive abilities and non-toxicity like chitin and chitosan, COS has better solubility. In addition, COS has strong biological functions including anti-inflammatory, antitumor, immunomodulatory, neuroprotective effects, etc. The present paper has summarized the preparation methods, analytical techniques and biological functions to provide an overall understanding of the application of COS.
Collapse
Affiliation(s)
- Shuang Liang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China.
| | - Yaxuan Sun
- Department of Food Sciences, College of Biochemical Engineering, Beijing Union University, Beijing 100023, China.
| | - Xueling Dai
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China.
| |
Collapse
|
38
|
Zhao S, Malfait WJ, Guerrero-Alburquerque N, Koebel MM, Nyström G. Biopolymer-Aerogele und -Schäume: Chemie, Eigenschaften und Anwendungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201709014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shanyu Zhao
- Building Energy Materials & Components; Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa); Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Wim J. Malfait
- Building Energy Materials & Components; Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa); Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Natalia Guerrero-Alburquerque
- Building Energy Materials & Components; Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa); Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Matthias M. Koebel
- Building Energy Materials & Components; Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa); Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Gustav Nyström
- Angewandte Holzforschung; Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa); Überlandstrasse 129 CH-8600 Dübendorf Schweiz
- Departement Gesundheitswissenschaften und Technologie; ETH Zürich; Schmelzbergstrasse 9 CH-8092 Zürich Schweiz
| |
Collapse
|
39
|
Zhao S, Malfait WJ, Guerrero-Alburquerque N, Koebel MM, Nyström G. Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angew Chem Int Ed Engl 2018; 57:7580-7608. [DOI: 10.1002/anie.201709014] [Citation(s) in RCA: 336] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Shanyu Zhao
- Building Energy Materials & Components Laboratory; Swiss Federal Laboratories for Materials Science and Technology (Empa); Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Wim J. Malfait
- Building Energy Materials & Components Laboratory; Swiss Federal Laboratories for Materials Science and Technology (Empa); Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Natalia Guerrero-Alburquerque
- Building Energy Materials & Components Laboratory; Swiss Federal Laboratories for Materials Science and Technology (Empa); Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Matthias M. Koebel
- Building Energy Materials & Components Laboratory; Swiss Federal Laboratories for Materials Science and Technology (Empa); Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Gustav Nyström
- Applied Wood Materials Laboratory; Swiss Federal Laboratories for Materials Science and Technology (Empa); Überlandstrasse 129 CH-8600 Dübendorf Switzerland
- Department of Health Science and Technology; ETH Zurich; Schmelzbergstrasse 9 CH-8092 Zürich Switzerland
| |
Collapse
|
40
|
Hattori H, Ishihara M. Development of Mucoadhesive Chitosan Derivatives for Use as Submucosal Injections. Polymers (Basel) 2018; 10:polym10040410. [PMID: 30966445 PMCID: PMC6415235 DOI: 10.3390/polym10040410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023] Open
Abstract
Endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) have been used for surgical treatment of early gastric cancer. These endoscopic techniques require proper submucosal injections beneath the tumor to provide a sufficiently high submucosal fluid cushion (SFC) to facilitate clean dissection and resection of the tumor. Until now, the submucosal injection materials developed for endoscopic techniques such as EMR and ESD of tumors have been composed of macromolecules, proteins, or polysaccharides. We have been investigating the use of chitosan, a product that is obtained by the alkaline deacetylation of chitin, the second-most abundant natural polysaccharide. Specifically, we have been studying a photocrosslinked chitosan hydrogel (PCH) and solubilized chitosan derivatives for use as novel submucosal injections for endoscopic techniques. Notably, chitosan derivatives with lactose moieties linked to the amino groups of its glucosamine units can specifically interact with acidic mucopolysaccharides and mucins in submucosa without the need for the incorporation of harmful photoreactive groups nor potentially mutagenic ultraviolet irradiation.
