1
|
Zawistowska-Deniziak A, Powązka K, Pękacz M, Basałaj K, Klockiewicz M, Wiśniewski M, Młocicki D. Immunoproteomic Analysis of Dirofilaria repens Microfilariae and Adult Parasite Stages. Pathogens 2021; 10:pathogens10020174. [PMID: 33562513 PMCID: PMC7914743 DOI: 10.3390/pathogens10020174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Dirofilariarepens is a parasitic nematode causing a vector-borne zoonotic infection (dirofilariosis), considered an emerging problem in human and veterinary medicine. Currently, diagnosis is based on the detection of the adult parasite and microfilariae in the host tissues. However, the efficacy of tests relying on microfilariae detection is limited by microfilariae periodic occurrence. Therefore, a new reliable and affordable serological diagnostic method is needed. Better characteristic of the parasite biology and its interaction with host immune system should help to achieve this goal. This study analyzes adult and microfilariae proteomes, and the use of one-dimensional electrophoresis (1-DE) and two-dimensional electrophoresis (2-DE) proteomics, immunoproteomics, and LC-MS/MS mass spectrometry allowed us to identify 316 potentially immunogenic proteins (75 belong to adult stage, 183 to microfilariae, and 58 are common for both). Classified by their ontology, the proteins showed important similarities and differences between both parasite stages. The most frequently identified proteins are structural, metabolic, and heat shock proteins. Additionally, real-time PCR analysis of some immunogenic targets revealed significant differences between microfilariae and adult life stages. We indicated molecules involved in parasite-host interactions and discussed their importance in parasite biology, which may help to reveal potential diagnostic antigens or select drug and vaccine targets.
Collapse
Affiliation(s)
- Anna Zawistowska-Deniziak
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warsaw, Poland; (K.P.); (M.P.); (K.B.); (D.M.)
- Correspondence: ; Tel.: +48-22-697-89-66
| | - Katarzyna Powązka
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warsaw, Poland; (K.P.); (M.P.); (K.B.); (D.M.)
| | - Mateusz Pękacz
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warsaw, Poland; (K.P.); (M.P.); (K.B.); (D.M.)
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (M.K.); (M.W.)
| | - Katarzyna Basałaj
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warsaw, Poland; (K.P.); (M.P.); (K.B.); (D.M.)
| | - Maciej Klockiewicz
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (M.K.); (M.W.)
| | - Marcin Wiśniewski
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (M.K.); (M.W.)
| | - Daniel Młocicki
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 00-818 Warsaw, Poland; (K.P.); (M.P.); (K.B.); (D.M.)
- Department of General Biology and Parasitology, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
2
|
Simón F, Siles-Lucas M, Morchón R, González-Miguel J, Mellado I, Carretón E, Montoya-Alonso JA. Human and animal dirofilariasis: the emergence of a zoonotic mosaic. Clin Microbiol Rev 2012; 25:507-44. [PMID: 22763636 PMCID: PMC3416488 DOI: 10.1128/cmr.00012-12] [Citation(s) in RCA: 534] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dirofilariasis represents a zoonotic mosaic, which includes two main filarial species (Dirofilaria immitis and D. repens) that have adapted to canine, feline, and human hosts with distinct biological and clinical implications. At the same time, both D. immitis and D. repens are themselves hosts to symbiotic bacteria of the genus Wolbachia, the study of which has resulted in a profound shift in the understanding of filarial biology, the mechanisms of the pathologies that they produce in their hosts, and issues related to dirofilariasis treatment. Moreover, because dirofilariasis is a vector-borne transmitted disease, their distribution and infection rates have undergone significant modifications influenced by global climate change. Despite advances in our knowledge of D. immitis and D. repens and the pathologies that they inflict on different hosts, there are still many unknown aspects of dirofilariasis. This review is focused on human and animal dirofilariasis, including the basic morphology, biology, protein composition, and metabolism of Dirofilaria species; the climate and human behavioral factors that influence distribution dynamics; the disease pathology; the host-parasite relationship; the mechanisms involved in parasite survival; the immune response and pathogenesis; and the clinical management of human and animal infections.
