1
|
Metronidazole resistance and nim genes in anaerobes: A review. Anaerobe 2019; 55:40-53. [DOI: 10.1016/j.anaerobe.2018.10.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 01/06/2023]
|
2
|
The prevalence of enterotoxin and antibiotic resistance genes in clinical and intestinal Bacteroides fragilis group isolates in Turkey. Anaerobe 2015. [DOI: 10.1016/j.anaerobe.2015.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Eitel Z, Sóki J, Urbán E, Nagy E. The prevalence of antibiotic resistance genes in Bacteroides fragilis group strains isolated in different European countries. Anaerobe 2013; 21:43-9. [DOI: 10.1016/j.anaerobe.2013.03.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/21/2013] [Accepted: 03/05/2013] [Indexed: 11/29/2022]
|
4
|
Two multidrug-resistant clinical isolates of Bacteroides fragilis carry a novel metronidazole resistance nim gene (nimJ). Antimicrob Agents Chemother 2013; 57:3767-74. [PMID: 23716049 DOI: 10.1128/aac.00386-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two multidrug-resistant Bacteroides fragilis clinical isolates contain and express a novel nim gene, nimJ, that is not recognized by the "universal" nim primers and can confer increased resistance to metronidazole when introduced into a susceptible strain on a multicopy plasmid. HMW615, an appendiceal isolate, contains at least two copies of nimJ on its genome, while HMW616, an isolate from a patient with sepsis, contains one genomic copy of nimJ. B. fragilis NimJ is phylogenetically closer to Prevotella baroniae NimI and Clostridium botulinum NimA than to the other known Bacteroides Nim proteins. The predicted protein structure of NimJ, based on fold recognition analysis, is consistent with the crystal structures derived for known Nim proteins, and specific amino acid residues important for substrate binding in the active site are conserved. This study demonstrates that the "universal" nim primers will not detect all nim genes with the ability to confer metronidazole resistance, but nimJ alone cannot account for the very high metronidazole MICs of these resistant clinical isolates.
Collapse
|
5
|
Vedantam G. Antimicrobial resistance in Bacteroides spp.: occurrence and dissemination. Future Microbiol 2009; 4:413-23. [PMID: 19416011 DOI: 10.2217/fmb.09.12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bacteroides spp. organisms, though important human commensals, are also opportunistic pathogens when they escape the colonic milieu. Resistance to multiple antibiotics has been increasing in Bacteroides spp. for decades, and is primarily due to horizontal gene transfer of a plethora of mobile elements. The mechanistic aspects of conjugation in Bacteroides spp. are only now being elucidated at a functional level. There appear to be key differences between Bacteroides spp. and non-Bacteroides spp. conjugation systems that may contribute to promiscuous gene transfer within and from this genus. This review summarizes the mechanisms of action and resistance of antibiotics used to treat Bacteroides spp. infections, and highlights current information on conjugation-based DNA exchange.
Collapse
Affiliation(s)
- Gayatri Vedantam
- Department of Veterinary Science & Microbiology, Building 90, Room 108A, 1117 E. Lowell Street, Tucson, AZ 85721, USA.
| |
Collapse
|
6
|
|
7
|
Vedantam G, Hecht DW. Isolation and characterization of BTF-37: chromosomal DNA captured from Bacteroides fragilis that confers self-transferability and expresses a pilus-like structure in Bacteroides spp. and Escherichia coli. J Bacteriol 2002; 184:728-38. [PMID: 11790742 PMCID: PMC139536 DOI: 10.1128/jb.184.3.728-738.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We report the isolation and preliminary characterization of BTF-37, a new 52-kb transfer factor isolated from Bacteroides fragilis clinical isolate LV23. BTF-37 was obtained by the capture of new DNA in the nonmobilizable Bacteroides-Escherichia coli shuttle vector pGAT400DeltaBglII using a functional assay. BTF-37 is self-transferable within and from Bacteroides and also self-transfers in E. coli. Partial DNA sequencing, colony hybridization, and PCR revealed the presence of Tet element-specific sequences in BTF-37. In addition, Tn5520, a small mobilizable transposon that we described previously (G. Vedantam, T. J. Novicki, and D. W. Hecht, J. Bacteriol. 181:2564-2571, 1999), was also coisolated within BTF-37. Scanning and transmission electron microscopy of Tet element-containing Bacteroides spp. and BTF-37-harboring Bacteroides and E. coli strains revealed the presence of pilus-like cell surface structures. These structures were visualized in Bacteroides spp. only when BTF-37 and Tet element strains were induced with subinhibitory concentrations of tetracycline and resembled those encoded by E. coli broad-host-range plasmids. We conclude that we have captured a new, self-transferable transfer factor from B. fragilis LV23 and that this new factor encodes a tetracycline-inducible Bacteroides sp. conjugation apparatus.