Collapse
Affiliation(s)
- Hidemi Hattori
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan.
| | - Masayuki Ishihara
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.
| |
Collapse
|
41
|
Kalliola S, Repo E, Srivastava V, Zhao F, Heiskanen JP, Sirviö JA, Liimatainen H, Sillanpää M. Carboxymethyl Chitosan and Its Hydrophobically Modified Derivative as pH-Switchable Emulsifiers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2800-2806. [PMID: 29406746 PMCID: PMC6150725 DOI: 10.1021/acs.langmuir.7b03959] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/09/2018] [Indexed: 05/23/2023]
Abstract
The emulsification properties of carboxymethyl chitosan (CMChi) and hydrophobically modified carboxymethyl chitosan (h-CMChi) were studied as a function of pH and dodecane/water ratio. The pH was varied between 6-10, and the oil/water ratio between 0.1-2.0. In CMChi solution, the emulsion stability increased as the pH was lowered from 10 to 7, and the phase inversion was shifted from oil/water ratio 1.0 to 1.8, respectively. The system behaved differently in pH 6 due to the aggregation of CMChi and the formation of nanoparticles (∼200-300 nm). No phase inversion was observed and the maximum amount of emulsified oil was reached at oil/water ratio 1.2. The h-CMChi showed similar behavior as a function of pH but, due to hydrophobic modification, the phase inversion was shifted to higher values in pH 7-10. In pH 6, the behavior was similar, but the maximum amount of emulsified oil was higher compared to CMChi. The amount of adsorbed particles correlated with the emulsified amount of oil. Reversible emulsification of dodecane was demonstrated by pH adjustment using CMChi and h-CMChi solutions. The formed emulsions were gel-like, suggesting particle-particle interaction.
Collapse
Affiliation(s)
- Simo Kalliola
- Lappeenranta
University of Technology, Sammonkatu 12, Mikkeli FI-50130, Finland
| | - Eveliina Repo
- Lappeenranta
University of Technology, Sammonkatu 12, Mikkeli FI-50130, Finland
| | - Varsha Srivastava
- Lappeenranta
University of Technology, Sammonkatu 12, Mikkeli FI-50130, Finland
| | - Feiping Zhao
- Lappeenranta
University of Technology, Sammonkatu 12, Mikkeli FI-50130, Finland
| | - Juha P. Heiskanen
- Research
Unit of Sustainable Chemistry, University
of Oulu, P.O. Box 3000, Oulu FI-90014, Finland
| | - Juho Antti Sirviö
- Fibre
and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, Oulu FI-90014, Finland
| | - Henrikki Liimatainen
- Fibre
and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, Oulu FI-90014, Finland
| | - Mika Sillanpää
- Lappeenranta
University of Technology, Sammonkatu 12, Mikkeli FI-50130, Finland
- Department
of Civil and Environmental Engineering, Florida International University, Miami, Florida 33174, United States
| |
Collapse
|
42
|
Vo DT, Lee CK. Antimicrobial sponge prepared by hydrophobically modified chitosan for bacteria removal. Carbohydr Polym 2018; 187:1-7. [PMID: 29486833 DOI: 10.1016/j.carbpol.2018.01.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/21/2018] [Accepted: 01/24/2018] [Indexed: 10/18/2022]
Abstract
Hydrophobically modified chitosan (HMCS) prepared by reacting chitosan with dodecyl aldehyde can generate very stable foam when dissolved in mild acidic condition under vigorous mechanical stirring. A durable and lightweight (density of 32 mg/ml) sponge was obtained by freeze-drying the stably formed HMCS foam. In addition to the cationic nature of chitosan, the grafted C12 alkyl chains were also able to help HMCS sponge for capturing E. coli cells (∼4.0 × 108 cells/mg sponge) by intercalating into the outer membrane of E. coli cells. E. coli cells captured on HMCS sponge were found to be mostly dead and easily released into the bulk solution so that the active surface could be continuously regenerated for capturing and killing the rest of alive cells. In comparison with its counterpart (chitosan sponge), HMCS sponge maintained a higher operational stability for the removal of E. coli cells. After 5 repeated cells removal operation, the removal capacity of HMCS sponge could be regenerated back to >90% by thorough washing with ethanol.
Collapse
Affiliation(s)
- Duc-Thang Vo
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd., Sec.4, Taipei 106, Taiwan.
| | - Cheng-Kang Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd., Sec.4, Taipei 106, Taiwan.