Collapse
Affiliation(s)
- Fernando Simón
- Laboratory of Parasitology, Faculty of Pharmacy and IBSAL, University of Salamanca, Spain.
| | | | | | | | | | | | | |
Collapse
|
3
|
Reinhardt S, Scott I, Simpson HV. Neutrophil and eosinophil chemotactic factors in the excretory/secretory products of sheep abomasal nematode parasites: NCF and ECF in abomasal nematodes. Parasitol Res 2011; 109:627-35. [PMID: 21424403 DOI: 10.1007/s00436-011-2305-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/10/2011] [Indexed: 10/18/2022]
Abstract
Both eosinophil chemotactic factor (ECF) and neutrophil chemotactic factor (NCF) activities were demonstrated in excretory/secretory (ES) products and homogenates of Haemonchus contortus and Teladorsagia circumcincta larvae and adult worms in a modified checkerboard assay using a micro-chemotaxis chamber. Neutrophil chemotaxis was seen in 28 of 35 experiments and eosinophil chemotaxis in 20 of 38 experiments. Chemokinetic activity for neutrophils and eosinophils (accounting for 40-50% of total cell migration) was also apparent in only three parasite products for each cell type. Significant NCF activity was present in six of seven adult worm ES products (three of four from T. circumcincta and in all three from H. contortus) and ECF activity in four of five adult ES products, whereas fewer L3 incubates, particularly of T. circumcincta, contained chemotactic activity. All parasite homogenates, with one exception for ECF, were chemotactic for both neutrophils and eosinophils. The sequential use of cellulose ultrafiltration membranes of decreasing pore size did not identify precisely the molecular weight of the NCF and ECF but indicated that the active chemicals were greater than 10 kDa and probably greater than 30 kDa.
Collapse
Affiliation(s)
- Stefanie Reinhardt
- S. Reinhardt and B.Ullrich, Tierärztliche Gemeinschaftspraxis, Im Stocken 8A, 21255 Tostedt, Germany
| | | | | |
Collapse
|
4
|
O'Connell AE, Redding KM, Hess JA, Lok JB, Nolan TJ, Abraham D. Soluble extract from the nematode Strongyloides stercoralis induces CXCR2 dependent/IL-17 independent neutrophil recruitment. Microbes Infect 2011; 13:536-44. [PMID: 21315175 DOI: 10.1016/j.micinf.2011.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 12/16/2010] [Accepted: 01/24/2011] [Indexed: 01/24/2023]
Abstract
Neutrophil recruitment via CXCR2 is required for innate and adaptive protective immunity to the larvae of Strongyloides stercoralis in mice. The goal of the present study was to determine the mechanism of CXCR2-mediated neutrophil recruitment to S. stercoralis. Mice deficient in the receptor for IL-17A and IL-17F, upstream mediators of CXCR2 ligand production, were infected with S. stercoralis larvae; there was no difference in larval survival, neutrophil recruitment, or production of CXCR2 ligands compared with wild type mice. In vivo and in vitro stimulation of neutrophils with S. stercoralis soluble extract resulted in significant neutrophil recruitment. In vitro assays demonstrated that the recruitment functioned through both chemokinesis and chemotaxis, was specific for CXCR2, and was a G protein-coupled response involving tyrosine kinase and PI3K. Finally, neutrophil stimulation with S. stercoralis soluble extract induced release of the CXCR2 ligands MIP-2 and KC from neutrophils, thereby potentially enhancing neutrophil recruitment.
Collapse
Affiliation(s)
- Amy E O'Connell
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
5
|
Growth factors and chemotactic factors from parasitic helminths: molecular evidence for roles in host-parasite interactions versus parasite development. Int J Parasitol 2010; 40:761-73. [PMID: 20359480 DOI: 10.1016/j.ijpara.2010.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 01/04/2023]
Abstract
For decades molecular helminthologists have been interested in identifying proteins expressed by the parasite that have roles in modulating the host immune response. In some cases, the aim was targeting parasite-derived orthologues of mammalian cytokines and growth factors known to have functions in immune modulation. In others, novel proteins without homology to mammalian cytokines were isolated by investigating effects of purified worm extracts on various immunological processes. Often, the role parasite-derived growth factors play in worm development was ignored. Here, we review growth factors and chemotactic factors expressed by parasitic helminths and discuss their recognised and potential roles in immunomodulation and/or parasite development.
