1
|
Sierra-Sánchez Á, Cabañas-Penagos J, Igual-Roger S, Martínez-Heredia L, Espinosa-Ibáñez O, Sanabria-de la Torre R, Quiñones-Vico MI, Ubago-Rodríguez A, Lizana-Moreno A, Fernández-González A, Guerrero-Calvo J, Fernández-Porcel N, Ramírez-Muñoz A, Arias-Santiago S. Biological properties and characterization of several variations of a clinical human plasma-based skin substitute model and its manufacturing process. Regen Biomater 2024; 11:rbae115. [PMID: 39469583 PMCID: PMC11513639 DOI: 10.1093/rb/rbae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024] Open
Abstract
Human plasma is a natural biomaterial that due to their protein composition is widely used for the development of clinical products, especially in the field of dermatology. In this context, this biomaterial has been used as a scaffold alone or combined with others for the development of cellular human plasma-based skin substitutes (HPSSs). Herein, the biological properties (cell viability, cell metabolic activity, protein secretion profile and histology) of several variations of a clinical HPSS model, regarding the biomaterial composition (alone or combined with six secondary biomaterials - serine, fibronectin, collagen, two types of laminins and hyaluronic acid), the cellular structure (trilayer, bilayer, monolayer and control without cells) and their skin tissue of origin (abdominal or foreskin cells) and the manufacturing process [effect of partial dehydration process in cell viability and comparison between submerged (SUB) and air/liquid interface (ALI) methodologies] have been evaluated and compared. Results reveal that the use of human plasma as a main biomaterial determines the in vitro properties, rather than the secondary biomaterials added. Moreover, the characteristics are similar regardless of the skin cells used (from abdomen or foreskin). However, the manufacture of more complex cellular substitutes (trilayer and bilayer) has been demonstrated to be better in terms of cell viability, metabolic activity and wound healing protein secretion (bFGF, EGF, VEGF-A, CCL5) than monolayer HPSSs, especially when ALI culture methodology is applied. Moreover, the application of the dehydration, although required to achieve an appropriate clinical structure, reduce cell viability in all cases. These data indicate that this HPSS model is robust and reliable and that the several subtypes here analysed could be promising clinical approaches depending on the target dermatological disease.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada, 18012, Spain
| | - Jorge Cabañas-Penagos
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
| | - Sandra Igual-Roger
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
| | - Luis Martínez-Heredia
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Olga Espinosa-Ibáñez
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Raquel Sanabria-de la Torre
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Granada, 18071, Spain
| | - María I Quiñones-Vico
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Dermatology, University of Granada, Granada, 18016, Spain
| | - Ana Ubago-Rodríguez
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Antonio Lizana-Moreno
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Ana Fernández-González
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Jorge Guerrero-Calvo
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Natividad Fernández-Porcel
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Arena Ramírez-Muñoz
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Salvador Arias-Santiago
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada, 18012, Spain
- Department of Dermatology, University of Granada, Granada, 18016, Spain
| |
Collapse
|
2
|
Seguret M, Vermersch E, Jouve C, Hulot JS. Cardiac Organoids to Model and Heal Heart Failure and Cardiomyopathies. Biomedicines 2021; 9:563. [PMID: 34069816 PMCID: PMC8157277 DOI: 10.3390/biomedicines9050563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiac tissue engineering aims at creating contractile structures that can optimally reproduce the features of human cardiac tissue. These constructs are becoming valuable tools to model some of the cardiac functions, to set preclinical platforms for drug testing, or to alternatively be used as therapies for cardiac repair approaches. Most of the recent developments in cardiac tissue engineering have been made possible by important advances regarding the efficient generation of cardiac cells from pluripotent stem cells and the use of novel biomaterials and microfabrication methods. Different combinations of cells, biomaterials, scaffolds, and geometries are however possible, which results in different types of structures with gradual complexities and abilities to mimic the native cardiac tissue. Here, we intend to cover key aspects of tissue engineering applied to cardiology and the consequent development of cardiac organoids. This review presents various facets of the construction of human cardiac 3D constructs, from the choice of the components to their patterning, the final geometry of generated tissues, and the subsequent readouts and applications to model and treat cardiac diseases.
Collapse
Affiliation(s)
- Magali Seguret
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
| | - Eva Vermersch
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
| | - Charlène Jouve
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
| | - Jean-Sébastien Hulot
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
- CIC1418 and DMU CARTE, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, F-75015 Paris, France
| |
Collapse
|
3
|
Iviglia G, Kargozar S, Baino F. Biomaterials, Current Strategies, and Novel Nano-Technological Approaches for Periodontal Regeneration. J Funct Biomater 2019; 10:E3. [PMID: 30609698 PMCID: PMC6463184 DOI: 10.3390/jfb10010003] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Periodontal diseases involve injuries to the supporting structures of the tooth and, if left untreated, can lead to the loss of the tooth. Regenerative periodontal therapies aim, ideally, at healing all the damaged periodontal tissues and represent a significant clinical and societal challenge for the current ageing population. This review provides a picture of the currently-used biomaterials for periodontal regeneration, including natural and synthetic polymers, bioceramics (e.g., calcium phosphates and bioactive glasses), and composites. Bioactive materials aim at promoting the regeneration of new healthy tissue. Polymers are often used as barrier materials in guided tissue regeneration strategies and are suitable both to exclude epithelial down-growth and to allow periodontal ligament and alveolar bone cells to repopulate the defect. The problems related to the barrier postoperative collapse can be solved by using a combination of polymeric membranes and grafting materials. Advantages and drawbacks associated with the incorporation of growth factors and nanomaterials in periodontal scaffolds are also discussed, along with the development of multifunctional and multilayer implants. Tissue-engineering strategies based on functionally-graded scaffolds are expected to play an ever-increasing role in the management of periodontal defects.
