1
|
Chan JYW, Tsui JCC, Law PTW, So WKW, Leung DYP, Sham MMK, Tsui SKW, Chan CWH. Profiling of the silica-induced molecular events in lung epithelial cells using the RNA-Seq approach. J Appl Toxicol 2017; 37:1162-1173. [PMID: 28425640 DOI: 10.1002/jat.3471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 01/15/2023]
Abstract
Silicosis is a prolonged, irreversible and incurable occupational disease, and there is a significant number of newly diagnosed cases every year in Hong Kong. Due to the long latency of the disease, the diagnosis can be missed until detailed clinical examination at a later stage. For a better control of this deadly disease, detailing the pro-inflammatory and fibrotic events in the macrophage would be instrumental in understanding the pathogenesis of the disease and essential for the significant biomarkers discovery. In this in vitro study, human cell line model A549 lung epithelial cells were used. The immediate molecular events underneath the activation of quartz silica polymorphs were followed in a time course of 0, 0.5, 2, 8, 16 and 24 h. The transcriptome library was prepared and subjected to RNA-Seq analysis. Data analysis was performed by pathway analysis tools and verified by real-time PCR. The results showed that triggered genes were mainly found in the immune response and inflammatory pathways. An interesting finding was the association of the DNA-binding protein inhibitor (ID) family in the silica exposure to lung cells. The linkage of ID1, ID2 and ID3 to cancer may rationalize themselves to be the markers indicating an early response of silicosis. However, further studies are required to consolidate the roles of these genes in silicosis. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Judy Y W Chan
- Nethersole School of Nursing, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Joseph C C Tsui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Patrick T W Law
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Winnie K W So
- Nethersole School of Nursing, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Doris Y P Leung
- Nethersole School of Nursing, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - Stephen K W Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Carmen W H Chan
- Nethersole School of Nursing, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
2
|
Cutucache CE, Herek TA. Burrowing through the Heterogeneity: Review of Mouse Models of PTCL-NOS. Front Oncol 2016; 6:206. [PMID: 27725924 PMCID: PMC5035739 DOI: 10.3389/fonc.2016.00206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022] Open
Abstract
Currently, there are 19 different peripheral T-cell lymphoma (PTCL) entities recognized by the World Health Organization; however, ~70% of PTCL diagnoses fall within one of three subtypes [i.e., peripheral T-cell lymphoma not otherwise specified (PTCL-NOS), anaplastic large-cell lymphoma, and angioimmunoblastic T-cell lymphoma]. PTCL-NOS is a grouping of extra-thymic neoplasms that represent a challenging and heterogeneous subset of non-Hodgkin’s lymphomas. Research into peripheral T-cell lymphomas has been cumbersome as the lack of defining cytogenetic, histological, and molecular features has stymied diagnosis and treatment of these diseases. Similarly, the lacks of genetically manipulated murine models that faithfully recapitulate disease characteristics were absent prior to the turn of the century. Herein, we review the literature concerning existing mouse models for PTLC-NOS, while paying particular attention to the etiology of this heterogeneous disease.
Collapse
|
3
|
Chen D, Forootan SS, Gosney JR, Forootan FS, Ke Y. Increased expression of Id1 and Id3 promotes tumorigenicity by enhancing angiogenesis and suppressing apoptosis in small cell lung cancer. Genes Cancer 2014; 5:212-25. [PMID: 25061504 PMCID: PMC4104762 DOI: 10.18632/genesandcancer.20] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/04/2014] [Indexed: 12/31/2022] Open
Abstract
Constant deregulation of Id1 and Id3 has been implicated in a wide range of carcinomas. However, underlying molecular evidence for the joint role of Id1 and Id3 in the tumorigenicity of small cell lung cancer (SCLC) is sparse. Investigating the biological significance of elevated expression in SCLC cells, we found that Id1 and Id3 co-suppression resulted in significant reduction of proliferation rate, invasiveness and anchorage-independent growth. Suppressing both Id1 and Id3 expression also greatly reduced the average size of tumors produced by transfectant cells when inoculated subcutaneously into nude mice. Further investigation revealed that suppressed expression of Id1 and Id3 was accompanied by decreased angiogenesis and increased apoptosis. Therefore, the SCLC tumorigenicity suppression effect of double knockdown of Id1 and Id3 may be regulated through pathways of apoptosis and angiogenesis.