Collapse
|
6
|
Bazzocchi C, Genchi C, Paltrinieri S, Lecchi C, Mortarino M, Bandi C. Immunological role of the endosymbionts of Dirofilaria immitis: the Wolbachia surface protein activates canine neutrophils with production of IL-8. Vet Parasitol 2004; 117:73-83. [PMID: 14597281 DOI: 10.1016/j.vetpar.2003.07.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Filarial nematodes, including Dirofilaria immitis and D. repens, harbour intracellular bacteria belonging to the genus Wolbachia. These bacteria have been implicated in the pathogenesis of filarial diseases, possibly through their endotoxins. Recent studies have shown that a major surface protein of Wolbachia (WSP) induces a specific IgG response in hosts infected by D. immitis. WSP from the Wolbachia of D. immitis was produced in recombinant form. The purified protein was used in stimulation assays on canine neutrophils. The assays performed using a modified Boyden chamber showed that WSP stimulates neutrophil chemokinesis. In addition, RT-PCR revealed increased production of chemokine IL-8 by cells incubated with this protein. Neutrophils have been shown to play a major role in the pathogenesis of river blindness, and to accumulate in the nodules of onchocerciasis patients. In dogs infected by D. immitis, neutrophils accumulate in kidneys and in the wall of pulmonary arteries. As shown by our studies, Wolbachia could contribute to these inflammatory phenomena through its surface protein WSP, independently from its endotoxin component.
Collapse
Affiliation(s)
- C Bazzocchi
- Dipartimento di Patologia Animale Igiene e Sanità Pubblica Veterinaria, Sezione di Patologia Generale e Parassitologia, Università di Milano, Via Celoria 10, 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Li H, Chunsong H, Guobin C, Qiuping Z, Qun L, Xiaolian Z, Baojun H, Linjie Z, Junyan L, Mingshen J, Jinquan T. Highly up-regulated CXCR3 expression on eosinophils in mice infected with Schistosoma japonicum. Immunology 2004; 111:107-17. [PMID: 14678205 PMCID: PMC1782385 DOI: 10.1111/j.1365-2567.2004.01771.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Revised: 07/07/2003] [Accepted: 09/29/2003] [Indexed: 11/29/2022] Open
Abstract
CXCR3, predominately expressed on memory/activated T cells, is a receptor for both interferon-gamma inducible protein-10/CXC ligand 10 (CXCL10) and monokine induced by interferon-gamma/CXCL9. We reported here that CXCR3 was highly up-regulated on infiltrating eosinophils in Schistosoma japonicum egg-induced granuloma in the mouse liver. It was also highly and functionally up-regulated on peritoneal exudate eosinophils in mice infected with S. japonicum. The phenomena were demonstrated at protein and mRNA levels using immunohisto- and immunocytochemistry evaluation of biopsy, flow cytometry and real-time quantitative reverse transcriptase-polymerase chain reaction technique, and verified by Northern blotting and chemotaxis assay in vitro. We also found that CCR3 expression on the infiltrating and peritoneal exudate cells was significantly decreased, CXCR4 expression was unchanged during the 42-day period of infection. We screened mRNA expression levels of the all known chemokine receptors in purified peritoneal exudate eosinophils and liver granuloma dominated by eosinophils. CXCR3 was highly and functionally up-regulated on peritoneal exudate eosinophils in mice infected with S. japonicum, meanwhile CCR3 was significantly and functionally down-regulated in these cells. The findings could lead to a better understanding of the chemokine receptor expression pattern of eosinophils at inflamed tissue sites caused by parasites. These could be also crucial for establishing a therapeutic strategy for eosinophilic inflammation via intervention in chemokine actions.