Collapse
Affiliation(s)
| | - Saeid Kargozar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran.
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy.
| |
Collapse
|
4
|
Heath DE, Cooper SL. The development of polymeric biomaterials inspired by the extracellular matrix. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1051-1069. [DOI: 10.1080/09205063.2017.1297285] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Daniel E. Heath
- Department of Chemical and Biomolecular Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Australia
| | - Stuart L. Cooper
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
5
|
Sun X, Altalhi W, Nunes SS. Vascularization strategies of engineered tissues and their application in cardiac regeneration. Adv Drug Deliv Rev 2016; 96:183-94. [PMID: 26056716 DOI: 10.1016/j.addr.2015.06.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/27/2015] [Accepted: 06/02/2015] [Indexed: 12/14/2022]
Abstract
The primary function of vascular networks is to transport blood and deliver oxygen and nutrients to tissues, which occurs at the interface of the microvasculature. Therefore, the formation of the vessels at the microcirculatory level, or angiogenesis, is critical for tissue regeneration and repair. Current strategies for vascularization of engineered tissues have incorporated multi-disciplinary approaches including engineered biomaterials, cells and angiogenic factors. Pre-vascularization of scaffolds composed of native matrix, synthetic polymers, or other biological materials can be achieved through the use of single cells in mono or co-culture, in combination or not with angiogenic factors or by the use of isolated vessels. The advance of these methods, together with a growing understanding of the biology behind vascularization, has facilitated the development of vascularization strategies for engineered tissues with therapeutic potential for tissue regeneration and repair. Here, we review the different cell-based strategies utilized to pre-vascularize engineered tissues and in making more complex vascularized cardiac tissues for regenerative medicine applications.
Collapse
|
6
|
Dietrich I, Cochet O, Villageois P, Rodrigues CJ. Engraftment of human adipose derived stem cells delivered in a hyaluronic acid preparation in mice. Acta Cir Bras 2012; 27:283-9. [PMID: 22534801 DOI: 10.1590/s0102-86502012000400001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/15/2012] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To evaluate the implant of human adipose derived stem cells (ADSC) delivered in hyaluronic acid gel (HA), injected in the subcutaneous of athymic mice. METHODS Control implants -HA plus culture media was injected in the subcutaneous of the left sub scapular area of 12 athymic mice. ADSC implants: HA plus ADSC suspended in culture media was injected in the subcutaneous, at the contra lateral area, of the same animals. With eight weeks, animals were sacrificed and the recovered implants were processed for extraction of genomic DNA, and histological study by hematoxilin-eosin staining and immunufluorescence using anti human vimentin and anti von Willebrand factor antibodies. RESULTS CONTROLS Not visualized at the injection site. An amorphous substance was observed in hematoxilin-eosin stained sections. Human vimentin and anti von Willebrand factor were not detected. No human DNA was detected. ADSC implants - A plug was visible at the site of injection. Fusiform cells were observed in sections stained by hematoxilin- eosin and both human vimentin and anti von Willebrand factor were detected by immunofluorescence. The presence of human DNA was confirmed. CONCLUSION The delivery of human adipose derived stem cells in preparations of hyaluronic acid assured cells engraftment at the site of injection.
Collapse
Affiliation(s)
- Isa Dietrich
- Department of Surgery, Laboratory of Surgical Anatomy of Human Structural Topography, School of Medicine, Sao Paulo University, Brazil.
| | | | | | | |
Collapse
|
7
|
Pardue EL, Ibrahim S, Ramamurthi A. Role of hyaluronan in angiogenesis and its utility to angiogenic tissue engineering. Organogenesis 2012; 4:203-14. [PMID: 19337400 DOI: 10.4161/org.4.4.6926] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 09/08/2008] [Indexed: 01/30/2023] Open
Abstract
Angiogenesis represents the outgrowth of new blood vessels from existing ones, a physiologic process that is vital to supply nourishment to newly forming tissues during development and tissue remodeling and repair (wound healing). Regulation of angiogenesis in the healthy body occurs through a fine balance of angiogenesis-stimulating factors and angiogenesis inhibitors. When this balance is disturbed, excessive or deficient angiogenesis can result and contribute to development of a wide variety of pathological conditions. The therapeutic stimulation or suppression of angiogenesis could be the key to abrogating these diseases. In recent years, tissue engineering has emerged as a promising technology for regenerating tissues or organs that are diseased beyond repair. Among the critical challenges that deter the practical realization of the vision of regenerating functional tissues for clinical implantation, is how tissues of finite size can be regenerated and maintained viable in the long-term. Since the diffusion of nutrients and essential gases to cells, and removal of metabolic wastes is typically limited to a depth of 150-250 microm from a capillary (3-10 cells thick), tissue constructs must mandatorily permit in-growth of a blood capillary network to nourish and sustain the viability of cells within. The purpose of this article is to provide an overview of the role and significance of hyaluronan (HA), a glycosaminoglycan (GAG) component of connective tissues, in physiologic and pathological angiogenesis, its applicability as a therapeutic to stimulate or suppress angiogenesis in situ within necrotic tissues in vivo, and the factors determining its potential utility as a pro-angiogenic stimulus that will enable tissue engineering of neo-vascularized and functional tissue constructs for clinical use.
