1
|
Wu WL, Lee JC, Su WC, Wang SY, Wu CJ. A rare case of an endobronchial mass due to Neurospora intermedia. Int J Infect Dis 2024; 146:107119. [PMID: 38821185 DOI: 10.1016/j.ijid.2024.107119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024] Open
Abstract
The ascomycete filamentous fungus Neurospora intermedia is commonly used in the food industry and considered nonpathogenic to humans. This study characterizes four N. intermedia isolates recovered from three patients. The first patient had a mediastinal germ cell tumor with multiple metastases. N. intermedia was recovered from his endotracheal aspirate and from the endobronchial mass obtained by bronchoscopic forceps biopsy. Histopathology of the biopsy tissue revealed necrotic tissue mixed with septate fungal hyphae with right-angle branching. An endobronchial mass caused by N. intermedia was thus diagnosed. Another two N. intermedia isolates were recovered from the endotracheal aspirates of two critically ill patients. In vitro, N. intermedia grows rapidly and forms orange, conidiating colonies composed of septate hyphae. Two isolates from the first patient belong to mating type a; the other two isolates belong to mating type A. Coculture of isolates of opposite mating types yielded dark ascomata containing ascospores, supporting that N. intermedia is a heterothallic fungus. N. intermedia isolates cross-reacted with the Aspergillus galactomannan antigen assay and were susceptible to amphotericin B and voriconazole. In conclusion, this report describes the first human infection (endobronchial mass) caused by N. intermedia, highlighting its potential to invade the human respiratory tract.
Collapse
Affiliation(s)
- Wan-Lin Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Jen-Chieh Lee
- Division of Critical Care Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wu-Chou Su
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Yuan Wang
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Jung Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Kollath-Leiß K, Repnik U, Winter H, Winkelmann H, Freund AS, Kempken F. The First Observation of the Filamentous Fungus Neurospora crassa Growing in the Roots of the Grass Brachypodium distachyon. J Fungi (Basel) 2024; 10:487. [PMID: 39057371 PMCID: PMC11278470 DOI: 10.3390/jof10070487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The model organism Neurospora crassa has been cultivated in laboratories since the 1920s and its saprotrophic lifestyle has been established for decades. However, beyond their role as saprotrophs, fungi engage in intricate relationships with plants, showcasing diverse connections ranging from mutualistic to pathogenic. Although N. crassa has been extensively investigated under laboratory conditions, its ecological characteristics remain largely unknown. In contrast, Brachypodium distachyon, a sweet grass closely related to significant crops, demonstrates remarkable ecological flexibility and participates in a variety of fungal interactions, encompassing both mutualistic and harmful associations. Through a comprehensive microscopic analysis using electron, fluorescence, and confocal laser scanning microscopy, we discovered a novel endophytic interaction between N. crassa and B. distachyon roots, where fungal hyphae not only thrive in the apoplastic space and vascular bundle but also may colonize plant root cells. This new and so far hidden trait of one of the most important fungal model organisms greatly enhances our view of N. crassa, opening new perspectives concerning the fungus' ecological role. In addition, we present a new tool for studying plant-fungus interspecies communication, combining two well-established model systems, which improves our possibilities of experimental design on the molecular level.
Collapse
Affiliation(s)
- Krisztina Kollath-Leiß
- Abt. für Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität, 24098 Kiel, Germany; (H.W.); (A.S.F.)
| | - Urska Repnik
- Zentrale Mikroskopie, Christian-Albrechts-Universität, 24118 Kiel, Germany;
| | - Hannes Winter
- Abt. für Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität, 24098 Kiel, Germany; (H.W.); (A.S.F.)
| | - Heinrich Winkelmann
- Abt. für Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität, 24098 Kiel, Germany; (H.W.); (A.S.F.)
| | - Anna Sophia Freund
- Abt. für Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität, 24098 Kiel, Germany; (H.W.); (A.S.F.)
| | - Frank Kempken
- Abt. für Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität, 24098 Kiel, Germany; (H.W.); (A.S.F.)
| |
Collapse
|
3
|
Gutiérrez-Corona JF, González-Hernández GA, Padilla-Guerrero IE, Olmedo-Monfil V, Martínez-Rocha AL, Patiño-Medina JA, Meza-Carmen V, Torres-Guzmán JC. Fungal Alcohol Dehydrogenases: Physiological Function, Molecular Properties, Regulation of Their Production, and Biotechnological Potential. Cells 2023; 12:2239. [PMID: 37759461 PMCID: PMC10526403 DOI: 10.3390/cells12182239] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Fungal alcohol dehydrogenases (ADHs) participate in growth under aerobic or anaerobic conditions, morphogenetic processes, and pathogenesis of diverse fungal genera. These processes are associated with metabolic operation routes related to alcohol, aldehyde, and acid production. The number of ADH enzymes, their metabolic roles, and their functions vary within fungal species. The most studied ADHs are associated with ethanol metabolism, either as fermentative enzymes involved in the production of this alcohol or as oxidative enzymes necessary for the use of ethanol as a carbon source; other enzymes participate in survival under microaerobic conditions. The fast generation of data using genome sequencing provides an excellent opportunity to determine a correlation between the number of ADHs and fungal lifestyle. Therefore, this review aims to summarize the latest knowledge about the importance of ADH enzymes in the physiology and metabolism of fungal cells, as well as their structure, regulation, evolutionary relationships, and biotechnological potential.
Collapse
Affiliation(s)
- J. Félix Gutiérrez-Corona
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Gloria Angélica González-Hernández
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Israel Enrique Padilla-Guerrero
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Vianey Olmedo-Monfil
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - Ana Lilia Martínez-Rocha
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| | - J. Alberto Patiño-Medina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia C.P. 58030, Mexico; (J.A.P.-M.); (V.M.-C.)
| | - Víctor Meza-Carmen
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia C.P. 58030, Mexico; (J.A.P.-M.); (V.M.-C.)
| | - Juan Carlos Torres-Guzmán
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato C.P. 36050, Mexico; (G.A.G.-H.); (I.E.P.-G.); (V.O.-M.); (A.L.M.-R.)
| |
Collapse
|
4
|
Huang SK, Hyde KD, Mapook A, Maharachchikumbura SSN, Bhat JD, McKenzie EHC, Jeewon R, Wen TC. Taxonomic studies of some often over-looked Diaporthomycetidae and Sordariomycetidae. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00488-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Gladieux P, De Bellis F, Hann-Soden C, Svedberg J, Johannesson H, Taylor JW. Neurospora from Natural Populations: Population Genomics Insights into the Life History of a Model Microbial Eukaryote. Methods Mol Biol 2021; 2090:313-336. [PMID: 31975173 DOI: 10.1007/978-1-0716-0199-0_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The ascomycete filamentous fungus Neurospora crassa played a historic role in experimental biology and became a model system for genetic research. Stimulated by a systematic effort to collect wild strains initiated by Stanford geneticist David Perkins, the genus Neurospora has also become a basic model for the study of evolutionary processes, speciation, and population biology. In this chapter, we will first trace the history that brought Neurospora into the era of population genomics. We will then cover the major contributions of population genomic investigations using Neurospora to our understanding of microbial biogeography and speciation, and review recent work using population genomics and genome-wide association mapping that illustrates the unique potential of Neurospora as a model for identifying the genetic basis of (potentially adaptive) phenotypes in filamentous fungi. The advent of population genomics has contributed to firmly establish Neurospora as a complete model system and we hope our review will entice biologists to include Neurospora in their research.