Collapse
Affiliation(s)
- He Li
- Department of Parasitology, Medical College, Wuhan University, Wuhan, P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tezuka H, Imai S, Hidano S, Tsukidate S, Fujita K. Various types of Dirofilaria immitis polyproteins selectively induce a Th2-Type immune response. Infect Immun 2003; 71:3802-11. [PMID: 12819063 PMCID: PMC162011 DOI: 10.1128/iai.71.7.3802-3811.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dirofilaria immitis polyproteins (DiAgs) are found as 15-kDa monomeric and 30-kDa dimeric forms in excretory-secretory products of the adult worm. We evaluated the ability of various types of recombinant DiAg (rDiAg; V1 and V2 as monomers and V1V2, V2V1, V1V1, and V2V2 as dimers) to influence Th1/Th2 immune responses. V1-, V1Vx- and V2-, V2Vx-driven nonspecific immunoglobulin E (IgE) production peaked at 21 and 14 days after administration, respectively. Dimer-induced IgE response was an interesting biphasic pattern with the second peaks on days 35 (V2Vx) or 42 (V1Vx). Absolute amounts of nonspecific IgE production induced with monomers were larger than those observed with dimers at the first peak. The magnitude of cell expansion and interleukin-10 (IL-10) production in mesenteric lymph node (MLN) B-cell induced with rDiAgs was linked to the levels of the first IgE peak in vivo and IgE produced by rDiAg plus IL-4-stimulated B cells in vitro. All rDiAgs failed to augment IgG2c production. V2 and V2Vx elicited IL-4 production by MLN cells more rapidly than V1 and V1Vx. The inhibitory effect of rDiAg on gamma interferon (IFN-gamma) production was stronger in monomers than in dimers. Neutralization of IL-10 restored IFN-gamma production, whereas the expression of IL-4 and IgE was partly prevented by depletion of IL-10. These results indicate that monomer rather than dimer is an efficient form of DiAg and suggest that the difference of IgE-inducing capacity among these DiAgs is closely associated with the pattern of both B-cell activation and IL-4 production.
Collapse
Affiliation(s)
- Hiroyuki Tezuka
- Section of Environmental Parasitology, Department of Internation Health Development, Division of Public Health, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | |
Collapse
|
9
|
Tezuka H, Imai S, Muto R, Furuhashi Y, Fujita K. Recombinant Dirofilaria immitis polyprotein that stimulates murine B cells to produce nonspecific polyclonal immunoglobulin E antibody. Infect Immun 2002; 70:1235-44. [PMID: 11854206 PMCID: PMC127741 DOI: 10.1128/iai.70.3.1235-1244.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonspecific immunoglobulin E (IgE) production is an event characteristically observed in parasitic helminth infections, but its mechanisms are still unclear. To define these mechanisms, we prepared a recombinant Dirofilaria immitis protein (rDiAg) and assessed its effect on nonspecific IgE production. rDiAg preferentially induced nonspecific IgE production, without eliciting specific IgE production, as well as a Th2-type cytokine profile (high interleukin-4 [IL-4] and IL-10 production but low gamma interferon production) in BALB/c mice. rDiAg significantly elicited the proliferative response of naive B cells. This response was not abolished by polymyxin B, an inhibitor of lipopolysaccharide (LPS), and rDiAg normally expanded splenic B cells from LPS nonresponder C3H/HeJ mice. Thus, the mitogenic effect of rDiAg was not due to LPS contamination. rDiAg also enhanced levels of CD23 expression on splenic B cells. Splenic B cells produced marked levels of IgE when cultured with the combination of rDiAg and IL-4 (rDiAg-IL-4), whereas peritoneal B cells produced negligible levels of IgE. rDiAg-IL-4-induced IgE production by splenic B cells was synergistically increased by coculture with peritoneal B cells. rDiAg-driven IL-10 secretion was higher in peritoneal B cells than in splenic B cells. IgE production by splenic B cells cocultured with peritoneal B cells was decreased to a level comparable to that by splenic B cells in the presence of a neutralizing anti-IL-10 monoclonal antibody. Collectively, these results suggest that rDiAg-induced polyclonal expansion and IgE class switching of splenic B cells contribute to nonspecific IgE production and that these responses are enhanced by peritoneal B-cell-derived IL-10.