Collapse
Affiliation(s)
- Erin L Pardue
- Clemson University; Medical University of South Carolina Bioengineering Program; Charleston, South Carolina USA
| | | | | |
Collapse
|
8
|
Seif-Naraghi SB, Horn D, Schup-Magoffin PJ, Christman KL. Injectable extracellular matrix derived hydrogel provides a platform for enhanced retention and delivery of a heparin-binding growth factor. Acta Biomater 2012; 8:3695-703. [PMID: 22750737 DOI: 10.1016/j.actbio.2012.06.030] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/18/2012] [Accepted: 06/20/2012] [Indexed: 01/09/2023]
Abstract
Injectable hydrogels derived from the extracellular matrix (ECM) of decellularized tissues have recently emerged as scaffolds for tissue-engineering applications. Here, we introduce the potential for using a decellularized ECM-derived hydrogel for the improved delivery of heparin-binding growth factors. Immobilization of growth factors on a scaffold has been shown to increase their stability and activity. This can be done via chemical crosslinking, covalent bonding, or by incorporating natural or synthetic growth factor-binding domains similar to those found in vivo in sulfated glycosaminoglycans (GAGs). Many decellularized ECM-derived hydrogels retain native sulfated GAGs, and these materials may therefore provide an excellent delivery platform for heparin-binding growth factors. In this study, the sulfated GAG content of an ECM hydrogel derived from decellularized pericardial ECM was confirmed by Fourier transform infrared spectroscopy and its ability to bind basic fibroblast growth factor (bFGF) was established. Delivery in the pericardial matrix hydrogel increased retention of bFGF both in vitro and in vivo in ischemic myocardium compared to delivery in collagen. In a rodent infarct model, intramyocardial injection of bFGF in pericardial matrix enhanced neovascularization by approximately 112% compared to delivery in collagen. Importantly, the newly formed vasculature was anastomosed with existing vasculature. Thus, the sulfated GAG content of the decellularized ECM hydrogel provides a platform for incorporation of heparin-binding growth factors for prolonged retention and delivery.
Collapse
|
9
|
Naderi H, Matin MM, Bahrami AR. Review paper: Critical Issues in Tissue Engineering: Biomaterials, Cell Sources, Angiogenesis, and Drug Delivery Systems. J Biomater Appl 2011; 26:383-417. [DOI: 10.1177/0885328211408946] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue engineering is a newly emerging biomedical technology, which aids and increases the repair and regeneration of deficient and injured tissues. It employs the principles from the fields of materials science, cell biology, transplantation, and engineering in an effort to treat or replace damaged tissues. Tissue engineering and development of complex tissues or organs, such as heart, muscle, kidney, liver, and lung, are still a distant milestone in twenty-first century. Generally, there are four main challenges in tissue engineering which need optimization. These include biomaterials, cell sources, vascularization of engineered tissues, and design of drug delivery systems. Biomaterials and cell sources should be specific for the engineering of each tissue or organ. On the other hand, angiogenesis is required not only for the treatment of a variety of ischemic conditions, but it is also a critical component of virtually all tissue-engineering strategies. Therefore, controlling the dose, location, and duration of releasing angiogenic factors via polymeric delivery systems, in order to ultimately better mimic the stem cell niche through scaffolds, will dictate the utility of a variety of biomaterials in tissue regeneration. This review focuses on the use of polymeric vehicles that are made of synthetic and/or natural biomaterials as scaffolds for three-dimensional cell cultures and for locally delivering the inductive growth factors in various formats to provide a method of controlled, localized delivery for the desired time frame and for vascularized tissue-engineering therapies.
Collapse
Affiliation(s)
- Hojjat Naderi
- Department of Biology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M. Matin
- Department of Biology, Ferdowsi University of Mashhad, Mashhad, Iran
- Cell and Molecular Biology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Ferdowsi University of Mashhad, Mashhad, Iran
- Cell and Molecular Biology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
10
|
Nillesen STM, Lammers G, Wismans RG, Ulrich MM, Middelkoop E, Spauwen PH, Faraj KA, Schalkwijk J, Daamen WF, van Kuppevelt TH. Design and in vivo evaluation of a molecularly defined acellular skin construct: reduction of early contraction and increase in early blood vessel formation. Acta Biomater 2011; 7:1063-71. [PMID: 20965285 DOI: 10.1016/j.actbio.2010.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/09/2010] [Accepted: 10/12/2010] [Indexed: 11/29/2022]
Abstract
Skin substitutes are of great benefit in the treatment of patients with full thickness wounds, but there is a need for improvement with respect to wound closure with minimal contraction, early vascularisation, and elastin formation. In this study we designed and developed an acellular double-layered skin construct, using matrix molecules and growth factors to target specific biological processes. The epidermal layer was prepared using type I collagen, heparin and fibroblast growth factor 7 (FGF7), while the porous dermal layer was prepared using type I collagen, solubilised elastin, dermatan sulfate, heparin, fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor (VEGF). The construct was biochemically and morphologically characterised and evaluated in vivo using a rat full thickness wound model. The results were compared with the commercial skin substitute IntegraDRT and untreated wounds. The double-layered construct was prepared according to the design specifications. The epidermal layer was about 40 μm thick, containing 9% heparin and 0.2 μg FGF7 mg per layer, localised at the periphery. The dermal layer was 2.5 mm thick, had rounded pores and contained 10% dermatan sulfate+heparin, and 0.7 μg FGF2+VEGF mg per layer. The double-layered skin construct was implanted in a skin defect and on day 7, 14, 28 and 112 the (remaining) wound area was photographed, excised and (immuno) histologically evaluated. The double-layered skin construct showed more cell influx, significantly less contraction and increased blood vessel formation at early time points in comparison with IntegraDRT and/or the untreated wound. On day 14 the double-layered skin construct also had the fewest myofibroblasts present. On day 112 the double-layered skin construct contained more elastic fibres than IntegraDRT and the untreated wound. Structures resembling hair follicles and sebaceous glands were found in the double-layered skin construct and the untreated wound, but hardly any were found in IntegraDRT. The results provide new opportunities for the application of acellular skin constructs in the treatment of surgical wounds.