Collapse
Affiliation(s)
- Pierre Gladieux
- UMR BGPI, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.
| | - Fabien De Bellis
- UMR AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Christopher Hann-Soden
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jesper Svedberg
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
6
|
Queiroz CBD, Santana MF. Prediction of the secretomes of endophytic and nonendophytic fungi reveals similarities in host plant infection and colonization strategies. Mycologia 2020; 112:491-503. [PMID: 32286912 DOI: 10.1080/00275514.2020.1716566] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endophytic fungi are microorganisms that inhabit internal plant tissues without causing apparent damage. During the infection process, both endophytic and phytopathogenic fungi secrete proteins to resist or supplant the plant's defense mechanisms. This study analyzed the predicted secretomes of six species of endophytic fungi and compared them with predicted secretomes of eight fungal species with different lifestyles: saprophytic, necrotrophic, hemibiotrophic, and biotrophic. The sizes of the predicted secretomes varied from 260 to 1640 proteins, and the predicted secretomes have a wide diversity of CAZymes, proteases, and conserved domains. Regarding the CAZymes in the secretomes of the analyzed fungi, the most abundant CAZyme families were glycosyl hydrolase and serine proteases. Several predicted proteins have characteristics similar to those found in small, secreted proteins with effector characteristics (SSPEC). The most abundant conserved domains, besides those found in the SSPEC, have oxidation activities, indicating that these proteins can protect the fungus against oxidative stress, against domains with protease activity, which may be involved in the mechanisms of nutrition, or against lytic enzymes secreted by the host plant. This study demonstrates that secretomes of endophytic and nonendophytic fungi share an arsenal of proteins important in the process of infection and colonization of host plants.
Collapse
Affiliation(s)
- Casley Borges de Queiroz
- Laboratório de Biologia Molecular, Embrapa Amazônia Ocidental , Rodovia AM 10, km 29, s/n, CEP: 69010-970, Manaus, Amazonas, Brazil
| | - Mateus Ferreira Santana
- Departamento de Microbiologia (BIOAGRO), Universidade Federal de Viçosa , CEP: 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
7
|
Feldman D, Kowbel DJ, Cohen A, Glass NL, Hadar Y, Yarden O. Identification and manipulation of Neurospora crassa genes involved in sensitivity to furfural. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:210. [PMID: 31508149 PMCID: PMC6724289 DOI: 10.1186/s13068-019-1550-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Biofuels derived from lignocellulosic biomass are a viable alternative to fossil fuels required for transportation. Following plant biomass pretreatment, the furan derivative furfural is present at concentrations which are inhibitory to yeasts. Detoxification of furfural is thus important for efficient fermentation. Here, we searched for new genetic attributes in the fungus Neurospora crassa that may be linked to furfural tolerance. The fact that furfural is involved in the natural process of sexual spore germination of N. crassa and that this fungus is highly amenable to genetic manipulations makes it a rational candidate for this study. RESULTS Both hypothesis-based and unbiased (random promotor mutagenesis) approaches were performed to identify N. crassa genes associated with the response to furfural. Changes in the transcriptional profile following exposure to furfural revealed that the affected processes were, overall, similar to those observed in Saccharomyces cerevisiae. N. crassa was more tolerant (by ~ 30%) to furfural when carboxymethyl cellulose was the main carbon source as opposed to sucrose, indicative of a link between carbohydrate metabolism and furfural tolerance. We also observed increased tolerance in a Δcre-1 mutant (CRE-1 is a key transcription factor that regulates the ability of fungi to utilize non-preferred carbon sources). In addition, analysis of aldehyde dehydrogenase mutants showed that ahd-2 (NCU00378) was involved in tolerance to furfural as well as the predicted membrane transporter NCU05580 (flr-1), a homolog of FLR1 in S. cerevisiae. Further to the rational screening, an unbiased approach revealed additional genes whose inactivation conferred increased tolerance to furfural: (i) NCU02488, which affected the abundance of the non-anchored cell wall protein NCW-1 (NCU05137), and (ii) the zinc finger protein NCU01407. CONCLUSIONS We identified attributes in N. crassa associated with tolerance or degradation of furfural, using complementary research approaches. The manipulation of the genes involved in furan sensitivity can provide a means for improving the production of biofuel producing strains. Similar research approaches can be utilized in N. crassa and other filamentous fungi to identify additional attributes relevant to other furans or toxic chemicals.
Collapse
Affiliation(s)
- Daria Feldman
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7600001 Rehovot, Israel
| | - David J. Kowbel
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Adi Cohen
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7600001 Rehovot, Israel
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720 USA
- Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7600001 Rehovot, Israel
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7600001 Rehovot, Israel
| |
Collapse
|
8
|
Jacobson DJ. Sexual dysfunction associated with outcrossing in Neurospora tetrasperma, a pseudohomothallic ascomycete. Mycologia 2018. [DOI: 10.1080/00275514.1995.12026577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- David J. Jacobson
- Department of Biological Sciences Stanford University, Stanford, California 94305-5020 and Department of Botany and Plant Pathology Michigan State University, East Lansing, Michigan 48824-1312
| |
Collapse
|
9
|
Affiliation(s)
- J. C. Krug
- Department of Botany, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada
| | - R. S. Khan
- Department of Botany, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada
| |
Collapse
|
10
|
Yoon CS, Glawe DA. Association of Random Amplified Polymorphic Dna Markers with Stromatal Type inHypoxylon Truncatum SensuMiller. Mycologia 2018. [DOI: 10.1080/00275514.1993.12026288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Cheol-Sik Yoon
- Department of Plant Pathology, University of Illinois, 1102 South Goodwin Avenue, Urbana, Illinois 61801
| | - Dean A. Glawe
- Department of Plant Pathology, University of Illinois and Illinois Natural History Survey, 1102 South Goodwin Avenue, Urbana, Illinois 61801
| |
Collapse
|
11
|
Klittich CJR, Leslie JF. Identification of a Second Mating Population within theFusarium MoniliformeAnamorph ofGibberella Fujikuroi. Mycologia 2018. [DOI: 10.1080/00275514.1992.12026175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Carla J. R. Klittich
- Department of Plant Pathology, Throckmorton Hall, Kansas State University, Manhattan, Kansas 66506-5502
| | - John F. Leslie
- Department of Plant Pathology, Throckmorton Hall, Kansas State University, Manhattan, Kansas 66506-5502
| |
Collapse
|
12
|
Affiliation(s)
- David D. Perkins
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020
| |
Collapse
|
13
|
Raju NB. Ascomycete Spore killers: Chromosomal elements that distort genetic ratios among the products of meiosis. Mycologia 2018. [DOI: 10.1080/00275514.1994.12026437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Namboori B. Raju
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020
| |
Collapse
|
14
|
Koritala BSC, Lee K. Natural Variation of the Circadian Clock in Neurospora. ADVANCES IN GENETICS 2017; 99:1-37. [PMID: 29050553 DOI: 10.1016/bs.adgen.2017.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Most living organisms on earth experience daily and expected changes from the rotation of the earth. For an organism, the ability to predict and prepare for incoming stresses or resources is a very important skill for survival. This cellular process of measuring daily time of the day is collectively called the circadian clock. Because of its fundamental role in survival in nature, there is a great interest in studying the natural variation of the circadian clock. However, characterizing the genetic and molecular mechanisms underlying natural variation of circadian clocks remains a challenging task. In this chapter, we will summarize the progress in studying natural variation of the circadian clock in the successful eukaryotic model Neurospora, which led to discovering many design principles of the molecular mechanisms of the eukaryotic circadian clock. Despite the success of the system in revealing the molecular mechanisms of the circadian clock, Neurospora has not been utilized to extensively study natural variation. We will review the challenges that hindered the natural variation studies in Neurospora, and how they were overcome. We will also review the advantages of Neurospora for natural variation studies. Since Neurospora is the model fungal species for circadian study, it represents over 5 million species of fungi on earth. These fungi play important roles in ecosystems on earth, and as such Neurospora could serve as an important model for understanding the ecological role of natural variation in fungal circadian clocks.