Collapse
Affiliation(s)
- Hiroyuki Tezuka
- Section of Environmental Parasitology, Department of International Health Development, Division of Public Health, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | |
Collapse
|
10
|
Imai S, Tezuka H, Furuhashi Y, Muto R, Fujita K. A factor of inducing IgE from a filarial parasite is an agonist of human CD40. J Biol Chem 2001; 276:46118-24. [PMID: 11591702 DOI: 10.1074/jbc.m104581200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Immune responses to parasitic helminth are usually characterized by quite mysterious phenomena: dominance of Th2-like immunity and antigen-nonspecific IgE secretion. We previously purified a factor from Dirofilaria immitis that induces antigen-nonspecific IgE in rats and named it DiAg. In the presence of IL-4, DiAg induces mouse B cells to secrete IgE, which is antigen-nonspecific polyclonal antibody. We investigated the biochemical characteristics of DiAg as a factor of inducing IgE in this study. Recombinant DiAg (rDiAg) with interleukin (IL)-4 induced IgE synthesis in highly purified human normal B cells in vitro cell culture systems. The addition of recombinant human soluble CD40 IgG fusion protein (rsCD40-Ig) inhibited induction of IgE synthesis by rDiAg with IL-4. Monocyte cells were stimulated with rDiAg and recombinant human soluble CD40L (rsCD40L); IL-12 and TNF-alpha were induced. The addition of rsCD40-Ig to THP-1 cells activated with rDiAg and rsCD40L inhibited the production of IL-12. rDiAg bound to the monocyte cell membrane fraction and recombinant human soluble CD40; this binding of rDiAg was competitively inhibited by addition of rsCD40L. Moreover, in CD40-deficient mice, IgE production and MLN-B cell proliferation by rDiAg were completely absent. Based on these results, we concluded that DiAg is an agonist of CD40.
Collapse
Affiliation(s)
- S Imai
- Section of Environmental Parasitology, Department of International Health Development, Division of Public Health, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo 113-8519.
| | | | | | | | | |
Collapse
|
11
|
Imai S, Tezuka H, Fujita K. A factor of inducing IgE from a filarial parasite prevents insulin-dependent diabetes mellitus in nonobese diabetic mice. Biochem Biophys Res Commun 2001; 286:1051-8. [PMID: 11527407 DOI: 10.1006/bbrc.2001.5471] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parasitic helminth infections are characterized by eosinophilia and markedly elevated levels of circulating antigen-nonspecific immunoglobulin E (IgE), responses from which concern helminth protection. We previously purified a factor from Dirofilaria immitis that induces antigen-nonspecific IgE in mice and rats. Recombinant DiAg (rDiAg) has various biological activities. It is also known that parasitic helminth infection generates tremendous Th2 responses. The nonobese diabetic (NOD) mouse spontaneously develops Th1 cell-dependent autoimmune diabetes. Here we investigated the effects of rDiAg on the initiation and progression of this disease. rDiAg treatment of 6-week-old NOD females (the age at which insulitis typically begins) completely prevented insulitis and diabetes. Thus, rDiAg impaired the islet Ag-specific Th1 cell response in vivo, and the prevention of diabetes by rDiAg was associated with switching of the response from a Th1 to a Th2 profile. Since rDiAg clearly prevented insulitis by inhibiting the development and further accumulation of pathogenic Th1 cells to islets of Langerhans, we conclude that DiAg is a native Th2 inducer in filarial helminth and that Th1 responses are required for early events in the development of spontaneous autoimmune diabetes. In conclusion, the presence of parasitic helminth infections may play an important role as an immunomodulator in some autoimmune diseases or allergies.
Collapse
Affiliation(s)
- S Imai
- Section of Environmental Parasitology, Department of International Health Development, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8519, Japan.