Collapse
Affiliation(s)
- S T M Nillesen
- Department of Biochemistry 280, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mason MN, Mahoney MJ. A novel composite construct increases the vascularization potential of PEG hydrogels through the incorporation of large fibrin ribbons. J Biomed Mater Res A 2010; 95:283-93. [PMID: 20607870 DOI: 10.1002/jbm.a.32825] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Developing a mechanism to vascularize tissue-engineered constructs is imperative for transplant function and integration, particularly when delivering hypoxia-sensitive tissues, such as pancreatic islets. Previous efforts have focused on bulk modifications of scaffold materials rendering the entire construct permissive to vessel penetration or the formation of a porous structure where vessels can infiltrate the empty spaces. Here, we describe a novel construct composed of large fibrin ribbons encapsulated within a poly(ethylene glycol) (PEG) hydrogel. The PEG/fibrin ribbon composite scaffold facilitates coculture of adhesive and nonadhesive cell types, thus providing closely neighboring environments with distinct material properties specific to the needs of two clinically relevant cell populations. This advantage is demonstrated here by the successful coculture of pancreatic islets in the PEG component and vessel-forming endothelial cells in entrapped fibrin ribbons. Transplanted endothelial cells can form anastomosies with host vasculature, suggesting that our cocultures may lead to more rapid scaffold vascularization. Additionally, we show that surface-seeded endothelial cells form multicellular projections that migrate into nonadhesive PEG hydrogels along permissive fibrin ribbons, further demonstrating composite construct vascularization potential. Distribution of large fibrin ribbons throughout PEG hydrogels provide a potential mechanism for vascularization of a well-established biomaterial without inherently changing its desirable properties.
Collapse
Affiliation(s)
- Mariah N Mason
- Department of Chemical and Biological Engineering, University of Colorado, Campus Box 424, Boulder, Colorado 80309, USA
| | | |
Collapse
|
12
|
Nair A, Thevenot P, Dey J, Shen J, Sun MW, Yang J, Tang L. Novel polymeric scaffolds using protein microbubbles as porogen and growth factor carriers. Tissue Eng Part C Methods 2010; 16:23-32. [PMID: 19327002 DOI: 10.1089/ten.tec.2009.0094] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polymeric tissue engineering scaffolds prepared by conventional techniques like salt leaching and phase separation are greatly limited by their poor biomolecule-delivery abilities. Conventional methods of incorporation of various growth factors, proteins, and/or peptides on or in scaffold materials via different crosslinking and conjugation techniques are often tedious and may affect scaffold's physical, chemical, and mechanical properties. To overcome such deficiencies, a novel two-step porous scaffold fabrication procedure has been created in which bovine serum albumin microbubbles (henceforth MB) were used as porogen and growth factor carriers. Polymer solution mixed with MB was phase separated and then lyophilized to create porous scaffold. MB scaffold triggered substantially lesser inflammatory responses than salt-leached and conventional phase-separated scaffolds in vivo. Most importantly, the same technique was used to produce insulin-like growth factor-1 (IGF-1)-eluting porous scaffolds, simply by incorporating IGF-1-loaded MB (MB-IGF-1) with polymer solution before phase separation. In vitro such MB-IGF-1 scaffolds were able to promote cell growth to a much greater extent than scaffold soaked in IGF-1, confirming the bioactivity of the released IGF-1. Further, such MB-IGF-1 scaffolds elicited IGF-1-specific collagen production in the surrounding tissue in vivo. This novel growth factor-eluting scaffold fabrication procedure can be used to deliver a range of single or combination of bioactive biomolecules to substantially promote cell growth and function in degradable scaffold.
Collapse
Affiliation(s)
- Ashwin Nair
- Department of Bioengineering, University of Texas, Arlington, TX, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Hadjizadeh A, Doillon CJ. Directional migration of endothelial cells towards angiogenesis using polymer fibres in a 3D co-culture system. J Tissue Eng Regen Med 2010; 4:524-31. [DOI: 10.1002/term.269] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Abstract
Microporous poly(D,L-lactide-co-glycolide) matrices containing encapsulated proteins were fabricated in a solvent-free manner. Microporous foam was generated by saturating a mixture of polymer and protein particles in supercritical carbon dioxide (SC-CO2), dispersing the protein particles in the polymer melt followed by a rapid evaporation of the CO2 phase. The release rates of protein encapsulated within porous poly(lactide-co-glycolide)(PLGA) constructs produced in SC-CO2 were measured in vitro. Although a substantial amount of protein was released within the first 48 h, results indicated that protein may be dispersed throughout the polymer phase and released over 3 weeks using this solvent-free technique. Basic fibroblast growth factor (bFGF), known to promote angiogenesis in vivo, was encapsulated within the polymer matrix. In addition, retention of biological activity was measured for bFGF encapsulated within PLGA foams. Encapsulated bFGF was released from the porous constructs for up to 10 days in vitro with little loss of biological activity.