Collapse
Affiliation(s)
- Bala S C Koritala
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States; Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States
| | - Kwangwon Lee
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States; Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States.
| |
Collapse
|
15
|
Nauta MJ, Hoekstra RF. EVOLUTION OF VEGETATIVE INCOMPATIBILITY IN FILAMENTOUS ASCOMYCETES. I. DETERMINISTIC MODELS. Evolution 2017; 48:979-995. [PMID: 28564477 DOI: 10.1111/j.1558-5646.1994.tb05287.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/1992] [Accepted: 03/31/1994] [Indexed: 11/29/2022]
Abstract
In ascomycetes vegetative incompatibility can prevent the somatic exchange of genetic material between conspecifics. It must occur frequently in natural populations, since in all species studied many vegetative compatibility groups (VCGs) are found. Using a population-genetic approach, this paper explores two possible selective explanations for the evolution of vegetative incompatibility in asexual fungi: selection by a nuclear parasitic gene, and selection by a harmful cytoplasmic element. In a deterministic model, assuming a random spatial distribution of VCGs in an infinitely sized population, it is found that neither of these forms of frequency-dependent selection can explain the large number of VCGs found in nature. The selective pressure for more VCGs disappears once a limited number of VCGs exist, because the frequency of compatible interactions decreases when the number of VCGs increases. In comparing the two selective explanations, selection by a cytoplasmic element seems a more plausible explanation than selection by a nuclear gene.
Collapse
Affiliation(s)
- Maarten J Nauta
- Department of Genetics, State University, P.O. Box 14, 9750 AA Haren, The Netherlands
| | - Rolf F Hoekstra
- Department of Genetics, Agricultural University, Dreyenlaan 2, 6703 HA Wageningen, The Netherlands
| |
Collapse
|
16
|
Powell AJ, Jacobson DJ, Salter L, Natvig DO. Variation among natural isolates ofNeurosporaon small spatial scales. Mycologia 2017. [DOI: 10.1080/15572536.2004.11833040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Amy J. Powell
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - David J. Jacobson
- Department of Biological Sciences, Stanford University, Stanford, California 94305
| | - Laura Salter
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131
| | - Donald O. Natvig
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| |
Collapse
|
17
|
Jacobson DJ, Powell AJ, Dettman JR, Saenz GS, Barton MM, Hiltz MD, Dvorachek WH, Glass NL, Taylor JW, Natvig DO. Neurosporain temperate forests of western North America. Mycologia 2017. [DOI: 10.1080/15572536.2005.11832998] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- David J. Jacobson
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, and Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Amy J. Powell
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Jeremy R. Dettman
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Gregory S. Saenz
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | | | - Megan D. Hiltz
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | | | | | - John W. Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Donald O. Natvig
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| |
Collapse
|
18
|
Dettman JR, Jacobson DJ, Taylor JW. Multilocus sequence data reveal extensive phylogenetic species diversity within the Neurospora discreta complex. Mycologia 2017. [DOI: 10.1080/15572536.2006.11832678] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - John W. Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720
| |
Collapse
|
19
|
Jacobson DJ, Dettman JR, Adams RI, Boesl C, Sultana S, Roenneberg T, Merrow M, Duarte M, Marques I, Ushakova A, Carneiro P, Videira A, Navarro-Sampedro L, Olmedo M, Corrochano LM, Taylor JW. New findings of Neurospora in Europe and comparisons of diversity in temperate climates on continental scales. Mycologia 2017. [DOI: 10.1080/15572536.2006.11832658] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- David J. Jacobson
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020 and Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | | | - Rachel I. Adams
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | | | | | | | - Martha Merrow
- Institute for Medical Psychology, Centre for Chronobiology, Goethestraße 31, Ludwig Maximilians University München, 80336 München, Germany
| | | | | | | | | | - Arnaldo Videira
- Instituto de Biologia Molecular e Celular (IBMC), and Instituto de Ciências Biomédicas Abel Salazar, (ICBAS) Universidade do Porto, Portugal
| | | | | | - Luis M. Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, Apartado 1095, E-41080 Sevilla, Spain
| | - John W. Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| |
Collapse
|
20
|
Villalta CF, Jacobson DJ, Taylor JW. Three new phylogenetic and biological Neurospora species: N. hispaniola, N. metzenbergii and N. perkinsii. Mycologia 2017; 101:777-89. [DOI: 10.3852/08-219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - John W. Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| |
Collapse
|
21
|
The Renaissance of Neurospora crassa: How a Classical Model System is Used for Applied Research. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Gladieux P, Wilson BA, Perraudeau F, Montoya LA, Kowbel D, Hann-Soden C, Fischer M, Sylvain I, Jacobson DJ, Taylor JW. Genomic sequencing reveals historical, demographic and selective factors associated with the diversification of the fire-associated fungus Neurospora discreta. Mol Ecol 2015; 24:5657-75. [PMID: 26453896 DOI: 10.1111/mec.13417] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 12/30/2022]
Abstract
Delineating microbial populations, discovering ecologically relevant phenotypes and identifying migrants, hybrids or admixed individuals have long proved notoriously difficult, thereby limiting our understanding of the evolutionary forces at play during the diversification of microbial species. However, recent advances in sequencing and computational methods have enabled an unbiased approach whereby incipient species and the genetic correlates of speciation can be identified by examining patterns of genomic variation within and between lineages. We present here a population genomic study of a phylogenetic species in the Neurospora discreta species complex, based on the resequencing of full genomes (~37 Mb) for 52 fungal isolates from nine sites in three continents. Population structure analyses revealed two distinct lineages in South-East Asia, and three lineages in North America/Europe with a broad longitudinal and latitudinal range and limited admixture between lineages. Genome scans for selective sweeps and comparisons of the genomic landscapes of diversity and recombination provided no support for a role of selection at linked sites on genomic heterogeneity in levels of divergence between lineages. However, demographic inference indicated that the observed genomic heterogeneity in divergence was generated by varying rates of gene flow between lineages following a period of isolation. Many putative cases of exchange of genetic material between phylogenetically divergent fungal lineages have been discovered, and our work highlights the quantitative importance of genetic exchanges between more closely related taxa to the evolution of fungal genomes. Our study also supports the role of allopatric isolation as a driver of diversification in saprobic microbes.