Collapse
Affiliation(s)
- Gayatri Vedantam
- Departments of Medicine and Microbiology/Immunology and Program in Molecular Biology, Loyola University Medical Center, 2160 S. First Ave., Maywood, IL 60153, USA
| | | |
Collapse
|
8
|
Haggoud A, M'Hand RA, Reysset G, El M'Daghri N, Benbachir M, Moumni M. Prevalence and characteristics of nim genes encoding 5-nitroimidazole resistance among Bacteroides strains isolated in Morocco. Microb Drug Resist 2002; 7:177-81. [PMID: 11442344 DOI: 10.1089/10766290152045057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report here an evaluation of the dissemination of nim genes, encoding 5-nitroimidazoles resistance, among Bacteroides clinical strains isolated in Morocco. This study was done using a PCR method. Among 60 strains studied, nine contain a copy of a nim gene. The sequence determination of these genes showed that they are homologous to three nim genes previously characterized in strains isolated in France: nimB (five genes), nimC (three genes), and nimA (one gene). Although the nimA and nimC genes were previously identified on plasmids pIP417 and pIP419, respectively, we found here that they have a chromosomal location. The MICs of three 5-nitroimidazole antibiotics (metronidazole, ornidazole, and tinidazole) of the nim gene-containing strains were very low (0.5-2 microg/ml), indicating that the nim genes were not efficiently expressed in these clinical isolates.
Collapse
Affiliation(s)
- A Haggoud
- Laboratoire de Biotechnologie, Faculté des Sciences et Techniques Fès-Saïss, Morocco.
| | | | | | | | | | | |
Collapse
|
9
|
Land KM, Johnson PJ. Molecular basis of metronidazole resistance in pathogenic bacteria and protozoa. Drug Resist Updat 1999; 2:289-294. [PMID: 11504503 DOI: 10.1054/drup.1999.0104] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The molecular basis of metronidazole resistance has been examined in anaerobic bacteria, such as Bacteroides, Clostridium, and Helicobacter, and anaerobic parasitic protists such as Giardia, Entamoeba, and trichomonads. A variety of enzymatic and cellular alterations have been shown to correlate with metronidazole susceptibility in these pathogens; however, a common theme has been revealed. Resistant cells are typically deficient in drug activation. The frequent correlation between metronidazole resistance and ineffective drug activation suggests that drug resistance is the result of modification of proteins involved in drug activation. Copyright 1999 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- Kirkwood M. Land
- Department of Microbiology, UCLA School of Medicine, Los Angeles, CA, 90095-1489, USA
| | | |
Collapse
|
10
|
|
11
|
Vedantam G, Novicki TJ, Hecht DW. Bacteroides fragilis transfer factor Tn5520: the smallest bacterial mobilizable transposon containing single integrase and mobilization genes that function in Escherichia coli. J Bacteriol 1999; 181:2564-71. [PMID: 10198023 PMCID: PMC93685 DOI: 10.1128/jb.181.8.2564-2571.1999] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many bacterial genera, including Bacteroides spp., harbor mobilizable transposons, a class of transfer factors that carry genes for conjugal DNA transfer and, in some cases, antibiotic resistance. Mobilizable transposons are capable of inserting into and mobilizing other, nontransferable plasmids and are implicated in the dissemination of antibiotic resistance. This paper presents the isolation and characterization of Tn5520, a new mobilizable transposon from Bacteroides fragilis LV23. At 4,692 bp, it is the smallest mobilizable transposon reported from any bacterial genus. Tn5520 was captured from B. fragilis LV23 by using the transfer-deficient shuttle vector pGAT400DeltaBglII. The termini of Tn5520 contain a 22-bp imperfect inverted repeat, and transposition does not result in a target site repeat. Tn5520 also demonstrates insertion site sequence preferences characterized by A-T-rich nucleotide sequences. Tn5520 has been sequenced in its entirety, and two large open reading frames whose predicted protein products exhibit strong sequence similarity to recombinase-integrase enzymes and mobilization proteins, respectively, have been identified. The transfer, mobilization, and transposition properties of Tn5520 have been studied, revealing that Tn5520 mobilizes plasmids in both B. fragilis and Escherichia coli at high frequency and also transposes in E. coli.
