1
|
Bohler M, Gilbert ER, Cline MA. The anorexigenic effect of vasoactive intestinal polypeptide in Japanese quail is associated with molecular changes in the arcuate and dorsomedial hypothalamic nuclei. Domest Anim Endocrinol 2021; 74:106499. [PMID: 32858465 DOI: 10.1016/j.domaniend.2020.106499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/29/2020] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
Vasoactive intestinal polypeptide (VIP) is involved in gastric smooth muscle relaxation, vasodilation, and gastric secretions. It is also associated with appetite regulation, eliciting an anorexigenic response in mammals, birds, and fish; however, the molecular mechanism mediating this response is not well understood. The aim of the present study was thus to investigate hypothalamic mechanisms mediating VIP-induced satiety in 7-d old Japanese quail. In experiment 1, chicks that received intracerebroventricular (ICV) injection of VIP had reduced food intake for up to 180 min after injection and reduced water intake for 90 min. In experiment 2, VIP-treated chicks that were food restricted did not reduce water intake. In experiment 3, there was increased c-Fos immunoreactivity in the arcuate (ARC) and dorsomedial (DMN) nuclei of the hypothalamus in VIP-injected quail. In experiment 4, ICV VIP was associated with decreased neuropeptide Y mRNA in the ARC and DMN and an increase in corticotropin releasing factor mRNA in the DMN. In experiment 5, VIP-treated chicks displayed fewer feed pecks and locomotor behaviors. These results demonstrate that central VIP causes anorexigenic effects that are likely associated with reductions in orexigenic tone involving the ARC and DMN.
Collapse
Affiliation(s)
- M Bohler
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 2160 Litton-Reaves Hall, Blacksburg, VA 24061, USA
| | - E R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 2160 Litton-Reaves Hall, Blacksburg, VA 24061, USA
| | - M A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 2160 Litton-Reaves Hall, Blacksburg, VA 24061, USA.
| |
Collapse
|
2
|
Montagnese CM, Székely T, Csillag A, Zachar G. Distribution of vasotocin- and vasoactive intestinal peptide-like immunoreactivity in the brain of blue tit (Cyanistes coeruleus). Front Neuroanat 2015; 9:90. [PMID: 26236200 PMCID: PMC4500960 DOI: 10.3389/fnana.2015.00090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/23/2015] [Indexed: 12/06/2022] Open
Abstract
Blue tits (Cyanistes coeruleus) are songbirds, used as model animals in numerous studies covering a wide field of research. Nevertheless, the distribution of neuropeptides in the brain of this avian species remains largely unknown. Here we present some of the first results on distribution of Vasotocine (AVT) and Vasoactive intestinal peptide (VIP) in the brain of males and females of this songbird species, using immunohistochemistry mapping. The bulk of AVT-like cells are found in the hypothalamic supraoptic, paraventricular and suprachiasmatic nuclei, bed nucleus of the stria terminalis, and along the lateral forebrain bundle. Most AVT-like fibers course toward the median eminence, some reaching the arcopallium, and lateral septum. Further terminal fields occur in the dorsal thalamus, ventral tegmental area and pretectal area. Most VIP-like cells are in the lateral septal organ and arcuate nucleus. VIP-like fibers are distributed extensively in the hypothalamus, preoptic area, lateral septum, diagonal band of Broca. They are also found in the bed nucleus of the stria terminalis, amygdaloid nucleus of taenia, robust nucleus of the arcopallium, caudo-ventral hyperpallium, nucleus accumbens and the brainstem. Taken together, these results suggest that both AVT and VIP immunoreactive structures show similar distribution to other avian species, emphasizing evolutionary conservatism in the history of vertebrates. The current study may enable future investigation into the localization of AVT and VIP, in relation to behavioral and ecological traits in the brain of tit species.