Collapse
Affiliation(s)
- David D Hile
- Texas A&M University, Department of Chemical Engineering, College Station, Texas, USA
| | | |
Collapse
|
15
|
Shepherd BR, Hoying JB, Williams SK. Microvascular transplantation after acute myocardial infarction. ACTA ACUST UNITED AC 2008; 13:2871-9. [PMID: 17883324 DOI: 10.1089/ten.2007.0025] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The primary objective of this study was to evaluate epicardial transplantation of an intact microvascular network for treatment of myocardial ischemia in a murine model of acute myocardial infarction. We describe transplantation of an intact microvascular network constructed from isolated microvascular segments stabilized in a 3-dimensional matrix to the epicardial surface after acute myocardial infarction. This microvascular graft was implanted as a patch on the epicardium of mice after left coronary artery ligation. After 14 and 28 days of implantation, left ventricular (LV) function was assessed and grafts evaluated via histology and cytochemistry. Inosculation of microvessels within the graft with host coronary microcirculation occurred as early as 7 days after initial tissue grafting. Morphologic evaluation of the grafts revealed arterioles, venules, capillaries, and erythrocytes within vascular lumina. Control grafts of collagen alone remained avascular. LV infarct size was smaller, and LV function improved in treated animals. Engraftment of whole microvascular units can be achieved to support cell-assisted vascular remodeling. Microvascular grafts may provide therapeutic benefit as a primary treatment or serve as a microvascular platform for cardiac repair and regeneration.
Collapse
|
16
|
Buxton PG, Cobourne MT. Regenerative approaches in the craniofacial region: manipulating cellular progenitors for oro-facial repair. Oral Dis 2007; 13:452-60. [PMID: 17714347 DOI: 10.1111/j.1601-0825.2007.01403.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This review aims to highlight the potential for regeneration that resides within the bony tissues of the craniofacial region. We examine the five main cues which determine osteogenic differentiation: heritage of the cell, mechanical cues, the influence of the matrix, growth factor stimulation and cell-to-cell contact. We review how successful clinical procedures, such as guided tissue regeneration and distraction osteogenesis exploit this resident ability. We explore the developmental origins of the flat bones of the skull to see how such programmes of differentiation may inform new therapies or regenerative techniques. Finally we compare and contrast existing approaches of hard tissue reconstruction with future approaches inspired by the regenerative medicine philosophy, with particular emphasis on the potential for using chondrocyte-inspired factors and replaceable scaffolds.
Collapse
Affiliation(s)
- P G Buxton
- Eastman Dental Institute, UCL, London, UK.
| | | |
Collapse
|
17
|
Ring A, Steinstraesser L, Muhr G, Steinau HU, Hauser J, Langer S. Improved Neovascularization of PEGT/PBT Copolymer Matrices in Response to Surface Modification by Biomimetic Coating. Eur Surg Res 2007; 39:75-81. [PMID: 17283430 DOI: 10.1159/000099146] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 11/16/2006] [Indexed: 11/19/2022]
Abstract
PEGT/PBT (polyethylene glycol terephthalate/polybutylene terephthalate) copolymer matrices with three different surface coatings [calcium-phosphate (Ca-P), collagen, and gas plasma] were placed into dorsal skinfold chambers of 24 balb/c mice. Untreated PEGT/PBT matrices served as the controls. The basal surfaces of the implants directly contacted the striated skin muscle. Neovascularization of the implants was analyzed by intravital fluorescence microscopy. Microcirculatory observations were performed in the surrounding skin muscle, at the border zone of the implant, and in the center of the implant. The functional vessel density (FVD; mm/mm2), as the length of perfused microvessels per observation area, was measured by computer-assisted analysis. The FVD served as the parameter of neovascularization. At the end of the protocol, histological observation of hematoxylin/eosin-standard-stained sections was performed by light microscopy. The FVD in the center of the implant on day 8 was only observed in gas-plasma-coated (8.8 +/- 10.2 mm/mm2) and Ca-P-coated implants (0.8 +/- 2.0 mm/mm2). None of the other groups showed perfused microvessels in the center of the implant on day 8 (p < 0.05). The FVD values in the center of the gas-plasma-coated and the Ca-P-coated implants were 20.7 +/- 8.2 and 19.2 +/- 15.5 mm/mm2 as compared with 7.1 +/- 17.4 and 7.7 +/- 5.9 mm/mm2 for collagen-coated and untreated implants on day 16. The histological examination confirmed the profound microvascular ingrowth into the matrix pores of the gas-plasma-treated and the Ca-P-coated copolymer matrices in the center of the implants. The study showed that the ingrowth of microvessels into PEGT/PBT matrices can be accelerated by Ca-P coating and gas plasma treatment in the dorsal skinfold chamber in mice.
Collapse
Affiliation(s)
- A Ring
- Department of Surgery, Trauma Center, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Tilakaratne HK, Hunter SK, Andracki ME, Benda JA, Rodgers VGJ. Characterizing short-term release and neovascularization potential of multi-protein growth supplement delivered via alginate hollow fiber devices. Biomaterials 2007; 28:89-98. [PMID: 16952396 DOI: 10.1016/j.biomaterials.2006.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 08/07/2006] [Indexed: 11/17/2022]
Abstract
Multi-protein (10-250 kDa) endothelial cell growth supplement (ECGS) contains growth factors of varying sizes resulting in advanced release rates from diffusion-based drug delivery devices. As a result, the biochemical stimulus provided by ECGS for neovascularization in the critical initial stages of cell transplantation in artificial organs may differ from that for single growth factor delivery. In this study, both in vitro and in vivo studies were conducted with ECGS to correlate in vitro release of multiple angiogenic growth factors to vascularization potential in vivo. The short-term release of ECGS from calcium alginate gels supported in the lumen of polypropylene (PP) hollow fibers was investigated in vitro for up to 142 h. The overall time constant increased from 2, 2.2 and 6.3 h as the alginate concentration was increased from 1.5%, 2% and 3%, respectively. However, time constants for individual species ranged from 1.5 to 77 h. The in vivo bioactivity of released ECGS was assessed for up to 21 days using a Lewis rat model implanted with 1.5% calcium alginate gels supported in PP and polysulfone hollow fibers. For the ECGS-releasing PP hollow fiber system, a two-fold increase in neovascularization with respect to the control was observed for the period between 7 and 17 days post-implantation at the device-tissue interface (p<0.05).