Collapse
Affiliation(s)
- G Vedantam
- Department of Medicine, Section of Infectious Disease, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | | | |
Collapse
|
12
|
Lubbe MM, Stanley K, Chalkley LJ. Prevalence of nim genes in anaerobic/facultative anaerobic bacteria isolated in South Africa. FEMS Microbiol Lett 1999; 172:79-83. [PMID: 10079531 DOI: 10.1111/j.1574-6968.1999.tb13453.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This study investigated the prevalence of nim genes (proposed to encode a 5-nitroimidazole resistance product) in 64 anaerobic/facultative anaerobic bacteria. Employing universal nim gene primers, 458-bp amplified fragments were recorded as presumptive positives in 22/64 strains at an annealing temperature of 52 degrees C and 15/64 strains at 62 degrees C, of which seven were propionibacteria. DNA sequencing confirmed the presence of nimA genes in Propionibacterium spp. (five strains), Actinomyces odontolyticus (one strain), Prevotella bivia (one strain) and Clostridium bifermentans (one strain) and nimB genes from five strains of Bacteroides fragilis. nimA genes were predominant in propionibacteria indicating a potential nimA gene source in anaerobic environments.
Collapse
Affiliation(s)
- M M Lubbe
- Department of Medical Microbiology, Faculty of Health Sciences, University of the Orange Free State, Bloemfontein, South Africa.
| | | | | |
Collapse
|
13
|
Affiliation(s)
- C J Smith
- Department of Microbiology and Immunology, East Carolina University, 600 Moye Boulevard, Greenville, North Carolina, 27858, USA.
| | | | | |
Collapse
|
14
|
Trinh S, Reysset G. Mutagenic action of 5-nitroimidazoles: in vivo induction of GC-->CG transversion in two Bacteroides fragilis reporter genes. Mutat Res 1998; 398:55-65. [PMID: 9626965 DOI: 10.1016/s0027-5107(97)00240-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The in vivo mutagenic potential of two 5-nitroimidazoles, metronidazole and dimetridazole, was evaluated in Bacteroides fragilis, a strictly anaerobic bacterium. Two antibiotic resistance genes, tetA(Q)3 and nimA, were used as DNA targets. The forward and back mutations were identified by nucleotide sequence analysis. Both drugs induced GC-->CG transversion exclusively. The results suggest that the reactive molecules generated during the intracellular reduction of the 5-nitroimidazoles are responsible for both base pair substitutions and DNA strand breaks, although the mechanisms and targets may be different.
Collapse
Affiliation(s)
- S Trinh
- Unité des Anaérobies, Institut Pasteur, Paris, France
| | | |
Collapse
|
15
|
Carlier JP, Sellier N, Rager MN, Reysset G. Metabolism of a 5-nitroimidazole in susceptible and resistant isogenic strains of Bacteroides fragilis. Antimicrob Agents Chemother 1997; 41:1495-9. [PMID: 9210672 PMCID: PMC163946 DOI: 10.1128/aac.41.7.1495] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We investigated the metabolism of dimetridazole (1,2-dimethyl-5-nitroimidazole) (DMZ) by the resting cell method in a susceptible strain of Bacteroides fragilis and in the same strain containing the nimA gene, which conferred resistance to 5-nitroimidazole drugs. In both cases, under strict anaerobic conditions DMZ was metabolized without major ring cleavage or nitrate formation. However, one of two distinct metabolic pathways is involved, depending on the susceptibility of the strain. In the susceptible strain, the classical reduction pathway of nitroaromatic compounds is followed at least as far as the nitroso-radical anion, with further formation of the azo-dimer: 5,5'-azobis-(1,2-dimethylimidazole). In the resistant strain, DMZ is reduced to the amine derivative, namely, 5-amino-1,2-dimethylimidazole, preventing the formation of the toxic form of the drug. The specificity of the six-electron reduction of the nitro group, which is restricted to 4- and 5-nitroimidazole, suggests an enzymatic reaction. We thus conclude that nimA and related genes may encode a 5-nitroimidazole reductase.