Collapse
Affiliation(s)
- Pierre Gladieux
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Ecologie Systematique Evolution, Université Paris Sud, Batiment 360, 91405, Orsay, France
| | | | - Fanny Perraudeau
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Ecole Polytechnique, Route de Saclay, 91128, Palaiseau, France
| | - Liliam A Montoya
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - David Kowbel
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | | | - Monika Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Iman Sylvain
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - David J Jacobson
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
23
|
Bastiaans E, Debets AJM, Aanen DK. Experimental demonstration of the benefits of somatic fusion and the consequences for allorecognition. Evolution 2015; 69:1091-9. [PMID: 25688421 DOI: 10.1111/evo.12626] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 02/03/2015] [Indexed: 12/31/2022]
Abstract
Allorecognition, the ability to distinguish "self" from "nonself" based on allelic differences at allorecognition loci, is common in all domains of life. Allorecognition restricts the opportunities for social parasitism, and is therefore crucial for the evolution of cooperation. However, the maintenance of allorecognition diversity provides a paradox. If allorecognition is costly relative to cooperation, common alleles will be favored. Thus, the cost of allorecognition may reduce the genetic variation upon which allorecognition crucially relies, a prediction now known as "Crozier's paradox." We establish the relative costs of allorecognition, and their consequences for the short-term evolution of recognition labels theoretically predicted by Crozier. We use fusion among colonies of the fungus Neurospora crassa, regulated by highly variable allorecognition genes, as an experimental model system. We demonstrate that fusion among colonies is mutually beneficial, relative to absence of fusion upon allorecognition. This benefit is due not only to absence of mutual antagonism, which occurs upon allorecognition, but also to an increase in colony size per se. We then experimentally demonstrate that the benefit of fusion selects against allorecognition diversity, as predicted by Crozier. We discuss what maintains allorecognition diversity.
Collapse
Affiliation(s)
- Eric Bastiaans
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PD, Wageningen, The Netherlands.
| | | | | |
Collapse
|
24
|
Graham JK, Smith ML, Simons AM. Experimental evolution of bet hedging under manipulated environmental uncertainty in Neurospora crassa. Proc Biol Sci 2015; 281:rspb.2014.0706. [PMID: 24870047 DOI: 10.1098/rspb.2014.0706] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
All organisms are faced with environmental uncertainty. Bet-hedging theory expects unpredictable selection to result in the evolution of traits that maximize the geometric-mean fitness even though such traits appear to be detrimental over the shorter term. Despite the centrality of fitness measures to evolutionary analysis, no direct test of the geometric-mean fitness principle exists. Here, we directly distinguish between predictions of competing fitness maximization principles by testing Cohen's 1966 classic bet-hedging model using the fungus Neurospora crassa. The simple prediction is that propagule dormancy will evolve in proportion to the frequency of 'bad' years, whereas the prediction of the alternative arithmetic-mean principle is the evolution of zero dormancy as long as the expectation of a bad year is less than 0.5. Ascospore dormancy fraction in N. crassa was allowed to evolve under five experimental selection regimes that differed in the frequency of unpredictable 'bad years'. Results were consistent with bet-hedging theory: final dormancy fraction in 12 genetic lineages across 88 independently evolving samples was proportional to the frequency of bad years, and evolved both upwards and downwards as predicted from a range of starting dormancy fractions. These findings suggest that selection results in adaptation to variable rather than to expected environments.
Collapse
Affiliation(s)
- Jeffrey K Graham
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Myron L Smith
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6 Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Andrew M Simons
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| |
Collapse
|
25
|
Scott MF, Otto SP. Why wait? Three mechanisms selecting for environment-dependent developmental delays. J Evol Biol 2014; 27:2219-32. [PMID: 25244050 DOI: 10.1111/jeb.12474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/31/2014] [Accepted: 08/12/2014] [Indexed: 11/29/2022]
Abstract
Many species delay development unless particular environments or rare disturbance events occur. How can such a strategy be favoured over continued development? Typically, it is assumed that continued development (e.g. germination) is not advantageous in environments that have low juvenile/seedling survival (mechanism 1), either due to abiotic or competitive effects. However, it has not previously been shown how low early survival must be in order to favour environment-specific developmental delays for long-lived species. Using seed dormancy as an example of developmental delays, we identify a threshold level of seedling survival in 'bad' environments below which selection can favour germination that is limited to 'good' environments. This can be used to evaluate whether observed differences in seedling survival are sufficient to favour conditional germination. We also present mathematical models that demonstrate two other, often overlooked, mechanisms that can favour conditional germination in the absence of differences in seedling survival. Specifically, physiological trade-offs can make it difficult to have germination rates that are equally high in all environments (mechanism 2). We show that such trade-offs can either favour conditional germination or intermediate (mixed) strategies, depending on the trade-off shape. Finally, germination in every year increases the likelihood that some individuals are killed in population-scale disturbances before reproducing; it can thus be favourable to only germinate immediately after a disturbance (mechanism 3). We demonstrate how demographic data can be used to evaluate these selection pressures. By presenting these three mechanisms and the conditions that favour conditional germination in each case, we provide three hypotheses that can be tested as explanations for the evolution of environment-dependent developmental delays.
Collapse
Affiliation(s)
- M F Scott
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
26
|
Abstract
Most fungal genomes are poorly annotated, and many fungal traits of industrial and biomedical relevance are not well suited to classical genetic screens. Assigning genes to phenotypes on a genomic scale thus remains an urgent need in the field. We developed an approach to infer gene function from expression profiles of wild fungal isolates, and we applied our strategy to the filamentous fungus Neurospora crassa. Using transcriptome measurements in 70 strains from two well-defined clades of this microbe, we first identified 2,247 cases in which the expression of an unannotated gene rose and fell across N. crassa strains in parallel with the expression of well-characterized genes. We then used image analysis of hyphal morphologies, quantitative growth assays, and expression profiling to test the functions of four genes predicted from our population analyses. The results revealed two factors that influenced regulation of metabolism of nonpreferred carbon and nitrogen sources, a gene that governed hyphal architecture, and a gene that mediated amino acid starvation resistance. These findings validate the power of our population-transcriptomic approach for inference of novel gene function, and we suggest that this strategy will be of broad utility for genome-scale annotation in many fungal systems. IMPORTANCE Some fungal species cause deadly infections in humans or crop plants, and other fungi are workhorses of industrial chemistry, including the production of biofuels. Advances in medical and industrial mycology require an understanding of the genes that control fungal traits. We developed a method to infer functions of uncharacterized genes by observing correlated expression of their mRNAs with those of known genes across wild fungal isolates. We applied this strategy to a filamentous fungus and predicted functions for thousands of unknown genes. In four cases, we experimentally validated the predictions from our method, discovering novel genes involved in the metabolism of nutrient sources relevant for biofuel production, as well as colony morphology and starvation resistance. Our strategy is straightforward, inexpensive, and applicable for predicting gene function in many fungal species.