Collapse
Affiliation(s)
- Danqing Chen
- Molecular Pathology Laboratory, Department of Molecular and Clinical Cancer Medicine, Liverpool University, 5/6th Floor, Duncan Building, Daulby Street, Liverpool, L69 3GA, UK
| | - Shiva S Forootan
- Molecular Pathology Laboratory, Department of Molecular and Clinical Cancer Medicine, Liverpool University, 5/6th Floor, Duncan Building, Daulby Street, Liverpool, L69 3GA, UK
| | - John R Gosney
- Molecular Pathology Laboratory, Department of Molecular and Clinical Cancer Medicine, Liverpool University, 5/6th Floor, Duncan Building, Daulby Street, Liverpool, L69 3GA, UK
| | - Farzad S Forootan
- Molecular Pathology Laboratory, Department of Molecular and Clinical Cancer Medicine, Liverpool University, 5/6th Floor, Duncan Building, Daulby Street, Liverpool, L69 3GA, UK
| | - Youqiang Ke
- Molecular Pathology Laboratory, Department of Molecular and Clinical Cancer Medicine, Liverpool University, 5/6th Floor, Duncan Building, Daulby Street, Liverpool, L69 3GA, UK
| |
Collapse
|
4
|
Structure of a dominant-negative helix-loop-helix transcriptional regulator suggests mechanisms of autoinhibition. EMBO J 2012; 31:2541-52. [PMID: 22453338 DOI: 10.1038/emboj.2012.77] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 03/06/2012] [Indexed: 01/28/2023] Open
Abstract
Helix-loop-helix (HLH) family transcription factors regulate numerous developmental and homeostatic processes. Dominant-negative HLH (dnHLH) proteins lack DNA-binding ability and capture basic HLH (bHLH) transcription factors to inhibit cellular differentiation and enhance cell proliferation and motility, thus participating in patho-physiological processes. We report the first structure of a free-standing human dnHLH protein, HHM (Human homologue of murine maternal Id-like molecule). HHM adopts a V-shaped conformation, with N-terminal and C-terminal five-helix bundles connected by the HLH region. In striking contrast to the common HLH, the HLH region in HHM is extended, with its hydrophobic dimerization interfaces embedded in the N- and C-terminal helix bundles. Biochemical and physicochemical analyses revealed that HHM exists in slow equilibrium between this V-shaped form and the partially unfolded, relaxed form. The latter form is readily available for interactions with its target bHLH transcription factors. Mutations disrupting the interactions in the V-shaped form compromised the target transcription factor specificity and accelerated myogenic cell differentiation. Therefore, the V-shaped form of HHM may represent an autoinhibited state, and the dynamic conformational equilibrium may control the target specificity.
Collapse
|
5
|
Geest CR, Buitenhuis M, Vellenga E, Coffer PJ. Ectopic expression of C/EBPalpha and ID1 is sufficient to restore defective neutrophil development in low-risk myelodysplasia. Haematologica 2009; 94:1075-84. [PMID: 19644139 DOI: 10.3324/haematol.2008.000471] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In patients with myelodysplasia, a general defect in the multipotent stem-cell compartment results in disturbed proliferation and differentiation of the erythroid, megakaryocytic and myeloid lineages. Although a number of genetic defects in myelodysplastic progenitor cells have been described, the intracellular signaling pathways underlying aberrant regulation of myelopoiesis remain relatively undefined. DESIGN AND METHODS Here, an ex vivo differentiation system was used to selectively screen for molecules improving defective hematopoiesis in myelodysplastic CD34(+) progenitor cells. RESULTS Bone marrow-derived CD34(+) cells isolated from patients with low-risk myelodysplastic syndrome showed impaired capacity to proliferate and differentiate as well as increased levels of apoptosis. In an attempt to improve the expansion and differentiation of the myelodysplastic CD34(+) progenitors, cells were treated with the p38MAPK pharmacological inhibitor SB203580, or retrovirally transduced to ectopically express active protein kinase B (PKB/c-akt), or the transcriptional regulators STAT5, C/EBPalpha or ID1. Whereas treatment of progenitors with SB203580, PKB or STAT5 did not enhance neutrophil development, ID1- and C/EBPalpha-transduced cells exhibited increased granulocyte/macrophage colony formation. Furthermore, ectopic expression of C/EBPalpha resulted in improved neutrophil maturation. CONCLUSIONS These data suggest that targeting the ID1 and C/EBPalpha transcriptional regulators may be of benefit in the design of novel therapies for low-risk myelodysplasia.