Collapse
Affiliation(s)
- J P Carlier
- Unité des Anaérobies, Institut Pasteur, Paris, France.
| | | | | | | |
Collapse
|
16
|
Trinh S, Reysset G. Identification and DNA sequence of the mobilization region of the 5-nitroimidazole resistance plasmid pIP421 from Bacteroides fragilis. J Bacteriol 1997; 179:4071-4. [PMID: 9190830 PMCID: PMC179223 DOI: 10.1128/jb.179.12.4071-4074.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The nucleotide sequence of the DNA mobilization region of the 5-nitroimidazole resistance plasmid pIP421, from strain BF-F239 of Bacteroides fragilis, was determined. It contains a putative origin of transfer (oriT) including three sets of inverted repeats and two sequences reminiscent of specific integration host factor binding sites. The product of the mobilization gene mob421 (42.2 kDa) is a member of the Bacteroides mobilization protein family, which includes the MobA of pBI143, NBUs, and Tn4555. Sequence similarity suggests that it has both oriT binding and nicking activities. The transfer frequency of pIP421 in a B. fragilis donor strain possessing a Tc(r) or Tc(r) Em(r)-like conjugative transposon was significantly enhanced by tetracycline. Moreover, the mobilization region of pIP421 confers the ability to be mobilized from Escherichia coli by an IncP plasmid.
Collapse
Affiliation(s)
- S Trinh
- Unite des Anaerobies, Institut Pasteur, Paris, France
| | | |
Collapse
|
17
|
Trinh S, Haggoud A, Reysset G. Conjugal transfer of the 5-nitroimidazole resistance plasmid pIP417 from Bacteroides vulgatus BV-17: characterization and nucleotide sequence analysis of the mobilization region. J Bacteriol 1996; 178:6671-6. [PMID: 8955281 PMCID: PMC178560 DOI: 10.1128/jb.178.23.6671-6676.1996] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Three small 5-nitroimidazole (5-Ni) resistance plasmids (pIP417, pIP419, and pIP421) from Bacteroides clinical isolates are transferable by a conjugative process during homologous or heterologous matings. The mobilization properties of pIP417 originated from strain BV-17 of Bacteroides vulgatus were studied. The plasmid was successfully introduced by in vitro conjugation into different strains of Bacteroides and Prevotella species and could be transferred back from these various strains to a plasmid-free 5-Ni-sensitive Bacteroides fragilis strain, indicating that in vivo spread of the resistance gene may occur. The transfer of plasmid pIP417 harbored by the Tc(r) strain BF-2 of B. fragilis was stimulated by low concentrations of tetracycline or chlorotetracycline. This suggests a possible role for coresident conjugative transposons in the dissemination of 5-Ni resistance among gram-negative anaerobes. The nucleotide sequence of the 2.1-kb DNA mobilization region was determined. It contains a putative origin of transfer (oriT) in an A+T-rich-region, including three inverted repeats, and two integration host factor binding sites. The two identified mobilization genes (mobA and mobB) are organized in one operon and were both required for efficient transfer. Southern blotting indicated that the mobilization region of plasmid pIP417 is closely related to that of both the erythromycin resistance plasmid pBFTM1O and the 5-Ni resistance plasmid pIP419 but not to that of the 5-Ni resistance plasmid pIP421.
Collapse
Affiliation(s)
- S Trinh
- Unité des Anaérobies, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
18
|
|
19
|
Podglajen I, Breuil J, Casin I, Collatz E. Genotypic identification of two groups within the species Bacteroides fragilis by ribotyping and by analysis of PCR-generated fragment patterns and insertion sequence content. J Bacteriol 1995; 177:5270-5. [PMID: 7545155 PMCID: PMC177318 DOI: 10.1128/jb.177.18.5270-5275.1995] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Molecular typing allowed the separation of the species Bacteroides fragilis into two genotypically distinct groups. A unique set of 50 strains of B. fragilis carrying the chromosomal metallo-beta-lactamase gene cfiA was subjected to a comparative analysis with respect to sets of up to 250 randomly collected strains devoid of this gene. The two groups were found to be distinct on the basis of the following results: (i) ribotyping, after DNA digestion with AvaI, revealed a practically homogeneous DNA fragment pattern for the cfiA-positive strains and distinct multiple patterns for the cfiA-negative strains; (ii) PCR, arbitrarily primed with an experimentally selected decamer, generated fragment patterns typical for the strains of each group; (iii) the three insertion sequences described to date in the species B. fragilis, i.e., IS4351, IS942, and IS1186, were all but confined to the cfiA-positive group, in which they were capable of providing promoter sequences for the transcription of cfiA; and (iv) the cepA gene, encoding the so-called endogenous cephalosporinase of B. fragilis, was found exclusively in the cfiA-negative group, in which it was present in ca. 70% of the strains. The cfiA-, cepA-negative fraction was not characterized further. In a natural population of 500 randomly selected strains of B. fragilis, the cfiA-positive and cfiA-negative groups represented ca. 3 and 97% of the strains, respectively. Analysis of 82 metabolic traits revealed no difference between the two groups.