Collapse
Affiliation(s)
- Catherine M Montagnese
- Department of Anatomy, Histology and Embryology, Semmelweis University Budapest, Hungary
| | - Tamás Székely
- Department of Biology and Biochemistry, University of Bath Bath, UK
| | - András Csillag
- Department of Anatomy, Histology and Embryology, Semmelweis University Budapest, Hungary
| | - Gergely Zachar
- Department of Anatomy, Histology and Embryology, Semmelweis University Budapest, Hungary
| |
Collapse
|
3
|
Miranda B, Esposito V, de Girolamo P, Sharp PJ, Wilson PW, Dunn IC. Orexin in the chicken hypothalamus: immunocytochemical localisation and comparison of mRNA concentrations during the day and night, and after chronic food restriction. Brain Res 2013; 1513:34-40. [PMID: 23548597 DOI: 10.1016/j.brainres.2013.03.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 03/17/2013] [Accepted: 03/20/2013] [Indexed: 12/11/2022]
Abstract
In mammals Orexin-A and -B are neuropeptides involved in the hypothalamic regulation of diverse physiological functions including food intake and the sleep-wake cycle. This generalisation was investigated in meat-(broiler) and layer-type juvenile domestic chickens by immunocytochemical localisation of orexin A/B in the hypothalamus, and by measurements of hypothalamic hypocretin mRNA which encodes for orexin A/B after chronic food restriction, and during the sleep-wake cycle. Orexin immunoreactive fibres were observed throughout the hypothalamus with cell bodies in and around the paraventricular nucleus. No differences were observed in the pattern of immunoreactivity using anti- human orexin-A, or -B antisera. The amount of hypothalamic hypocretin mRNA in food -restricted broilers was higher than in broilers fed ad libitum, but the same as in layer- type hens fed ad libitum. Hypothalamic hypocretin mRNA was increased (P<0.01) in 12-week-old broilers fed 25% of their ad libitum intake between 6-12 weeks of age. No difference in hypothalamic hypocretin mRNA was seen in 12-week-old layer- type hens when they were awake (1-2h after lights on) or sleeping (1-2h after lights off). It is concluded that in the chicken, we could not find evidence that hypothalamic orexin plays a role in the sleep-wake cycle and it may be involved in aspects of energy balance.
Collapse
Affiliation(s)
- Bernadette Miranda
- Department of Structures, Functions and Biological Technologies, University of Naples FedericoII, via Delpino1, I-80137 Naples, Italy
| | | | | | | | | | | |
Collapse
|
4
|
Esposito V, de Girolamo P, Gargiulo G, Dun NJ. Beacon-Like Immunoreactivity in the Hypothalamus of Domestic Chick. Anat Histol Embryol 2006; 35:361-4. [PMID: 17156088 DOI: 10.1111/j.1439-0264.2006.00694.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Beacon-immunoreactive (B-ir) fibres and neurons in the hypothalamus of the domestic chick (Gallus domesticus) were studied using an immunohistochemical technique in order to verify the presence and elucidate the pattern of distribution of this novel peptide in an avian brain. B-ir neurons were seen in the n. supraopticus, pars ventralis and pars externus; n. magnocellularis preopticus, pars dorsalis, medialis and ventralis; n. preopticus periventricularis; n. suprachiasmaticus, pars medialis; n. ventrolateralis thalami. Only few B-ir cells were scattered in the most anterior part of the lateral hypothalamic area. B-ir fibres, appearing as thin punctuate structures, were seen mainly along the walls of the third ventricle and in the ventromedial hypothalamus. Labelled fibres and terminals were located in the external and internal zones of the anterior and posterior median eminence. In particular, fibre terminals were seen close to the capillary loops of the hypothalamo-hypophysial portal system. The anatomical data of the present study regarding the distribution of B-ir in the chick hypothalamus suggest that beacon may play a key role in the regulation of the neuroendocrine system by acting as a neuromodulator and/or neurotransmitter.
