1
|
Ghezzo MN, Fernandes MT, Pacheco-Leyva I, Rodrigues PM, Machado RS, Araújo MAS, Kalathur RK, Futschik ME, Alves NL, dos Santos NR. FoxN1-dependent thymic epithelial cells promote T-cell leukemia development. Carcinogenesis 2018; 39:1463-1476. [DOI: 10.1093/carcin/bgy127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 09/19/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marinella N Ghezzo
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
- PhD Program in Biomedical Sciences, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - Mónica T Fernandes
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
- PhD Program in Biomedical Sciences, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - Ivette Pacheco-Leyva
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, Porto, Portugal
- Institute of Pathology and Molecular Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Pedro M Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, Porto, Portugal
- Thymus Development and Function Laboratory, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Rui S Machado
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
- ProRegeM PhD Program, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - Marta A S Araújo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, Porto, Portugal
- Institute of Pathology and Molecular Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Ravi K Kalathur
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Matthias E Futschik
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- School of Biomedical Sciences, Faculty of Medicine and Dentistry, Institute of Translational and Stratified Medicine (ITSMED), University of Plymouth, Plymouth, UK
| | - Nuno L Alves
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, Porto, Portugal
- Thymus Development and Function Laboratory, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Nuno R dos Santos
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, Porto, Portugal
- Institute of Pathology and Molecular Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| |
Collapse
|
2
|
Endogenous dendritic cells from the tumor microenvironment support T-ALL growth via IGF1R activation. Proc Natl Acad Sci U S A 2016; 113:E1016-25. [PMID: 26862168 DOI: 10.1073/pnas.1520245113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Primary T-cell acute lymphoblastic leukemia (T-ALL) cells require stromal-derived signals to survive. Although many studies have identified cell-intrinsic alterations in signaling pathways that promote T-ALL growth, the identity of endogenous stromal cells and their associated signals in the tumor microenvironment that support T-ALL remains unknown. By examining the thymic tumor microenvironments in multiple murine T-ALL models and primary patient samples, we discovered the emergence of prominent epithelial-free regions, enriched for proliferating tumor cells and dendritic cells (DCs). Systematic evaluation of the functional capacity of tumor-associated stromal cells revealed that myeloid cells, primarily DCs, are necessary and sufficient to support T-ALL survival ex vivo. DCs support T-ALL growth both in primary thymic tumors and at secondary tumor sites. To identify a molecular mechanism by which DCs support T-ALL growth, we first performed gene expression profiling, which revealed up-regulation of platelet-derived growth factor receptor beta (Pdgfrb) and insulin-like growth factor I receptor (Igf1r) on T-ALL cells, with concomitant expression of their ligands by tumor-associated DCs. Both Pdgfrb and Igf1r were activated in ex vivo T-ALL cells, and coculture with tumor-associated, but not normal thymic DCs, sustained IGF1R activation. Furthermore, IGF1R signaling was necessary for DC-mediated T-ALL survival. Collectively, these studies provide the first evidence that endogenous tumor-associated DCs supply signals driving T-ALL growth, and implicate tumor-associated DCs and their mitogenic signals as auspicious therapeutic targets.
Collapse
|
3
|
Bessette K, Lang ML, Fava RA, Grundy M, Heinen J, Horne L, Spolski R, Al-Shami A, Morse HC, Leonard WJ, Kelly JA. A Stat5b transgene is capable of inducing CD8+ lymphoblastic lymphoma in the absence of normal TCR/MHC signaling. Blood 2007; 111:344-50. [PMID: 17890450 PMCID: PMC2200817 DOI: 10.1182/blood-2007-04-084707] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stat5 proteins are critical signaling molecules activated by many cytokines. Within the immune system, Stat5 plays important roles related to the development of thymocytes and proliferation of T cells. Stat5 has been implicated in malignant transformation, and moreover, the activated tyrosine phosphorylated form of Stat5 is frequently observed in human lymphomas. We previously demonstrated the oncogenic potential of Stat5, with thymic lymphoblastic lymphomas developing in a significant proportion of transgenic (TG) mice overexpressing Stat5a or Stat5b in lymphocytes. In addition, immunization or expression of a T-cell receptor (TCR) transgene augmented the rate of tumor formation. Here, we investigate the mechanism of Stat5-mediated lymphomagenesis by exploring the contributions of major histocompatibility complex (MHC)/TCR and pre-TCR signals. We present data demonstrating that Stat5b TG mice unexpectedly develop CD8(+) lymphoma even in the absence of either pre-TCR signaling or normal thymic selection. Indeed, acceleration of Stat5b transgene-mediated lymphoma occurred on TCRalpha(-/-) and pre-TCRalpha(-/-) backgrounds. In light of these data, we propose a model in which alterations in T-cell development at the double-negative/double-positive (DN/DP) stages cooperate with cytokine-mediated pathways in immature thymocytes to give rise to lymphoblastic T-cell lymphomas in Stat5b TG mice.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/physiology
- Cell Transformation, Neoplastic/immunology
- Killer Cells, Natural/pathology
- Killer Cells, Natural/physiology
- Major Histocompatibility Complex/physiology
- Mice
- Mice, Transgenic
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/metabolism
- Signal Transduction/immunology
- T-Lymphocytes/pathology
- T-Lymphocytes/physiology
- Transgenes/physiology
Collapse
Affiliation(s)
- Katherine Bessette
- White River Junction Veteran's Association, White River Junction, VT, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Laouar Y, Crispe IN, Flavell RA. Overexpression of IL-7Rα provides a competitive advantage during early T-cell development. Blood 2004; 103:1985-94. [PMID: 14592827 DOI: 10.1182/blood-2003-06-2126] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AbstractCritical checkpoints controlling early thymic T-cell development and homeostasis are set by the proper signaling function of the interleukin 7 receptor (IL-7R) and the pre–T-cell antigen receptor. Although αβ T-cell development is observed in IL-7– and IL-7Rα–deficient mice, the number of thymocytes is significantly reduced, implying a role for the IL-7R in controlling the size of the thymic T-cell compartment. Here, we report the overexpression of IL-7Rα that occurs in the early T-cell compartment from AKR/J mice, animals that are highly susceptible to the spontaneous development of thymoma. Increased IL-7Rα was revealed by surface staining, and increased IL-7Rα mRNA was documented by using reverse transcriptase–polymerase chain reaction (RT-PCR). This resulted in increased survival of AKR/J early thymocytes, shown by the decreased frequency of TUNEL+ (terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate [dUTP]–fluorescein nick end labeling) cells. In an in vivo thymocyte repopulation model, AKR/J thymocytes had a selective advantage over healthy thymocytes. This advantage occurred at early stages of T-cell development. Our findings support the model that overexpression of growth factor receptors can contribute to proliferation and malignancy.