Collapse
Affiliation(s)
- H K Tilakaratne
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
Repair of tooth supporting alveolar bone defects caused by periodontal and peri-implant tissue destruction is a major goal of reconstructive therapy. Oral and craniofacial tissue engineering has been achieved with limited success by the utilization of a variety of approaches such as cell-occlusive barrier membranes, bone substitutes and autogenous block grafting techniques. Signaling molecules such as growth factors have been used to restore lost tooth support because of damage by periodontal disease or trauma. This paper will review emerging periodontal therapies in the areas of materials science, growth factor biology and cell/gene therapy. Several different polymer delivery systems that aid in the targeting of proteins, genes and cells to periodontal and peri-implant defects will be highlighted. Results from preclinical and clinical trials will be reviewed using the topical application of bone morphogenetic proteins (BMP-2 and BMP-7) and platelet-derived growth factor-BB (PDGF) for periodontal and peri-implant regeneration. The paper concludes with recent research on the use of ex vivo and in vivo gene delivery strategies via gene therapy vectors encoding growth promoting and inhibiting molecules (PDGF, BMP, noggin and others) to regenerate periodontal structures including bone, periodontal ligament and cementum.
Collapse
Affiliation(s)
- M Taba
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, 48108, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Biomaterials research in Canada began in the 1960s. Over the past four decades significant contributions have been made across a broad spectrum covering dental, orthopaedic, cardiovascular, neuro, and ocular biomaterials. Canadians have also been active in the derivative area of tissue engineering. Biomaterials laboratories are now established in universities and research institutes from coast to coast, supported mainly by funding from the Federal and Provincial Governments. The Canadian Biomaterials Society was formed in 1971 and has played an important role in the development of the field. The Society played host to the 5th World Biomaterials Congress in Toronto in 1996. The work of Canadian researchers over the past four decades is summarized briefly. It is concluded that biomaterials and tissue engineering is a mature, strong area of research in Canada and appears set to continue as such into the future.
Collapse
Affiliation(s)
- John L Brash
- School of Biomedical Engineering and Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4L7.
| |
Collapse
|
21
|
Patel ZS, Mikos AG. Angiogenesis with biomaterial-based drug- and cell-delivery systems. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2005; 15:701-26. [PMID: 15255521 DOI: 10.1163/156856204774196117] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Angiogenesis, the formation of new blood vessels from existing ones, is an important event in several biological processes, including wound healing. It plays a key role in determining the final functionality and integration of any implanted medical device. In addition, angiogenesis is a required event for organ development and has been accepted as a rate-limiting step in engineering tissue replacements. Besides these regenerative processes, uncontrolled angiogenesis is also involved in a number of pathologies, including tumor growth and metastases. Like angiogenesis, biomaterials also play a role in wound healing after medical device implantation and in tissue engineering. Interactions between the device biomaterials and host tissue will factor into the final device integration. Additionally, tissue-engineering strategies utilize biomaterials to a great extent because the paradigm of tissue engineering involves the use of cells, growth factors and scaffolding matrices in order to regenerate or replace tissue. Since almost all tissues are three-dimensional, the biomaterial scaffold plays an integral role in the paradigm. This review will emphasize the influence of biomaterials on angiogenesis as it applies to medical device implantation, tissue engineering and therapies for pathological angiogenesis.
Collapse
Affiliation(s)
- Zarana S Patel
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX 77251-1892, USA
| | | |
Collapse
|
22
|
Kannan RY, Salacinski HJ, Butler PE, Hamilton G, Seifalian AM. Current status of prosthetic bypass grafts: A review. J Biomed Mater Res B Appl Biomater 2005; 74:570-81. [PMID: 15889440 DOI: 10.1002/jbm.b.30247] [Citation(s) in RCA: 335] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Polymers such as Dacron and polytetrafluoroethylene (PTFE) have been used in high flow states with relative success but with limited application at lower flow states. Newer polymers with greater compliance, biomimicry, and ability to evolve into hybrid prostheses, suitable as smaller vessels, are now being introduced. In view of the advances in tissue engineering, this makes possible the creation of an ideal off-the-shelf bypass graft. We present a broad overview of the current state of prosthetic bypass grafts.
Collapse
Affiliation(s)
- Ruben Y Kannan
- Biomaterials & Tissue Engineering Centre, University Department of Surgery, Royal Free and University College Medical School, University College London, UK
| | | | | | | | | |
Collapse
|
23
|
Galmés Belmonte I, Díaz Gómez E. ¿Son iguales todos los sistemas empleados para corregir la incontinencia urinaria mediante mallas libres de tensión? Actas Urol Esp 2004; 28:487-96. [PMID: 15384273 DOI: 10.1016/s0210-4806(04)73118-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Since 1996, when Ulmsten described the TVT procedure (Tension-free Vaginal Tape) for correction of women urinary stress incontinence, a large number of different devices have been manufactured with that purpose. Results depend not only of the surgical procedure but also of two principal factors: 1. Characteristics and properties of the mesh. 2. System and way for the implantation. Properties of the mesh used are probably as important as surgical technique. It's not possible to assume that results achieved with the TVT device will be similar with other meshes. Further randomized studies will be necessary to make these affirmations. In this paper we analyse properties of the mesh, characteristics of the implantation system and the influence of those factors in the surgical results. Finally, we describe some of the devices available and the mesh characteristics of each one.