| | | | | |
Collapse
|
12
|
Bandi C, Trees AJ, Brattig NW. Wolbachia in filarial nematodes: evolutionary aspects and implications for the pathogenesis and treatment of filarial diseases. Vet Parasitol 2001; 98:215-38. [PMID: 11516587 DOI: 10.1016/s0304-4017(01)00432-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The presence of intracellular bacteria in the body of various species of filarial nematodes, including important parasites such as Brugia malayi, Dirofilaria immitis, and Onchocerca volvulus, was observed as early as the mid-1970s. These bacteria were shown to be transovarially transmitted (from the female worm to the offspring) and to be present in significant amounts in the body of the nematode. As highlighted by their discoverers, the potential importance of these bacteria is fairly obvious: (1) bacteria-derived molecules should be considered as having an immunological and pathological role in filarial diseases; (2) the interaction between the bacteria and the filarial host deserves investigation, in view of the possibility that the bacteria are needed by the host nematode and could thus represent a target for therapy. Other authors, independently from the discovery of these intracellular bacteria, showed that the antibiotic tetracycline (which is well known for its efficacy on intracellular bacteria) had detrimental effects on two species of filarial nematodes (Brugia pahangi and Litomosoides sigmodontis). It is therefore surprising that for more than 20 years, no further investigations focused on the bacteria of filarial nematodes, nor on the anti-filarial properties of tetracycline. Recently, the bacteria of filarial nematodes have been independently "rediscovered" by research groups from the schools of Hamburg, Liverpool and Milan. These bacteria are now classified as Wolbachia, and the basic aspects of their phylogenetic history and relationship with the Wolbachia of arthropods have been reconstructed. In addition, their implications for the pathogenesis and treatment of filarial diseases have started to be uncovered. This paper, which is authored by representatives of the three European schools who reopened this research area, reviews our present knowledge of these fascinating microorganisms, highlighting the complexity of a symbiotic system which involves, in addition to the nematode and its bacterium, the vertebrate host.
Collapse
Affiliation(s)
- C Bandi
- Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria, Sezione di Patologia, Generale e Parassitologia, Università di Milano, 20133 Milan, Italy
| | | | | |
Collapse
|
13
|
Maizels RM, Blaxter ML, Scott AL. Immunological genomics of Brugia malayi: filarial genes implicated in immune evasion and protective immunity. Parasite Immunol 2001; 23:327-44. [PMID: 11472553 DOI: 10.1046/j.1365-3024.2001.00397.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Filarial nematodes are metazoan parasites with genome sizes of> 100 million base pairs, probably encoding 15 000-20 000 genes. Within this considerable gene complement, it seems likely that filariae have evolved a spectrum of immune evasion products which underpin their ability to live for many years within the human host. Moreover, no suitable vaccine currently exists for human filarial diseases, and few markers have yet been established for diagnostic use. In this review, we bring together biochemical and immunological data on prominent filarial proteins with the exciting new information provided by the Filarial Genome Project's expressed sequence tag (EST) database. In this discussion, we focus on those genes with the highest immunological profile, such as inhibitors of host enzymes, cytokine homologues and stage-specific surface proteins, as well as products associated with the mosquito-borne infective larva which offer the best opportunity for an anti-filarial vaccine. These gene products provide a fascinating glimpse of the molecular repertoire which helminth parasites have evolved to manipulate and evade the mammalian immune response.
Collapse
Affiliation(s)
- R M Maizels
- Institute for Cell, Animal and Population Biology, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
14
|
Falcone FH, Rossi AG, Sharkey R, Brown AP, Pritchard DI, Maizels RM. Ascaris suum-derived products induce human neutrophil activation via a G protein-coupled receptor that interacts with the interleukin-8 receptor pathway. Infect Immun 2001; 69:4007-18. [PMID: 11349070 PMCID: PMC98463 DOI: 10.1128/iai.69.6.4007-4018.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with tissue-migrating helminths is frequently associated with intense granulocyte infiltrations. Several host-derived factors are known to mediate granulocyte recruitment to the tissues, but less attention has been paid to how parasite-derived products trigger this process. Parasite-derived chemotactic factors which selectively recruit granulocytes have been described, but nothing is known about which cellular receptors respond to these agents. The effect of products from the nematodes Ascaris suum, Toxocara canis, and Anisakis simplex on human neutrophils were studied. We monitored four parameters of activation: chemotaxis, cell polarization, intracellular Ca(2+) transients, and priming of superoxide anion production. Body fluids of A. suum (ABF) and T. canis (TcBF) induced strong directional migration, shape change, and intracellular Ca(2+) transients. ABF also primed neutrophils for production of superoxide anions. Calcium mobilization in response to A. suum-derived products was completely abrogated by pretreatment with pertussis toxin, implicating a classical G protein-coupled receptor mechanism in the response to ABF. Moreover, pretreatment with interleukin-8 (IL-8) completely abrogated the response to ABF, demonstrating desensitization of a common pathway. However, ABF was unable to fully desensitize the response to IL-8, and binding to CXCR1 or CXCR2 was excluded in experiments using RBL-2H3 cells transfected with the two human IL-8 receptors. Our results provide the first evidence for a direct interaction between a parasite-derived chemotactic factor and the host's chemotactic network, via a novel G protein-coupled receptor which interacts with the IL-8 receptor pathway.