Collapse
|
27
|
Benz JP, Chau BH, Zheng D, Bauer S, Glass NL, Somerville CR. A comparative systems analysis of polysaccharide-elicited responses in Neurospora crassa reveals carbon source-specific cellular adaptations. Mol Microbiol 2013; 91:275-99. [PMID: 24224966 DOI: 10.1111/mmi.12459] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2013] [Indexed: 12/31/2022]
Abstract
Filamentous fungi are powerful producers of hydrolytic enzymes for the deconstruction of plant cell wall polysaccharides. However, the central question of how these sugars are perceived in the context of the complex cell wall matrix remains largely elusive. To address this question in a systematic fashion we performed an extensive comparative systems analysis of how the model filamentous fungus Neurospora crassa responds to the three main cell wall polysaccharides: pectin, hemicellulose and cellulose. We found the pectic response to be largely independent of the cellulolytic one with some overlap to hemicellulose, and in its extent surprisingly high, suggesting advantages for the fungus beyond being a mere carbon source. Our approach furthermore allowed us to identify carbon source-specific adaptations, such as the induction of the unfolded protein response on cellulose, and a commonly induced set of 29 genes likely involved in carbon scouting. Moreover, by hierarchical clustering we generated a coexpression matrix useful for the discovery of new components involved in polysaccharide utilization. This is exemplified by the identification of lat-1, which we demonstrate to encode for the physiologically relevant arabinose transporter in Neurospora. The analyses presented here are an important step towards understanding fungal degradation processes of complex biomass.
Collapse
Affiliation(s)
- J Philipp Benz
- Energy Biosciences Institute, University of California Berkeley, Berkeley, California, USA
| | | | | | | | | | | |
Collapse
|
28
|
Coradetti ST, Xiong Y, Glass NL. Analysis of a conserved cellulase transcriptional regulator reveals inducer-independent production of cellulolytic enzymes in Neurospora crassa. Microbiologyopen 2013; 2:595-609. [PMID: 23766336 PMCID: PMC3948607 DOI: 10.1002/mbo3.94] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/02/2013] [Indexed: 12/22/2022] Open
Abstract
Cellulose is recalcitrant to deconstruction to glucose for use in fermentation strategies for biofuels and chemicals derived from lignocellulose. In Neurospora crassa, the transcriptional regulator, CLR-2, is required for cellulolytic gene expression and cellulose deconstruction. To assess conservation and divergence of cellulase gene regulation between fungi from different ecological niches, we compared clr-2 function with its ortholog (clrB) in the distantly related species, Aspergillus nidulans. Transcriptional profiles induced by exposure to crystalline cellulose were similar in both species. Approximately 50% of the cellulose-responsive genes showed strict dependence on functional clr-2/clrB, with a subset of 28 genes encoding plant biomass degrading enzymes that were conserved between N. crassa and A. nidulans. Importantly, misexpression of clr-2 under noninducing conditions was sufficient to drive cellulase gene expression, secretion, and activity in N. crassa, to a level comparable to wild type exposed to Avicel. However, misexpression of clrB in A. nidulans was not sufficient to drive cellulase gene expression under noninducing conditions, although an increase in cellulase activity was observed under crystalline cellulose conditions. Manipulation of clr-2 orthologs among filamentous fungi may enable regulated cellulosic enzyme production in a wide array of culture conditions and host strains, potentially reducing costs associated with enzyme production for plant cell wall deconstruction. However, this functionality may require additional engineering in some species.
Collapse
Affiliation(s)
- Samuel T Coradetti
- Plant and Microbial Biology Department, The University of California, Berkeley, CA, 94720-3102
| | | | | |
Collapse
|
29
|
Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations? Appl Microbiol Biotechnol 2013; 97:1457-73. [DOI: 10.1007/s00253-012-4655-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 12/21/2022]
|
30
|
Corcoran P, Jacobson DJ, Bidartondo MI, Hickey PC, Kerekes JF, Taylor JW, Johannesson H. Quantifying functional heterothallism in the pseudohomothallic ascomycete Neurospora tetrasperma. Fungal Biol 2012; 116:962-75. [PMID: 22954339 DOI: 10.1016/j.funbio.2012.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/20/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
Neurospora tetrasperma is a pseudohomothallic filamentous ascomycete that has evolved from heterothallic ancestors. Throughout its life cycle, it is predominantly heterokaryotic for mating type, and thereby self-fertile. However, studies of N. tetrasperma have revealed the occasional production of self-sterile asexual and sexual spores of a single-mating type, indicating that it can be functionally heterothallic. Here, we report the extensive sampling and isolation of natural, heterokaryotic, strains of N. tetrasperma from the United Kingdom (UK): 99 strains were collected from Surrey, England, and four from Edinburgh, Scotland. We verified by phylogenetic analyses that these strains belong to N. tetrasperma. We isolated cultures from single germinated asexual spores (conidia) from 17 of these newly sampled UK strains from Surrey, and 16 previously sampled strains of N. tetrasperma from New Zealand (NZ). Our results show that the N. tetrasperma strains from the UK population produced a significantly greater proportion of self-sterile, homokaryotic conidia than the NZ population: the proportion of homokaryotic conidia was 42.6 % (133/312 spores) and 15.3 % (59/386) from the UK and the NZ populations, respectively. Although homokaryons recovered from several strains show a bias for one of the mating types, the total ratio of mat A to mat a mating type in homokaryons (UK: 72/61, NZ 28/31) did not deviate significantly from the expected 1:1 ratio for either of these populations. These results indicate that different populations exhibit differences in their life cycle characteristics, and that a higher degree of outcrossing might be expected from the UK population. This study points to the importance of studying multiple strains and populations when investigating life history traits of an organism with a complex life cycle, as previously undetected differences between populations may be revealed.
Collapse
Affiliation(s)
- Pádraic Corcoran
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Luque EM, Gutiérrez G, Navarro-Sampedro L, Olmedo M, Rodríguez-Romero J, Ruger-Herreros C, Tagua VG, Corrochano LM. A relationship between carotenoid accumulation and the distribution of species of the fungus Neurospora in Spain. PLoS One 2012; 7:e33658. [PMID: 22448263 PMCID: PMC3309001 DOI: 10.1371/journal.pone.0033658] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 02/17/2012] [Indexed: 01/21/2023] Open
Abstract
The ascomycete fungus Neurospora is present in many parts of the world, in particular in tropical and subtropical areas, where it is found growing on recently burned vegetation. We have sampled the Neurospora population across Spain. The sampling sites were located in the region of Galicia (northwestern corner of the Iberian peninsula), the province of Cáceres, the city of Seville, and the two major islands of the Canary Islands archipelago (Tenerife and Gran Canaria, west coast of Africa). The sites covered a latitude interval between 27.88° and 42.74°. We have identified wild-type strains of N. discreta, N. tetrasperma, N. crassa, and N. sitophila and the frequency of each species varied from site to site. It has been shown that after exposure to light Neurospora accumulates the orange carotenoid neurosporaxanthin, presumably for protection from UV radiation. We have found that each Neurospora species accumulates a different amount of carotenoids after exposure to light, but these differences did not correlate with the expression of the carotenogenic genes al-1 or al-2. The accumulation of carotenoids in Neurospora shows a correlation with latitude, as Neurospora strains isolated from lower latitudes accumulate more carotenoids than strains isolated from higher latitudes. Since regions of low latitude receive high UV irradiation we propose that the increased carotenoid accumulation may protect Neurospora from high UV exposure. In support of this hypothesis, we have found that N. crassa, the species that accumulates more carotenoids, is more resistant to UV radiation than N. discreta or N. tetrasperma. The photoprotection provided by carotenoids and the capability to accumulate different amounts of carotenoids may be responsible, at least in part, for the distribution of Neurospora species that we have observed across a range of latitudes.