Collapse
Affiliation(s)
- I Galmés Belmonte
- Unidad de Uroginecología y Patología del Suelo Pelviano, Hospital Universitario Santa Cristina. Madrid
| | | |
Collapse
|
24
|
Abstract
PURPOSE Tissue engineering seeks to replace and regrow damaged or diseased tissues and organs from either cells resident in the surrounding tissue or cells transplanted to the tissue site. The purpose of this review is to present the application of polymeric delivery systems for growth factor delivery in tissue engineering. METHODS Growth factors direct the phenotype of both differentiated and stem cells, and methods used to deliver these molecules include the development of systems to deliver the protein itself, genes encoding the factor, or cells secreting the factor. RESULTS Results in animal models and clinical trials indicate that these approaches may be successfully used to promote the regeneration of numerous tissue types. CONCLUSIONS Controlling the dose, location, and duration of these factors through polymeric delivery strategies will dictate their utility in tissue regeneration.
Collapse
Affiliation(s)
- Ruth R Chen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
25
|
Pieper JS, Hafmans T, van Wachem PB, van Luyn MJA, Brouwer LA, Veerkamp JH, van Kuppevelt TH. Loading of collagen-heparan sulfate matrices with bFGF promotes angiogenesis and tissue generation in rats. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2002; 62:185-94. [PMID: 12209938 DOI: 10.1002/jbm.10267] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The loading of biocompatible matrices with growth factors offers the opportunity to induce specific cell behavior. The attachment of heparan sulfate (HS) to these matrices may promote the binding, modulation, and sustained release of signaling molecules. In this study, basic fibroblast growth factor (bFGF) was bound to crosslinked collagenous matrices with and without covalently attached HS. The tissue response to these matrices was evaluated after subcutaneous implantation in rats. Attachment of HS to collagen matrices increased the bFGF binding capacity threefold and resulted in a more gradual and sustained release of the growth factor in vitro. bFGF primarily was located at the matrix margins. In vivo, the presence of HS without bFGF resulted in a transient vascularization, predominantly at the matrix periphery. Angiogenesis was further enhanced by combining HS with bFGF. In contrast to collagen-HS and collagen/bFGF matrices, collagen-HS/bFGF matrices remained highly vascularized throughout the matrix during the 10-week implantation period. In addition, these latter matrices revealed an intense and prolonged tissue response and considerably promoted the generation of new tissue. Foreign body reactions were only observed sporadically at this time interval. It is concluded that bFGF loading of collagen-HS matrices has additional value for those tissue-engineering applications that require enhanced angiogenesis and generation of new tissue.
Collapse
Affiliation(s)
- J S Pieper
- Department of Biochemistry, 194, University Medical Center Nijmegen, NCMLS, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
26
|
Sanders JE, Baker AB, Golledge SL. Control of in vivo microvessel ingrowth by modulation of biomaterial local architecture and chemistry. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2002; 60:36-43. [PMID: 11835157 DOI: 10.1002/jbm.1279] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We developed a method for controlling local architecture and chemistry simultaneously in biomaterial implants to control microvessel ingrowth in vivo. Porous polypropylene disks (5 mm in diameter and 40 microm thick) were plasma-coated with a fluoropolymer and then laser-drilled with 50-microm-diameter holes through their thickness. We then oxidized the disks to create hydroxyl functionality on the exposed polypropylene (inside the holes). Acrylamide was grafted to the hydroxyl groups through polymerization in the presence of activating ceric ions. Staining with toluidine blue O demonstrated that grafting occurred only inside the holes. We used the Hoffman degradation reaction to convert the amide groups of acrylamide to amine groups, and then we used ethylene glycol diglycidyl ether to attach biomolecules of interest inside the holes: secreted protein acidic and rich in cysteine (SPARC) peptide Lys-Gly-His-Lys (KGHK; angiogenic), thrombospondin-2 (TSP; antiangiogenic), or albumin (rat; neutral). In vivo testing in a rat subcutaneous dorsum model for a 3-week interval demonstrated a greater vessel surface area (p = 0.032) and a greater number of vessels (p = 0.043) in tissue local to the holes with KGHK-immobilized disks than with TSP-immobilized disks. However, differences between KGHK-immobilized and albumin-immobilized disks were less significant (p = 0.120 and p = 0.289 for the vessel surface area and number of vessels, respectively). The developed methods have potential applications in biomaterial design applications for which selective neovascularization is desired.
Collapse
Affiliation(s)
- J E Sanders
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
27
|
Abstract
The term "bioartificial endocrine pancreas" (BEP) was introduced by Anthony Sun in 1980. It was in 1968, however, that Thomas Chang proposed the use of microencapsulated islets as artificial beta-cells. By applying a semipermeable membrane on the top of microcapsules, a system can be produced that is impermeable to viable islet cells and large effector molecules of the immune system, thus providing a protection for transplanted islets against rejection. Since then, the term BEP has not often appeared in papers. Instead, the term "bioartificial pancreas" (BAP) has gained widespread use. In a broader sense, BAP would include an application of suitable endocrine cells and protective polymeric vehicles, but not necessarily providing a filtration barrier of precisely defined properties (e.g., cells injected into a gel of hyaluronate).