Collapse
Affiliation(s)
- Yasmina Laouar
- Section of Immunobiology, Yale University School of Medicine, 300 Ceda St, CAB S-569, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
5
|
Yoshimura FK, Wang T, Yu F, Kim HR, Turner JR. Mink cell focus-forming murine leukemia virus infection induces apoptosis of thymic lymphocytes. J Virol 2000; 74:8119-26. [PMID: 10933722 PMCID: PMC112345 DOI: 10.1128/jvi.74.17.8119-8126.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a previous study we identified the subpopulations of thymus cells that were infected by the lymphomagenic MCF13 murine leukemia virus (MLV) (F. K. Yoshimura, T. Wang, and M. Cankovic, J. Virol. 73:4890-4898, 1999) and observed an effect on thymus size by virus infection. In this report we describe our results which demonstrate that MCF13 MLV infection of thymuses reduced the number of T lymphocytes in this organ. Histological examination showed diffuse lymphocyte depletion, which was most striking in the CD4(+) CD8(+) lymphocyte-enriched cortical zone. Consistent with this, flow cytometric analysis showed that the lymphocytes which were depleted were predominantly the immature CD3(-) CD4(+) CD8(+) and CD3(+) CD4(+) CD8(+) cells. A comparison of the percentages of live, apoptotic, and dead cells of the gp70(+) and gp70(-) thymic lymphocytes suggested that this effect on thymus cellularity is a result of virus infection. Studies of the survival of thymic T lymphocytes in culture showed that cells from MCF13 MLV-inoculated mice underwent greater apoptosis and death than cells from control animals. Assays for apoptosis included 7-amino-actinomycin D staining, DNA fragmentation, and cleavage of caspase-3 and poly(ADP-ribose) polymerase proenzymes. Our results suggest that apoptosis of thymic lymphocytes by virus infection is an important step in the early stages of MCF13 MLV tumorigenesis.
Collapse
Affiliation(s)
- F K Yoshimura
- Department of Immunology and Microbiology and the Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | | | | | |
Collapse
|
6
|
Berzins SP, Davey GM, Randle-Barrett ES, Malin MA, Classon BJ, Fraser S, Boyd RL. Thymic Shared Antigen-2: A Novel Cell Surface Marker Associated with T Cell Differentiation and Activation. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.9.5119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Thymic shared Ag-2 (TSA-2) is a 28-kDa, glycophosphatidylinitosol-linked cell surface molecule expressed on various T cell and thymic stromal cell subsets. It is expressed on most CD3−CD4−CD8−, CD4+CD8+, and CD3highCD4−CD8+ thymocytes but is down-regulated on ∼40% of CD3highCD4+CD8− thymocytes. Expression on peripheral TCR-αβ+ T cells is similar to that of CD3+ thymocytes, although a transient down-regulation occurs with cell activation. Consistent with the recent hypothesis that emigration from the thymus is an active process, recent thymic emigrants are primarily TSA-2−/low. TSA-2 expression reveals heterogeneity among subpopulations of CD3highCD4+CD8− thymocytes and TCR-γδ+ T cell previously regarded as homogenous. The functional importance of TSA-2 was illustrated by the severe block in T cell differentiation caused by adding purified anti-TSA-2 mAb to reconstituted fetal thymic organ culture. While each CD25/CD44-defined triple-negative subset was present, differentiation beyond the TN stage was essentially absent, and cell numbers of all subsets were significantly below those of control cultures. Cross-linking TSA-2 on thymocytes caused a significant Ca2+ influx but no increase in apoptosis, unless anti-TSA-2 was used in conjunction with suboptimal anti-CD3 mAb. Similar treatment of mature TSA-2+ T cells had no effect on cell survival or proliferation. This study reveals TSA-2 to be a functionally important molecule in T cell development and a novel indicator of heterogeneity among a variety of developing and mature T cell populations.
Collapse
Affiliation(s)
- Stuart P. Berzins
- Department of Pathology and Immunology, Monash Medical School, Prahran, Australia
| | - Gayle M. Davey
- Department of Pathology and Immunology, Monash Medical School, Prahran, Australia
| | | | - Mark A. Malin
- Department of Pathology and Immunology, Monash Medical School, Prahran, Australia
| | - Brendan J. Classon
- Department of Pathology and Immunology, Monash Medical School, Prahran, Australia
| | - Stuart Fraser
- Department of Pathology and Immunology, Monash Medical School, Prahran, Australia
| | - Richard L. Boyd
- Department of Pathology and Immunology, Monash Medical School, Prahran, Australia
| |
Collapse
|