Collapse
Affiliation(s)
- V Esposito
- Dipartimento di Strutture, Funzioni e Tecnologie Biologiche, Università di Napoli Federico II, Via Delpino, 1 I-80137 Napoli, Italy
| | | | | | | |
Collapse
|
5
|
Cantwell EL, Cassone VM. Chicken suprachiasmatic nuclei: II. Autoradiographic and immunohistochemical analysis. J Comp Neurol 2006; 499:442-57. [PMID: 16998905 DOI: 10.1002/cne.21124] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The vertebrate circadian system is composed of multiple inputs, oscillators, pacemakers, and outputs. In birds, the pineal gland and retinae have been defined as pacemakers within this system. Evidence for a third, hypothalamic pacemaker is abundant. It has been presumed that this pacemaker is homologous to the mammalian suprachiasmatic nucleus (SCN). Two candidate structures have been referred to as the avian SCN--the medial SCN (mSCN) and the visual SCN (vSCN). Previously, we suggested that both structures are involved in a "suprachiasmatic complex." To further explore evidence for an avian SCN, the present study employed several classical techniques to assess intrinsic characteristics of the mSCN and vSCN in the chicken. First, analysis of mSCN and vSCN cytoarchitecture indicated that the mSCN is similar in location and cell population to the mammalian SCN, while the vSCN is more similar in terms of its shape. Second, intravitreal injections of tritiated proline were used to identify hypothalamic retinal terminals. The findings support previous studies identifying the vSCN as the primary retinorecipient hypothalamic structure in birds. Third, analysis of mSCN and vSCN chemoarchitecture suggests that both the mSCN and vSCN display similarity to the mammalian SCN, which displays significant interspecies variation. Finally, a unique astrocytic bridge between the mSCN and vSCN is demonstrated, suggesting that astrocytes play a role within the suprachiasmatic nuclei of birds, similar to the situation in mammals. Our previously presented working model of the avian suprachiasmatic complex is updated to include these data.
Collapse
Affiliation(s)
- Elizabeth L Cantwell
- Department of Biology and Center for Research on Biological Clocks, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
6
|
Brandstätter R, Abraham U. Hypothalamic circadian organization in birds. I. Anatomy, functional morphology, and terminology of the suprachiasmatic region. Chronobiol Int 2003; 20:637-55. [PMID: 12916717 DOI: 10.1081/cbi-120023343] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In mammals, the "master clock" controlling circadian rhythmicity is located in the hypothalamic suprachiasmatic nuclei (SCN). Until now, no comparable structure has been unambiguously described in the brain of any nonmammalian vertebrate. In birds, early anatomical and lesioning studies described a SCN located in the anterior hypothalamus, but whether birds possess a nucleus equivalent to the mammalian SCN remained controversial. By reviewing the existing literature it became evident that confusion in delineation and nomenclature of hypothalamic cell groups may be one of the major reasons that no coherent picture of the avian hypothalamus exists. In this review, we attempt to clarify certain aspects of the organization of the avian hypothalamus by summarizing anatomical and functional studies and comparing them to immunocytochemical results from our laboratory. There is no single cell group in the avian hypothalamus that combines the morphological and neurochemical features of the mammalian SCN. Instead, certain aspects of anatomy and morphology suggest that at least two anatomically distinct cell groups, the SCN and the lateral hypothalamic nucleus (LHN), bear some of the characteristics of the mammalian SCN.
Collapse
Affiliation(s)
- Roland Brandstätter
- Department of Biological Rhythms and Behaviour, Max-Planck-Research Centre for Ornithology, Andechs, Germany.