Collapse
Affiliation(s)
- Christian R Geest
- Department of Immunology, University Medical Center, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
6
|
Trabosh VA, Divito KA, D Aguda B, Simbulan-Rosenthal CM, Rosenthal DS. Sequestration of E12/E47 and suppression of p27KIP1 play a role in Id2-induced proliferation and tumorigenesis. Carcinogenesis 2009; 30:1252-9. [PMID: 19451188 DOI: 10.1093/carcin/bgp115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Id2 is a member of the helix-loop-helix (HLH) family of transcription regulators known to antagonize basic HLH transcription factors and proteins of the retinoblastoma tumor suppressor family and is implicated in the regulation of proliferation, differentiation, apoptosis and carcinogenesis. To investigate its proposed role in tumorigenesis, Id2 or deletion mutants were re-expressed in Id2(-/-) dermal fibroblasts. Ectopic expression of Id2 or mutants containing the central HLH domain increased S-phase cells, cell proliferation in low and normal serum and induced tumorigenesis when grafted or subcutaneously injected into athymic mice. Similar to their downregulation in human tumors, the expression of cyclin-dependent kinase inhibitors p27(KIP1) and p15(INK4b) was decreased by Id2; the former by downregulation of its promoter by the Id2 HLH domain-mediated sequestration of E12/E47. Re-expression of p27(KIP1) in Id2-overexpressing cells reverted the hyperproliferative and tumorigenic phenotype, implicating Id2 as an oncogene working through p27(KIP1). These results tie together the previously observed misregulation of Id2 with a novel mechanism for tumorigenesis.
Collapse
Affiliation(s)
- Valerie A Trabosh
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, 3900 Reservoir Road NW, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
7
|
Suh HC, Leeanansaksiri W, Ji M, Klarmann KD, Renn K, Gooya J, Smith D, McNiece I, Lugthart S, Valk PJM, Delwel R, Keller JR. Id1 immortalizes hematopoietic progenitors in vitro and promotes a myeloproliferative disease in vivo. Oncogene 2008; 27:5612-23. [PMID: 18542061 PMCID: PMC3073486 DOI: 10.1038/onc.2008.175] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 03/25/2008] [Accepted: 04/25/2008] [Indexed: 01/21/2023]
Abstract
Id1 is frequently overexpressed in many cancer cells, but the functional significance of these findings is not known. To determine if Id1 could contribute to the development of hematopoietic malignancy, we reconstituted mice with hematopoietic cells overexpressing Id1. We showed for the first time that deregulated expression of Id1 leads to a myeloproliferative disease in mice, and immortalizes myeloid progenitors in vitro. In human cells, we demonstrate that Id genes are expressed in human acute myelogenous leukemia cells, and that knock down of Id1 expression inhibits leukemic cell line growth, suggesting that Id1 is required for leukemic cell proliferation. These findings established a causal relationship between Id1 overexpression and hematologic malignancy. Thus, deregulated expression of Id1 may contribute to the initiation of myeloid malignancy, and Id1 may represent a potential therapeutic target for early stage intervention in the treatment of hematopoietic malignancy.