Collapse
Affiliation(s)
- I Podglajen
- Laboratoire de Recherche Moléculaire sur les Antibiotiques, Université Paris VI, France
| | | | | | | |
Collapse
|
20
|
Appréciation et évolution de la résistance aux antibiotiques chez les Bacteroides du groupe fragilis. Med Mal Infect 1994. [DOI: 10.1016/s0399-077x(05)81273-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Haggoud A, Reysset G, Azeddoug H, Sebald M. Nucleotide sequence analysis of two 5-nitroimidazole resistance determinants from Bacteroides strains and of a new insertion sequence upstream of the two genes. Antimicrob Agents Chemother 1994; 38:1047-51. [PMID: 8067736 PMCID: PMC188148 DOI: 10.1128/aac.38.5.1047] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
DNA sequence analysis of regions from plasmid pIP417 and chromosome BF8 which encode 5-nitroimidazole resistance in Bacteroides strains allowed the identification of two open reading frames corresponding to new genes, nimA (528 bp) and nimB (492 bp). Either gene may confer 5-nitroimidazole resistance to susceptible strains of Bacteroides. The encoded polypeptides have deduced molecular masses of 20.1 and 18.6 kDa, respectively, and share about 73% identity and 85% similarity. A new insertion sequence (IS) element named IS1168 lies 14 bases upstream of the nimA gene. The complete sequence of IS1168 was determined. A similar IS exists 12 bp upstream of the nimB gene. About 60% of the BF8 IS element was also sequenced and shown to be almost identical to IS1168.
Collapse
Affiliation(s)
- A Haggoud
- Unité des Anaérobies, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
22
|
Abstract
The nitroheterocyclic drugs have been available since the early 1960's for the treatment of anaerobic protozoa. The application of these drugs has widened since then and they are presently used to treat anaerobic pathogenic bacteria and protozoa. The activity of the nitroheterocyclic drugs depends on the all-important nitro group attached to the imidazole or furan ring. Although the nitro radicals, generated by reduction of the parent drugs, are similar for both families of nitroheterocyclics, the nitroimidazoles and the nitrofurans, the electron potential of each is different and thus the mechanism of action depends on different pathways. The nitroimidazoles depend on reduction by ferredoxin or flavodoxin. The nitrofurans require nitroreductase activity, but the natural substrate of these enzymes has not been identified. Increased use of nitroheterocyclic drugs, in response to drug resistance to other commonly used antibiotics, has in turn resulted in drug resistance to a number of nitroheterocyclic drugs. Bacteroides strains and other bacteria, including Helicobacter, have developed resistance. Among the protozoa, Trichomonas has developed resistance to metronidazole via a number of mechanisms, especially a decrease in drug reduction, as a result of alterations in the electron transport pathways. Resistance to both types of nitroheterocyclic drugs has been reported in Giardia. Although resistance to these drugs is not widespread, their increased use world-wide as a prophylaxis and in chemotherapy will inevitably result in increased resistance in organisms commonly found in asymptomatic infections, including Trichomonas, Giardia and Entamoeba. However, the variety of substitutions which can be attached to the ring structures has led to a great variety of drugs being synthesised, some of which are many-fold more active than the commonly prescribed nitroheterocyclics. With careful administration of currently available drugs and continued interest in synthesising more active compounds, we can optimistically expect to have useful nitroheterocyclic drugs available for some time.
Collapse
Affiliation(s)
- S M Townson
- Queensland Institute of Medical Research, Bancroft Centre, Brisbane, Australia
| | | | | | | |
Collapse
|
23
|
Breuil J, Patey O, Prazuck T, Malkin J, Halioua B, Dublanchet A, Lafaix C. Les habitudes thérapeutiques dans les infections à Bacteroides fragilis. Analyse des résultats d'une enquête multicentrique. Med Mal Infect 1993. [DOI: 10.1016/s0399-077x(05)81006-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Brighty KE, Kohlbrenner W, McGuirk PR. Chapter 15. Recent Developments in Antibacterial Resistance Mechanisms. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1993. [DOI: 10.1016/s0065-7743(08)60885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
25
|
Génétique de la résistance aux 5-nitroimidazoles chez les Bacteroides. Med Mal Infect 1992. [DOI: 10.1016/s0399-077x(05)81217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|