| | | |
Collapse
|
7
|
Esposito V, Pelagalli GV, De Girolamo P, Gargiulo G. Anatomical distribution of NPY-like immunoreactivity in the domestic chick brain (Gallus domesticus). ACTA ACUST UNITED AC 2001; 263:186-201. [PMID: 11360235 DOI: 10.1002/ar.1089] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuropeptide Y-immunoreactive (NPY-ir) fibers and neurons in the brain of the domestic chick (Gallus domesticus) were described using an immunohistochemical technique. NPY-ir neurons were seen in the lobus parolfactorius; hyperstriatum, neostriatum, paleostriatum, and archistriatum; hippocampal and parahippocampal areas; dorsolateral corticoid area; piriform cortex; two thalamic areas contiguous to the n. rotundus; n. dorsolateralis anterior thalami, pars lateralis, and pars magnocellularis; n. periventricularis hypothalami; n. paraventricularis magnocellularis; regio lateralis hypothalami; n. infundibuli; inner zone of the median eminence; dorsal and lateral portions of the n. opticus basalis; n. raphes; and n. reticularis paramedianus. NPY-ir fibers were seen throughout the entire chick brain, but were more abundant in the hypothalamus where they formed networks and pathways. They were also observed in some circumventricular organs. The anatomical data of the present study regarding the distribution of NPY ir in the chick brain, together with the physiological findings of other studies, suggest that NPY plays a key role in the regulation of the neuroendocrine, vegetative, and sensory systems of birds by acting as a neuromodulator and/or neurotransmitter.
Collapse
Affiliation(s)
- V Esposito
- Dipartimento di Strutture, Funzioni e Tecnologie Biologiche, Universita' di Napoli Federico II, 80137 Napoli, Italia.
| | | | | | | |
Collapse
|
8
|
Esposito V, De Girolamo P, Gargiulo G. Neurotensin-like immunoreactivity in the brain of the chicken, Gallus domesticus. J Anat 1997; 191 ( Pt 4):537-46. [PMID: 9449073 PMCID: PMC1467721 DOI: 10.1046/j.1469-7580.1997.19140537.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The distribution of neurons containing neurotensin in the central nervous system of the chicken was studied immunohistochemically. The majority of the neurotensin-immunoreactive (-ir) cell bodies were located in the hypothalamus. Extensive groups of labelled perikarya were found in the hypothalamic periventricular nucleus and in the magnocellular periventricular nucleus. In addition, ir-perikarya were scattered throughout the lateral hypothalamic area and in the ventromedial hypothalamic nucleus. The only extrahypothalamic site of ir-perikarya was in the region immediately under the lateral forebrain bundle. Immunoreactive fibres were detected in the hippocampus, the parahippocampal area, the hypothalamus, the region of the tractus corticohabenular and corticoseptal tracts, the median eminence, the region above the posterior commissure and in the intercollicular nucleus. The distribution pattern of the neurotensin-ir neurons suggests that neurotensin-like peptides are involved in the hypophysiotropic functions.
Collapse
Affiliation(s)
- V Esposito
- Department of Structures, Functions and Biological Technologies, University of Naples Federico II, Italy
| | | | | |
Collapse
|
9
|
Esposito V, De Girolamo P, Gargiulo G. Extrahypothalamic distribution of vasoactive intestinal polypeptide (VIP)-like immunoreactivity in the chicken brain, Gallus domesticus. Neuropeptides 1994; 27:225-34. [PMID: 7808595 DOI: 10.1016/0143-4179(94)90003-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The distribution of VIP-immunoreactive neurons and fibers was detected in the extrahypothalamic areas of chicken brain by immunohistochemistry and light microscopy VIP-ir perikarya were found in the hippocampus and in the area parahippocampalis; in the area ventralis of Tsai, in the n. interpeduncularis, in the substantia nigra, in the substantia grisea centralis, in the locus coeruleus, in the n. subcoeruleus ventralis and in the n. pontis lateralis. VIP-ir fibers were seen in the lobus parolfactorius and throughout the brainstem mainly arranged in lateral and midsagittal position. This finding was discussed in relation to other studies performed on chicken and/or other avian brain. The distributional pattern of VIP-ergic system in the chicken brain suggests a possible involvement of VIP or VIP-like peptide in several neuroregulatory mechanisms.
Collapse
Affiliation(s)
- V Esposito
- Department of Structures, Functions and Biological Technologies, University of Naples Federico II, Italy
| | | | | |
Collapse
|