Collapse
Affiliation(s)
- HC Suh
- Basic Research Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
- Center for Cancer Research, NCI-Frederick, Frederick, MD, USA
| | - W Leeanansaksiri
- Basic Research Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
- Center for Cancer Research, NCI-Frederick, Frederick, MD, USA
| | - M Ji
- Basic Research Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
- Center for Cancer Research, NCI-Frederick, Frederick, MD, USA
| | - KD Klarmann
- Basic Research Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
- Center for Cancer Research, NCI-Frederick, Frederick, MD, USA
| | - K Renn
- Basic Research Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
- Center for Cancer Research, NCI-Frederick, Frederick, MD, USA
| | - J Gooya
- Basic Research Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
- Center for Cancer Research, NCI-Frederick, Frederick, MD, USA
| | - D Smith
- Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - I McNiece
- Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - S Lugthart
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - PJM Valk
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - R Delwel
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - JR Keller
- Basic Research Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD, USA
- Center for Cancer Research, NCI-Frederick, Frederick, MD, USA
| |
Collapse
|
8
|
Abstract
Over the past few decades, biologists have identified key molecular signatures associated with a wide range of human cancers. Recently, animal models have been particularly useful in establishing whether such signatures have functional relevance; the overexpression of pro-oncogenic or loss of anti-oncogenic factors have been evaluated for their effects on various tumour models. The aim of this review is to analyze the potential role of the inhibitor of DNA binding (Id) proteins in cancer and examine whether deregulated Id activity is tumorigenic and contributes to hallmarks of malignancy, such as loss of differentiation (anaplasia), unrestricted proliferation and neoangiogenesis.
Collapse
Affiliation(s)
- Jonathan Perk
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue Box 241, New York 10021, USA
| | | | | |
Collapse
|
9
|
Affiliation(s)
- Xiao-Hong Sun
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation Oklahoma City, OK 73104, USA
| |
Collapse
|
10
|
Geha RS, Jabara HH, Brodeur SR. The regulation of immunoglobulin E class-switch recombination. Nat Rev Immunol 2003; 3:721-32. [PMID: 12949496 DOI: 10.1038/nri1181] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunoglobulin E (IgE) isotype antibodies are associated with atopic disease, namely allergic rhinitis, asthma and atopic dermatitis, but are also involved in host immune defence mechanisms against parasitic infection. The commitment of a B cell to isotype class switch to an IgE-producing cell is a tightly regulated process, and our understanding of the regulation of IgE-antibody production is central to the prevention and treatment of atopic disease. Both those that are presently in use and potential future therapies to prevent IgE-mediated disease take advantage of our existing knowledge of the specific mechanisms that are required for IgE class switching.
Collapse
Affiliation(s)
- Raif S Geha
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
11
|
Husson H, Carideo EG, Neuberg D, Schultze J, Munoz O, Marks PW, Donovan JW, Chillemi AC, O'Connell P, Freedman AS. Gene expression profiling of follicular lymphoma and normal germinal center B cells using cDNA arrays. Blood 2002; 99:282-9. [PMID: 11756183 DOI: 10.1182/blood.v99.1.282] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Follicular lymphomas (FLs) are neoplastic counterparts of normal germinal center (GC) B cells. FLs are characterized by t(14;18) with deregulation of the Bcl-2 (BCL2) gene. The presence of t(14;18) and overexpression of Bcl-2 is necessary, but not sufficient, to cause this disease. An array containing 588 complementary DNAs (cDNAs) was used to compare the gene expression between GC B cells and FL cells. To specifically monitor genes expressed in normal GC B and FL cells and not the entire tissue compartment, normal and malignant B cells were purified from tissues. Using the array, 37 genes were up-regulated and 28 were down-regulated in FL cells as compared to normal GC B cells. The expression level of each differentially expressed gene was verified by quantitative polymerase chain reaction. Following these studies 24 genes were up-regulated and 8 genes down-regulated with a P value less than.1. Included among the genes that were up-regulated in FLs were cell cycle regulator proteins CDK10, p120, p21CIP1, and p16INK4A; transcription factors/regulators Pax-5 and Id-2, which are involved in normal B-cell development; and genes involved in cell-cell interactions, tumor necrosis factor, interleukin-2R gamma (IL-2R gamma), and IL-4R alpha. Among the genes that were down-regulated in FLs were MRP8 and MRP14, which are involved in adhesion. Interestingly, several of these genes are localized within chromosomal regions already described to be altered in FLs. These findings provide a basis for future studies into the pathogenesis and pathophysiology of FL and may lead to the identification of potential therapeutic targets as well as antigens for immunotherapeutic strategies.