Collapse
|
33
|
Genetic architecture of a reinforced, postmating, reproductive isolation barrier between Neurospora species indicates evolution via natural selection. PLoS Genet 2011; 7:e1002204. [PMID: 21876674 PMCID: PMC3158040 DOI: 10.1371/journal.pgen.1002204] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 06/10/2011] [Indexed: 11/20/2022] Open
Abstract
A role for natural selection in reinforcing premating barriers is recognized, but selection for reinforcement of postmating barriers remains controversial. Organisms lacking evolvable premating barriers can theoretically reinforce postmating isolation, but only under restrictive conditions: parental investment in hybrid progeny must inhibit subsequent reproduction, and selected postmating barriers must restore parents' capacity to reproduce successfully. We show that reinforced postmating isolation markedly increases maternal fitness in the fungus Neurospora crassa, and we detect the evolutionary genetic signature of natural selection by quantitative trait locus (QTL) analysis of the reinforced barrier. Hybrid progeny of N. crassa and N. intermedia are highly inviable. Fertilization by local N. intermedia results in early abortion of hybrid fruitbodies, and we show that abortion is adaptive because only aborted maternal colonies remain fully receptive to future reproduction. In the first QTL analysis of postmating reinforcement in microbial eukaryotes, we identify 11 loci for abortive hybrid fruitbody development, including three major QTLs that together explain 30% of trait variance. One of the major QTLs and six QTLs of lesser effect are found on the mating-type determining chromosome of Neurospora. Several reinforcement QTLs are flanked by genetic markers showing either segregation distortion or non-random associations with alleles at other loci in a cross between N. crassa of different clades, suggesting that the loci also are associated with local effects on same-species reproduction. Statistical analysis of the allelic effects distribution for abortive hybrid fruitbody development indicates its evolution occurred under positive selection. Our results strongly support a role for natural selection in the evolution of reinforced postmating isolation in N. crassa. Although Darwin believed that natural selection could not drive intersterility between species, it is now well established that there is a role for natural selection in the evolution of premating discrimination that reinforces barriers to hybridization. However, natural selection for postmating barriers, like hybrid inviability, is still controversial, because it can only occur when overall maternal fitness is increased by the inviability of hybrid offspring. Constraint on adaptive evolution of postmating barriers poses a problem when organisms without premating preferences must adapt to the presence of related species and ensure that reproduction occurs only between members of the same species. We studied the evolutionary genetics of a reinforced, postmating barrier between two species of mold, Neurospora crassa and N. intermedia. Although hybrids have low fitness, Neurospora females do not discriminate against different-species sex partners before mating. Instead, N. crassa has adapted to the presence of the N. intermedia in its range by selectively aborting hybrid fruitbodies. We show that abortion increases maternal fitness because N. crassa can mate again after hybridization only if fruitbodies abort. Abortion is controlled by 11 loci, whose genetic effects are consistent with an adaptive evolution model, confirming that abortion evolved via natural selection against hybridization.
Collapse
|
34
|
Nygren K, Strandberg R, Wallberg A, Nabholz B, Gustafsson T, García D, Cano J, Guarro J, Johannesson H. A comprehensive phylogeny of Neurospora reveals a link between reproductive mode and molecular evolution in fungi. Mol Phylogenet Evol 2011; 59:649-63. [DOI: 10.1016/j.ympev.2011.03.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 02/11/2011] [Accepted: 03/17/2011] [Indexed: 11/27/2022]
|
35
|
Consequences of reproductive mode on genome evolution in fungi. Fungal Genet Biol 2011; 48:661-7. [PMID: 21362492 DOI: 10.1016/j.fgb.2011.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 02/11/2011] [Accepted: 02/18/2011] [Indexed: 11/23/2022]
Abstract
An organism's reproductive mode is believed to be a major factor driving its genome evolution. In theory, sexual inbreeding and asexuality are associated with lower effective recombination levels and smaller effective population sizes than sexual outbreeding, giving rise to reduced selection efficiency and genetic hitchhiking. This, in turn, is predicted to result in the accumulation of deleterious mutations and other genomic changes, for example the accumulation of repetitive elements. Empirical data from plants and animals supporting/refuting these theories are sparse and have yielded few conclusive results. A growing body of data from the fungal kingdom, wherein reproductive behavior varies extensively within and among taxonomic groups, has provided new insights into the role of mating systems (e.g., homothallism, heterothallism, pseudohomothallism) and asexuality, on genome evolution. Herein, we briefly review the theoretical relationships between reproductive mode and genome evolution and give examples of empirical data on the topic derived to date from plants and animals. We subsequently focus on the available data from fungi, which suggest that reproductive mode alters the rates and patterns of genome evolution in these organisms, e.g., protein evolution, mutation rate, codon usage, frequency of genome rearrangements and repetitive elements, and variation in chromosome size.
Collapse
|
36
|
Priatni S, Hartati S, Dewi P, Kardono LBS, Singgih M, Gusdinar T. Fatty acid methyl ester from Neurospora intermedia N-1 isolated from Indonesian red peanut cake (oncom merah). Pak J Biol Sci 2010; 13:731-737. [PMID: 21850934 DOI: 10.3923/pjbs.2010.731.737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The objective of this study was to identify the Fatty Acid Methyl Ester (FAME) from Neurospora intermedia N-1 that isolated from Indonesian red peanut cake (oncom). FAME profiles have been used as biochemical characters to study many different groups of organisms, such as bacteria and yeasts. FAME from N. intermedia N-1 was obtained by some stages of extraction the orange spores and fractination using a chromatotron. The pure compound (1) was characterized by 500 mHz NMR (1H and 13C), FTIR and LC-MS. Summarized data's of 1H and 13C NMR spectra of compound 1 contained 19 Carbon, 34 Hydrogen and 2 Oxygen (C19H34O2). The position of the double bonds at carbon number 8 and 12 were indicated in the HMBC spectrum (2D-NMR). LC-MS spectrum indicates molecular weight of the compound 1 as 294 which is visible by the presence of protonated molecular ion [M+H] at m/z 295. Methyl esters of long chain fatty acids was presented by a 3 band pattern of IR spectrum with bands near 1249, 1199 and 1172 cm(-1). We suggested that the structure of the pure compound 1 is methyl octadeca-8,12-dienoate. The presence methyl octadeca-8,12-dienoate in N. intermedia is the first report.