Collapse
Affiliation(s)
- A Prokop
- Chemical Engineering Department, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
28
|
Prokop A, Kozlov E, Nun Non S, Dikov MM, Sephel GC, Whitsitt JS, Davidson JM. Towards retrievable vascularized bioartificial pancreas: induction and long-lasting stability of polymeric mesh implant vascularized with the help of acidic and basic fibroblast growth factors and hydrogel coating. Diabetes Technol Ther 2001; 3:245-61. [PMID: 11478332 DOI: 10.1089/152091501300209624] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We seek to improve existing methodologies for allogenic grafting of pancreatic islets. The lack of success of encapsulated transplanted islets inside the peritoneal cavity is presently attributed to poor vascularization of the implant. A thick, fibrotic capsule often surrounds the graft, limiting survival. We have tested the hypothesis that neovascularization of the graft material can be induced by the addition of proper angiogenic factors embedded within a polymeric coat. Biocompatible and nonresorbable meshes coated with hydrophilic polymers were implanted in rats and harvested after 1-, 6-, and 12-week intervals. The implant response was assessed by histological observations on the degree of vascularity, fibrosis, and inflammation. Macrostructural geometry of meshes was conducive to tissue ingrowth into the interstitial space between the mesh filaments. Hydrogel coating with incorporated acidic or basic FGF in an electrostatic complex with polyelectrolytes and/or with heparin provided a sustained slow release of the angiogenic growth factor. Anti-factor VIII and anti-collagen type IV antibodies and a GSL I-B4 lectin were used to measure the extent of vascularization. Vigorous and persistent vascularization radiated several hundred microns from the implant. The level of vascularization should provide a sufficient diffusion of nutrients and oxygen to implanted islets. Based on our observations, stable vascularization may require a sustained angiogenic signal to allow for the development of a permanent implant structure.
Collapse
Affiliation(s)
- A Prokop
- Department of Chemical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee 37235, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
A tissue-engineered implant is a biologic-biomaterial combination in which some component of tissue has been combined with a biomaterial to create a device for the restoration or modification of tissue or organ function. Specific growth factors, released from a delivery device or from co-transplanted cells, would aid in the induction of host parenchymal cell infiltration and improve engraftment of co-delivered cells for more efficient tissue regeneration or ameliorate disease states. The characteristic properties of growth factors are described to provide a biological basis for their use in tissue engineered devices. The principles of polymeric device development for therapeutic growth factor delivery in the context of tissue engineering are outlined. A review of experimental evidence illustrates examples of growth factor delivery from devices such as microparticles, scaffolds, and encapsulated cells, for their use in the application areas of musculoskeletal tissue, neural tissue, and hepatic tissue.
Collapse
Affiliation(s)
- J E Babensee
- Georgia Tech/Emory Department of Biomedical Engineering, Atlanta 30332-0535, USA
| | | | | |
Collapse
|
30
|
Hile DD, Amirpour ML, Akgerman A, Pishko MV. Active growth factor delivery from poly(D,L-lactide-co-glycolide) foams prepared in supercritical CO(2). J Control Release 2000; 66:177-85. [PMID: 10742578 DOI: 10.1016/s0168-3659(99)00268-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A method for the production of microporous poly(D, L-lactide-co-glycolide) foams containing encapsulated proteins using supercritical carbon dioxide is described. Foams generated as aqueous protein emulsions in a polymer-solvent solution were saturated with carbon dioxide at supercritical conditions, and then suddenly supersaturated at ambient conditions causing bubble nucleation and precipitation of the polymer. Proteins contained in the water phase of the emulsion were encapsulated within the foams, including basic fibroblast growth factor (bFGF), an angiogenic factor of interest in tissue engineering applications. The release and activity of bFGF from these foams was determined in vitro and compared with similar porous scaffolds prepared by traditional solvent casting-salt leaching techniques. Total protein release rate was greater from structures made in CO(2) than those made by the salt leaching technique, however a large initial burst of bFGF was released from the salt leached structures. This initial burst was not observed from the polymer foams processed in CO(2) and active bFGF was released at a relatively constant rate. Residual methylene chloride levels were measured in the foams made with CO(2) and were found to be above the limits imposed by the US Pharmacopoeia implying that further solvent removal would be required prior to in vivo use.
Collapse
Affiliation(s)
- D D Hile
- Texas A&M University, Department of Chemical Engineering, College Station, TX 77843-3122, USA
| | | | | | | |
Collapse
|
31
|
Abstract
A tissue-engineered implant is a biologic-biomaterial combination in which some component of tissue has been combined with a biomaterial to create a device for the restoration or modification of tissue or organ function. Specific growth factors, released from a delivery device or from co-transplanted cells, would aid in the induction of host parenchymal cell infiltration and improve engraftment of co-delivered cells for more efficient tissue regeneration or ameliorate disease states. The characteristic properties of growth factors are described to provide a biological basis for their use in tissue engineered devices. The principles of polymeric device development for therapeutic growth factor delivery in the context of tissue engineering are outlined. A review of experimental evidence illustrates examples of growth factor delivery from devices such as microparticles, scaffolds, and encapsulated cells, for their use in the application areas of musculoskeletal tissue, neural tissue, and hepatic tissue.
Collapse
Affiliation(s)
- J E Babensee
- Georgia Tech/Emory Department of Biomedical Engineering, Atlanta 30332-0535, USA
| | | | | |
Collapse
|
32
|
Bioartificial Implants: Design and Tissue Engineering. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1470-1804(00)80009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|