Collapse
Affiliation(s)
- Hervé Husson
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Woo PL, Cercek A, Desprez PY, Firestone GL. Involvement of the helix-loop-helix protein Id-1 in the glucocorticoid regulation of tight junctions in mammary epithelial cells. J Biol Chem 2000; 275:28649-58. [PMID: 10878025 DOI: 10.1074/jbc.m910373199] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammary epithelial cell-cell junctions undergo morphological and structural differentiation during pregnancy and lactation, but little is known about the transcriptional regulators that are involved in this process. In Con8 mammary epithelial tumor cells, we have previously documented that the synthetic glucocorticoid, dexamethasone, induces the reorganization of the tight junction and adherens junction and stimulates the monolayer transepithelial electrical resistance (TER), a reliable in vitro measurement of tight junction sealing. Western blots demonstrated that dexamethasone treatment rapidly and strongly stimulated the level of the Id-1 protein, which is a serum-inducible helix-loop-helix transcriptional repressor. The steroid induction of Id-1 was robust by 4 h of treatment and maintained over a 24-h period. Isopropyl-1-thio-beta-d-galactopyranoside-inducible expression of exogenous Id-1 in Con8 cells was shown to strongly facilitate the dexamethasone induction of TER in the absence of serum without altering the dexamethasone-dependent reorganization of ZO-1, beta-catenin, or F-actin. Ectopic overexpression of Id-1 in the SCp2 nontumorigenic mammary epithelial cells, which does not undergo complete dexamethasone-dependent tight junction reorganization, enhanced the dexamethasone-induced ZO-1 tight junction localization and stimulated the monolayer TER. Moreover, antisense reduction of Id-1 protein in SCp2 cells prevented the apical junction reorganization and dexamethasone-stimulated TER. Our results implicate Id-1 as acting as a critical regulator of mammary epithelial cell-cell interactions at an early step in the glucocorticoid-dependent signaling pathway that controls tight junction integrity.
Collapse
Affiliation(s)
- P L Woo
- Department of Molecular and Cell Biology and the Cancer Research Laboratory, University of California at Berkeley, Berkeley, California 94720-3200, USA
| | | | | | | |
Collapse
|
13
|
Studzinski GP, Harrison LE. Differentiation-related changes in the cell cycle traverse. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 189:1-58. [PMID: 10333577 DOI: 10.1016/s0074-7696(08)61384-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review examines recent developments relating to the interface between cell proliferation and differentiation. It is suggested that the mechanism responsible for this transition is more akin to a "dimmer" than to a "switch," that it is more useful to refer to early and late stages of differentiation rather than to "terminal" differentiation, and examples of the reversibility of differentiation are provided. An outline of the established paradigm of cell cycle regulation is followed by summaries of recent studies that suggest that this paradigm is overly simplified and should be interpreted in the context of different cell types. The role of inhibitors of cyclin-dependent kinases in differentiation is discussed, but the data are still inconclusive. An increasing interest in the changes in G2/M transition during differentiation is illustrated by examples of polyploidization during differentiation, such as megakaryocyte maturation. Although the retinoblastoma protein is currently maintaining its prominent role in control of proliferation and differentiation, it is anticipated that equally important regulators will be discovered and provide an explanation at the molecular level for the gradual transition from proliferation to differentiation.
Collapse
Affiliation(s)
- G P Studzinski
- Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry, New Jersey Medical School, Newark 07103, USA
| | | |
Collapse
|
14
|
Florio M, Hernandez MC, Yang H, Shu HK, Cleveland JL, Israel MA. Id2 promotes apoptosis by a novel mechanism independent of dimerization to basic helix-loop-helix factors. Mol Cell Biol 1998; 18:5435-44. [PMID: 9710627 PMCID: PMC109128 DOI: 10.1128/mcb.18.9.5435] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/1998] [Accepted: 06/18/1998] [Indexed: 11/20/2022] Open
Abstract
Members of the helix-loop-helix (HLH) family of Id proteins have demonstrated roles in the regulation of differentiation and cell proliferation. Id proteins inhibit differentiation by HLH-mediated heterodimerization with basic HLH transcription factors. This blocks their sequence-specific binding to DNA and activation of target genes that are often expressed in a tissue-specific manner. Id proteins can also act as positive regulators of cell proliferation. The different mechanisms proposed for Id-mediated promotion of entry into S phase also involve HLH-mediated interactions affecting regulators of the G1/S transition. We have found that Id2 augments apoptosis in both interleukin-3 (IL-3)-dependent 32D.3 myeloid progenitors and U2OS osteosarcoma cells. We could not detect a similar activity for Id3. In contrast to the effects of Id2 on differentiation and cell proliferation, Id2-mediated apoptosis is independent of HLH-mediated dimerization. The ability of Id2 to promote cell death resides in its N-terminal region and is associated with the enhanced expression of a known component of the programmed cell death pathway, the proapoptotic gene BAX.