| |
Collapse
|
43
|
Martins DB, Nasário FD, Silva-Gonçalves LC, de Oliveira Tiera VA, Arcisio-Miranda M, Tiera MJ, dos Santos Cabrera MP. Chitosan derivatives targeting lipid bilayers: Synthesis, biological activity and interaction with model membranes. Carbohydr Polym 2018; 181:1213-1223. [DOI: 10.1016/j.carbpol.2017.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/21/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
|
44
|
Tezgel Ö, Szarpak-Jankowska A, Arnould A, Auzély-Velty R, Texier I. Chitosan-lipid nanoparticles (CS-LNPs): Application to siRNA delivery. J Colloid Interface Sci 2018; 510:45-56. [DOI: 10.1016/j.jcis.2017.09.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/07/2017] [Accepted: 09/10/2017] [Indexed: 01/13/2023]
|
45
|
Fantou C, Roy AN, Dé E, Comesse S, Grisel M, Renou F. Chemical modification of xanthan in the ordered and disordered states: An open route for tuning the physico-chemical properties. Carbohydr Polym 2017; 178:115-122. [DOI: 10.1016/j.carbpol.2017.09.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 01/12/2023]
|
46
|
Hattori H, Tsujimoto H, Hase K, Ishihara M. Characterization of a water-soluble chitosan derivative and its potential for submucosal injection in endoscopic techniques. Carbohydr Polym 2017; 175:592-600. [DOI: 10.1016/j.carbpol.2017.08.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/31/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022]
|
47
|
Arya C, Saez Cabesas CA, Huang H, Raghavan SR. Clustering of Cyclodextrin-Functionalized Microbeads by an Amphiphilic Biopolymer: Real-Time Observation of Structures Resembling Blood Clots. ACS APPLIED MATERIALS & INTERFACES 2017; 9:37238-37245. [PMID: 28994570 DOI: 10.1021/acsami.7b05435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Colloidal particles can be induced to cluster by adding polymers in a process called bridging flocculation. For bridging to occur, the polymer must bind strongly to the surfaces of adjacent particles, such as via electrostatic interactions. Here, we introduce a new system where bridging occurs due to specific interactions between the side chains of an amphiphilic polymer and supramolecules on the particle surface. The polymer is a hydrophobically modified chitosan (hmC) while the particles are uniform polymeric microbeads (∼160 μm in diameter) made by a microfluidic technique and functionalized on their surface by α-cyclodextrins (CDs). The CDs have hydrophobic binding pockets that can capture the n-alkyl hydrophobes present along the hmC chains. Clustering of CD-coated microbeads in water by hmC is visualized in real time using optical microscopy. Interestingly, the clustering follows two distinct stages: first, the microbeads are bridged into clusters by hmC chains, which occurs by the interaction of individual chains with the CDs on adjacent particles. Thereafter, additional hmC from the solution adsorbs onto the surfaces of the microbeads and an hmC "mesh" grows around the clusters. This growing nanostructured mesh can trap surrounding microsized objects and sequester them within the overall cluster. Such clustering is reminiscent of blood clotting where blood platelets initially cluster at a wound site, whereupon they induce growth of a protein (fibrin) mesh around the clusters, which entraps other passive cells. Clustering does not occur with the native chitosan (lacking hydrophobes) or with the bare particles (lacking CDs); these results confirm that the clustering is indeed due to hydrophobic interactions between the hmC and the CDs. Microbead clustering via amphiphilic biopolymers could be applicable in embolization, which is a surgical technique used to block blood flow to a particular area of the body, or in agglutination assays.
Collapse
Affiliation(s)
- Chandamany Arya
- Department of Chemical & Biomolecular Engineering, University of Maryland , College Park, Maryland 20742, United States
| | - Camila A Saez Cabesas
- Department of Chemical & Biomolecular Engineering, University of Maryland , College Park, Maryland 20742, United States
| | - Hubert Huang
- Department of Chemical & Biomolecular Engineering, University of Maryland , College Park, Maryland 20742, United States
| | - Srinivasa R Raghavan
- Department of Chemical & Biomolecular Engineering, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
48
|
Chen Z, Yao X, Liu L, Guan J, Liu M, Li Z, Yang J, Huang S, Wu J, Tian F, Jing M. Blood coagulation evaluation of N -alkylated chitosan. Carbohydr Polym 2017; 173:259-268. [DOI: 10.1016/j.carbpol.2017.05.085] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/27/2017] [Accepted: 05/25/2017] [Indexed: 10/19/2022]
|
49
|
Zhao G, Lang X, Wang F, Li J, Li X. A one-pot method for lipase-catalyzed synthesis of chitosan palmitate in mixed lonic liquids and its characterization. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Rheological properties of N-[(2-hydroxyl)-propyl-3-trimethyl ammonium] chitosan chloride. Carbohydr Polym 2017; 171:50-58. [DOI: 10.1016/j.carbpol.2017.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/02/2017] [Indexed: 12/18/2022]
|