Collapse
Affiliation(s)
- S Priatni
- School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10 Bandung 40132, Indonesia
| | | | | | | | | | | |
Collapse
|
37
|
Lee K, Dighton J. Neurospora, a potential fungal organism for experimental and evolutionary ecology. FUNGAL BIOL REV 2010. [DOI: 10.1016/j.fbr.2010.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Turner E, Jacobson DJ, Taylor JW. Reinforced postmating reproductive isolation barriers in Neurospora, an Ascomycete microfungus. J Evol Biol 2010; 23:1642-56. [PMID: 20546092 DOI: 10.1111/j.1420-9101.2010.02030.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Maladaptive hybridization promotes reinforcement, selection for stringent reproductive isolation barriers during speciation. Reinforcement is suspected when barriers between sympatric populations are stronger than allopatric barriers, and particularly when stronger barriers evolve in the species and sex suffering the greatest costs of hybridization. Canonically, reinforcement involves premating barriers. Selection for postmating barriers is controversial, but theoretically possible. We examined geographical patterns in reproductive isolation barriers between Neurospora crassa and Neurospora intermedia, fungi with pheromone-mediated mate recognition and maternal care. We find that isolation is stronger between sympatric populations than allopatric populations, and stronger barriers are associated with the species (N. crassa) and mating role (maternal) suffering the greater costs of hybridization. Notably, reinforced isolation involves a postmating barrier, abortion of fruitbodies. We hypothesize that fruitbody abortion is selectively advantageous if it increases the likelihood that maternal Neurospora individuals successfully mate conspecifically after maladaptive hybrid fertilization.
Collapse
Affiliation(s)
- E Turner
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94709, USA.
| | | | | |
Collapse
|
39
|
Dettman JR, Anderson JB, Kohn LM. Genome-wide investigation of reproductive isolation in experimental lineages and natural species of Neurospora: identifying candidate regions by microarray-based genotyping and mapping. Evolution 2009; 64:694-709. [PMID: 19817850 DOI: 10.1111/j.1558-5646.2009.00863.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inherent incompatibilities between genetic components from genomes of different species may cause intrinsic reproductive isolation. In evolution experiments designed to instigate speciation in laboratory populations of the filamentous fungus Neurospora, we previously discovered a pair of incompatibility loci (dfe and dma) that interact negatively to cause severe defects in sexual reproduction. Here we show that the dfe-dma incompatibility also is a significant cause of genetic isolation between two naturally occurring species of Neurospora (N. crassa and N. intermedia). The strong incompatibility interaction has a simple genetic basis (two biallelic loci) and antagonistic epistasis occurs between heterospecific alleles only, consistent with the Dobzhansky-Muller model of genic incompatibility. We developed microarray-based, restriction-site associated DNA (RAD) markers that identified approximately 1500 polymorphisms between the genomes of the two species, and constructed the first interspecific physical map of Neurospora. With this new mapping resource, the approximate genomic locations of the incompatibility loci were determined using three different approaches: genome scanning, bulk-segregant analyses, and introgression. These population, quantitative, and classical genetics methods concordantly identified two candidate regions, narrowing the search for each incompatibility locus to only approximately 2% of the nuclear genome. This study demonstrates how advances in high-throughput, genome-wide genotyping can be applied to mapping reproductive isolation genes and speciation research.
Collapse
Affiliation(s)
- Jeremy R Dettman
- Department of Ecology & Evolutionary Biology, University of Toronto, Mississauga, Ontario, L5L 1C6, Canada.
| | | | | |
Collapse
|
40
|
Menkis A, Bastiaans E, Jacobson DJ, Johannesson H. Phylogenetic and biological species diversity within the Neurospora tetrasperma complex. J Evol Biol 2009; 22:1923-36. [PMID: 19682307 DOI: 10.1111/j.1420-9101.2009.01801.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The objective of this study was to explore the evolutionary history of the morphologically recognized filamentous ascomycete Neurospora tetrasperma, and to reveal the genetic and reproductive relationships among its individuals and populations. We applied both phylogenetic and biological species recognition to a collection of strains representing the geographic and genetic diversity of N. tetrasperma. First, we were able to confirm a monophyletic origin of N. tetrasperma. Furthermore, we found nine phylogenetic species within the morphospecies. When using the traditional broad biological species recognition all investigated strains of N. tetrasperma constituted a single biological species. In contrast, when using a quantitative measurement of the reproductive success, incorporating characters such as viability and fertility of offspring, we found a high congruence between the phylogenetic and biological species recognition. Taken together, phylogenetically and biologically defined groups of individuals exist in N. tetrasperma, and these should be taken into account in future studies of its life history traits.
Collapse
Affiliation(s)
- A Menkis
- Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | |
Collapse
|
41
|
Abstract
Dodge's early work (1927-1940) on Neurospora genetics and sexual biology inspired Beadle and Tatum at Stanford to use N.crassa for their landmark discovery that genes specify enzymes. Neurospora has since become a model organism for numerous genetic, cytogenetic, biochemical, molecular and population biology studies. Neurospora is haploid in the vegetative phase with a transient diploid sexual phase. Its meiotic cells (asci) are large, allowing easy examination of dividing nuclei and chromosomes under a light microscope. The haploid meiotic products are themselves the sexual progeny that grow into vegetative cultures, thus avoiding the cumbersome testcrosses and complex dominance -recessive relationships, as in diploid organisms.The Perkins'laboratory at Stanford (1949-2007) played a pivotal role in advancing our knowledge of Neurospora genetics, sexual biology, cytogenetics and population biology. Since 1974, I have taken advantage of various chromosome-staining methods to examine ascus and ascospore development in wild type and in numerous mutant strains. In addition,I have used GFP-tagged genes to visualize the expression or silencing of unpaired genes in a post-transcriptional gene silencing process (meiotic silencing by unpaired DNA) that operates specifically during meiosis. The genome of N. crassa contains over 10 000 protein- coding genes. Gene knockouts or mutations in specific sequences may now be readily correlated with the observed cytological defects in the sexual stage, thus advancing our molecular understanding of complex processes during ascus and ascospore development.
Collapse
Affiliation(s)
- Namboori B Raju
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
42
|
Wichmann G, Sun J, Dementhon K, Glass NL, Lindow SE. A novel gene, phcA from Pseudomonas syringae induces programmed cell death in the filamentous fungus Neurospora crassa. Mol Microbiol 2008; 68:672-89. [PMID: 18363647 DOI: 10.1111/j.1365-2958.2008.06175.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The phytopathogen Pseudomonas syringae competes with other epiphytic organisms, such as filamentous fungi, for resources. Here we characterize a gene in P. syringae pv. syringae B728a and P. syringae pv. tomato DC3000, termed phcA, that has homology to a filamentous fungal gene called het-c. phcA is conserved in many P. syringae strains, but is absent in one of the major clades, which includes the P. syringae pathovar phaseolicola. In the filamentous fungus Neurospora crassa, HET-C regulates a conserved programmed cell death pathway called heterokaryon incompatibility (HI). Ectopic expression of phcA in N. crassa induced HI and cell death that was dependent on the presence of a functional het-c pin-c haplotype. Further, by co-immunoprecipitation experiments, a heterocomplex between N. crassa HET-C1 and PhcA was associated with phcA-induced HI. P. syringae was able to attach and extensively colonize N. crassa hyphae, while an Escherichia coli control showed no association with the fungus. We further show that the P. syringae is able to use N. crassa as a sole nutrient source. Our results suggest that P. syringae has the potential to utilize phcA to acquire nutrients from fungi in nutrient-limited environments like the phyllosphere by the novel mechanism of HI induction.