Collapse
Affiliation(s)
- M Florio
- Preuss Laboratory for Molecular Neuro-Oncology, Brain Tumor Research Center, Department of Neurological Surgery, University of California, San Francisco, California 94143-0520, USA
| | | | | | | | | | | |
Collapse
|
15
|
Deed RW, Jasiok M, Norton JD. Lymphoid-specific expression of the Id3 gene in hematopoietic cells. Selective antagonism of E2A basic helix-loop-helix protein associated with Id3-induced differentiation of erythroleukemia cells. J Biol Chem 1998; 273:8278-86. [PMID: 9525934 DOI: 10.1074/jbc.273.14.8278] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence implicates functions of the Id family of helix-loop-helix proteins in the regulation of cell growth and differentiation in metazoa. Within the mammalian hematopoietic organ, expression of the Id3 gene is restricted to the lymphoid cell compartment. We show here that in non-lymphoid hematopoietic cells, repression of transcription is correlated with hypermethylation of sequences in the vicinity of the upstream regulatory region of the Id3 gene, suggestive of a strict developmental control of expression of this gene in lymphoid versus non-lymphoid hematopoietic cells. Enforced ectopic expression of Id3 in K562 erythroid progenitor cells promotes erythroid differentiation and is correlated with a quantitative/qualitative shift in the profile of interacting TAL1 and E protein heterodimers that bind to a consensus E box sequence in in vitro band shift assays, consistent with selective targeting of E2A E protein(s) by Id3 and suggesting a possible mechanism involving TAL1-mediated differentiation. By using a Gal 4-VP16 two-hybrid competition assay and an E box-dependent reporter assay, we demonstrate directly that the E2A protein E47 preferentially associates with Id3 in vivo. These observations provide a paradigm for understanding how overlapping but distinct specificities of individual Id proteins may constitute a developmentally regulated program underlying cell determination in diverse lineages.
Collapse
Affiliation(s)
- R W Deed
- CRC Department of Gene Regulation, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 9BX, United Kingdom
| | | | | |
Collapse
|
16
|
Norton JD, Deed RW, Craggs G, Sablitzky F. Id helix—loop—helix proteins in cell growth and differentiation. Trends Cell Biol 1998. [DOI: 10.1016/s0962-8924(98)80013-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Inaba Y, Ishiguro A, Shimbo T. The production of macrophage inflammatory protein-1alpha in the cerebrospinal fluid at the initial stage of meningitis in children. Pediatr Res 1997; 42:788-93. [PMID: 9396559 DOI: 10.1203/00006450-199712000-00012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neutrophils in the cerebrospinal fluid (CSF) increase during the initial stage of meningitis. Some cytokines induce the accumulation of such neutrophils, and we and other investigators have revealed transient increases in the levels of granulocyte-colony stimulating factor (G-csf) and IL-8 in the CSF of patients with meningitis. To explore the coordination of other cytokines with G-csf and IL-8 in the neutrophil accumulation in the CSF, we herein investigated macrophage inflammatory protein-1alpha (MIP-1alpha), which can induce the infiltration of neutrophils. The modulation of MIP-1alpha levels in the CSF in children with bacterial (n = 10) and aseptic (n = 22) meningitis was examined using an ELISA. MIP-1alpha levels in the CSF were detectable at the stage with symptoms of meningitis: 289.9 +/- 270.7 ng/L in the bacterial meningitis group and 16.1 +/- 12.5 ng/L in the aseptic meningitis group. These levels decreased with the improvement of symptoms. MIP-1alpha was not detectable (<6 ng/L) in all of the control patients without meningitis (n = 19). The MIP-1alpha levels in the CSF showed a significant correlation with the CSF neutrophil counts (r = 0.750, p < 0.0001; n = 80) of meningitis, and the values of MIP-1alpha (log ng/L)/neutrophil counts (log/L) ratio were calculated (1.003 +/- 0.576). The MIP-1alpha levels in the serum were significantly lower than those in the CSF (p = 0.0464). We found MIP-1alpha mRNA in the CSF cells by the reverse transcriptase-PCR method, and high levels of MIP-1alpha protein in the culture media from mononuclear cells in the CSF in vitro. In summary, The MIP-1alpha level increases in the CSF at the symptomatic stage of meningitis in children, and its cellular source is, in part, mononuclear cells which have infiltrated the CSF. We propose that MIP-1alpha, in addition to G-csf and IL-8, plays an important role in the accumulation of neutrophils in the CSF of patients with meningitis.
Collapse
Affiliation(s)
- Y Inaba
- Department of Pediatrics, Mizonokuchi Hospital, Teikyo University School of Medicine, Kawasaki, Japan
| | | | | |
Collapse
|
18
|
Expression of the Id Family Helix-Loop-Helix Regulators During Growth and Development in the Hematopoietic System. Blood 1997. [DOI: 10.1182/blood.v89.9.3155] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractTo better understand the molecular mechanism(s) by which growth and differentiation of the primitive hematopoietic stem cell is initiated, as well as the means by which the maturing cell can commit to development along a specific cell lineage, we elected to study the Id family of helix-loop-helix (HLH) transcriptional regulators. Some members of the HLH family are expressed in a stage-specific manner during hematopoietic development and can regulate the ability of immature hematopoietic cells to terminally differentiate. None of the four Id family genes were detected in the most primitive progenitors. Id-1 was widely expressed in proliferating bi- and unipotential progenitors, but its expression was downregulated in cells of increasing maturity; conversely, Id-2 and, to a limited extent, Id-3 gene expression increased as cells matured and lost proliferative capacity. Id-2 expression ran counter to that of Id-1 not only during maturation, but during periods of cell growth and arrest as well. This is quite distinct from the nonhematopoietic tissues, in which these two factors are coordinately expressed and suggests that Id-1 and Id-2 might be regulating very different events during hematopoiesis than they regulate in other cell types.
Collapse
|
19
|
Ishiguro A, Suzuki Y, Inaba Y, Komiyama A, Koeffler HP, Shimbo T. Production of interleukin-10 in the cerebrospinal fluid in aseptic meningitis of children. Pediatr Res 1996; 40:610-4. [PMID: 8888291 DOI: 10.1203/00006450-199610000-00016] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
IL-10 is a cytokine that has antiinflammatory properties. We investigated IL-10 using ELISA and a reverse-transcribed polymerase chain reaction in the cerebrospinal fluid (CSF) of children with or without aseptic meningitis. When the patients with aseptic meningitis had meningeal symptoms, IL-10 in the CSF was detectable in 14 of 22 patients (88 +/- 146 ng/L, n = 31). The IL-10 levels decreased as meningeal symptoms disappeared. In 20 of 21 control children without meningitis, CSF samples had no detectable levels of IL-10 (< 10 ng/L). Serum IL-10 levels were lower than the corresponding levels in the CSF from the same individuals with aseptic meningitis. Significant correlations were found between IL-10 levels and mononuclear cell counts in the CSF of the affected patients (r = 0.644, p < 0.001). The IL-10 mRNA was detected by reverse-transcribed polymerase chain reaction-assisted amplification in the CSF cells in four of seven patients with the disease. The culture of CSF mononuclear cells produced high levels of IL-10 (152-485 ng/L) in all of five patients. Cytokine kinetics in the CSF showed that mean IL-10 levels reached the peak on the 2nd to 3rd d of the illness, although all mean levels of IL-6, IL-8, and granulocyte colony-stimulating factor were the highest on the 1st d of the illness. In summary, IL-10 is produced in the CSF in aseptic meningitis, and may increase relatively late compared with the proinflammatory cytokines. IL-10 may play an immunoregulatory role in the meningeal inflammatory network.
Collapse
Affiliation(s)
- A Ishiguro
- Department of Pediatrics, Mizonokuchi Hospital, Teikyo University School of Medicine, Kawasaki, Japan
| | | | | | | | | | | |
Collapse
|