Collapse
Affiliation(s)
- Gale Wichmann
- Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720-3102, USA
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Abstract
Some naturally occurring strains of fungi cease growing through successive subculturing, i.e., they senesce. In Neurospora, senescing strains usually contain intramitochondrial linear or circular plasmids. An entire plasmid or its part(s) integrates into the mtDNA, causing insertional mutagenesis. The functionally defective mitochondria replicate faster than the wild-type mitochondria and spread through interconnected hyphal cells. Senescence could also be due to spontaneous lethal nuclear gene mutations arising in the multinucleated mycelium. However, their phenotypic effects remain masked until the nuclei segregate into a homokaryotic spore, and the spore germinates to form a mycelium that is incapable of extended culturing. Ultimately the growth of a fungal colony ceases due to dysfunctional oxidative phosphorylation. Results with senescing nuclear mutants or growth-impaired cytoplasmic mutants suggest that mtDNA is inherently unstable, requiring protection by as yet unidentified nuclear-gene-encoded factors for normal functioning. Interestingly, these results are in accord with the endosymbiotic theory of origin of eukaryotic cells.
Collapse
Affiliation(s)
- Ramesh Maheshwari
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.
| | | |
Collapse
|
45
|
Maheshwari R. Circadian rhythm in the pink-orange bread mould Neurospora crassa: for what? J Biosci 2007; 32:1053-8. [PMID: 17954967 DOI: 10.1007/s12038-007-0107-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Affiliation(s)
- Namboori B Raju
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA.
| |
Collapse
|
47
|
Powell AJ, Jacobson DJ, Natvig DO. Ancestral polymorphism and linkage disequilibrium at the het-6 region in pseudohomothallic Neurospora tetrasperma. Fungal Genet Biol 2007; 44:896-904. [PMID: 17576083 DOI: 10.1016/j.fgb.2007.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 03/26/2007] [Accepted: 04/10/2007] [Indexed: 11/29/2022]
Abstract
In species of Neurospora, non-self recognition is mediated by at least 11 heterokaryon (het) incompatibility loci. Previously, we identified ancient allelic variation at het-c in pseudohomothallic N. tetrasperma, which confirmed outcrossing in this species. Here, we report distinct ancestral alleles at het-6 and un-24, two closely linked genes with het incompatibility function in N. crassa. The pattern of variation at het-6 and un-24 in N. tetrasperma is similar to that observed for N. crassa, where two ancestral allele specificities exist for each locus, Oak Ridge (het-6(OR), un-24(OR)) and Panama (het-6(PA), un-24(PA)). Only het-6(OR)/un-24(OR) and het-6(PA)/un-24(PA) allele combinations have been observed. The absence of recombinant haplotypes (e.g., het-6(OR)/un-24(PA)) appears to derive from an ancestral chromosomal rearrangement that limits recombination. Allelic variation at het-6 and un-24 in N. tetrasperma provides further evidence of outcrossing in this predominantly selfing species and indicates that selection maintains ancient allelic diversity at het loci.
Collapse
Affiliation(s)
- Amy J Powell
- Department of Plant Pathology, North Carolina State University, Campus Box 7244, Raleigh, NC 27695-7244, USA.
| | | | | |
Collapse
|
48
|
Davis RH. Tending Neurospora: David Perkins, 1919-2007, and Dorothy Newmeyer Perkins, 1922-2007. Genetics 2007; 175:1543-8. [PMID: 17449866 PMCID: PMC1855115 DOI: 10.1534/genetics.107.073403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Rowland H Davis
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA.
| |
Collapse
|
49
|
Winefield RD, Hilario E, Beever RE, Haverkamp RG, Templeton MD. Hydrophobin genes and their expression in conidial and aconidial Neurospora species. Fungal Genet Biol 2007; 44:250-7. [PMID: 17218129 DOI: 10.1016/j.fgb.2006.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 11/10/2006] [Accepted: 11/16/2006] [Indexed: 11/18/2022]
Abstract
Homologs of the gene encoding the hydrophobin EAS from Neurospora crassa have been identified both in the other conidial species of Neurospora (N. discreta, N. intermedia, N. sitophila, and N. tetrasperma) and selected aconidial species (N. africana, N. dodgei, N. lineolata, N. pannonica, and N. terricola). Southern blot analysis indicated the presence of a single gene in all species examined. EAS-like proteins were purified from the conidial species and each was shown to be the proteolytically processed gene-product of the corresponding eas homolog. While EAS-like proteins were not detected in the aconidial species, putative eas transcripts were detected in some isolates following RT-PCR and the aerial hyphae of these species were hydrophobic. DNA sequences of the coding region of the eas homologs were amplified by PCR and cloned and sequenced from all species except N. pannonica. Phylogenetic analysis of these sequences produced two clusters, the first comprising the conidiating species N. crassa, N. intermedia, N. sitophila, and N. tetrasperma forming a closely related group with N. discreta more distant, and the second comprising the aconidial species N. africana, N. dodgei, N. lineolata forming another closely related group with N. terricola more distant.
Collapse
Affiliation(s)
- Robert D Winefield
- The Horticulture and Food Research Institute of New Zealand Ltd, Private Bag 92-169, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
50
|
Taylor JW, Turner E, Townsend JP, Dettman JR, Jacobson D. Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi. Philos Trans R Soc Lond B Biol Sci 2007; 361:1947-63. [PMID: 17062413 PMCID: PMC1764934 DOI: 10.1098/rstb.2006.1923] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The claim that eukaryotic micro-organisms have global geographic ranges, constituting a significant departure from the situation with macro-organisms, has been supported by studies of morphological species from protistan kingdoms. Here, we examine this claim by reviewing examples from another kingdom of eukaryotic microbes, the Fungi. We show that inferred geographic range of a fungal species depends upon the method of species recognition. While some fungal species defined by morphology show global geographic ranges, when fungal species are defined by phylogenetic species recognition they are typically shown to harbour several to many endemic species. We advance two non-exclusive reasons to explain the perceived difference between the size of geographic ranges of microscopic and macroscopic eukaryotic species when morphological methods of species recognition are used. These reasons are that microbial organisms generally have fewer morphological characters, and that the rate of morphological change will be slower for organisms with less elaborate development and fewer cells. Both of these reasons result in fewer discriminatory morphological differences between recently diverged lineages. The rate of genetic change, moreover, is similar for both large and small organisms, which helps to explain why phylogenetic species of large and small organisms show a more similar distribution of geographic ranges. As a consequence of the different rates in fungi of genetic and morphological changes, genetic isolation precedes a recognizable morphological change. The final step in speciation, reproductive isolation, also follows genetic isolation and may precede morphological change.
Collapse
Affiliation(s)
- John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.
| | | | | | | | | |
Collapse
|