Collapse
Affiliation(s)
- F H Falcone
- Institute of Cell, Animal and Population Biology, University of Edinburgh, Ashworth Laboratories, United Kingdom
| | | | | | | | | | | |
Collapse
|
15
|
Furuhashi Y, Imai S, Tezuka H, Fujita K. Recombinant Dirofilaria immitis-derived antigen can suppress passive cutaneous anaphylaxis reactions. Int Arch Allergy Immunol 2001; 125:144-51. [PMID: 11435731 DOI: 10.1159/000053808] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND High levels of antigen-nonspecific IgE are produced in animals infected with helminth parasites. Generally, the increase in IgE is thought to exacerbate allergic reactions. However, high levels of antigen-nonspecific IgE may alter some features of anaphylactic reactions. To investigate the molecular mechanisms of antigen-nonspecific IgE production induced during filarial infections, we previously constructed rDiAg (recombinant Dirofilaria immitis-derived antigen) in Escherichia coli. In the present study, we examined the effect of rDiAg on the production of antigen-nonspecific IgE and on allergic cutaneous reactions in rats. METHODS Osmotic pumps filled with 200 microg of rDiAg or with 200 microl of PBS (control) were subcutaneously implanted in Wistar rats, and plasma samples were collected weekly thereafter. IgE levels were determined by ELISA. Homologous passive cutaneous anaphylaxis (PCA) reactions with anti-DNP-As IgE were examined 21 days after implantation. (125)I-IgE binding assays were examined on peritoneal mast cells from rDiAg-infused rats and control rats. RESULTS Antigen-nonspecific IgE production was induced in rDiAg-infused rats. PCA reactions were suppressed in rDiAg-infused rats in spite of high levels of IgE and a markedly increased expression of Fc epsilon RI. (125)I-IgE did not bind to mast cells derived from rDiAg-infused rats, but it bound dose dependently to mast cells derived from control rats. CONCLUSION The present data support the hypothesis that antigen-nonspecific IgE might protect against antigen-specific IgE by means of competition for mast cell receptors. rDiAg is an essential factor to induce antigen-nonspecific IgE in helminth infections.
Collapse
Affiliation(s)
- Y Furuhashi
- Section of Environmental Parasitology, Department of International Health Development, Division of Public Health, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | |
Collapse
|
16
|
Poole CB, Hornstra LJ, Benner JS, Fink JR, McReynolds LA. Carboxy-terminal sequence divergence and processing of the polyprotein antigen from Dirofilaria immitis. Mol Biochem Parasitol 1996; 82:51-65. [PMID: 8943150 DOI: 10.1016/0166-6851(96)02721-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A polyprotein composed of multiple units arranged in direct tandem arrays has been identified in parasitic and free living nematodes. Analysis of previously cloned units from the Dirofilaria immitis polyprotein antigen (DiPA) indicated the units were nearly identical but here we demonstrate that they segregate into two related families. The consensus repeats, DiPA-CR1 and CR2, derived for each family are 80% identical. However, the repeats at the C-terminus of the polyprotein have diverged from DiPA-CR1 and CR2. This was shown by DNA sequence and Southern blot analysis of a 1.9 kb cDNA clone that encodes 4.4 C-terminal repeats (DiPA-TR1 through TR5). DiPA-TR3 through TR5 show 27-52% amino acid identity with the consensus repeats and 31-35% amino acid identity with one another. Metabolic labeling studies have shown that cleavage of DiPA generates a protein "ladder' from 14 to > 200 kDa. RRKR, a cleavage motif of subtilisin-like proprotein convertases, was identified as the natural cleavage site. In vitro digestion experiments with proteinase K suggest a structural model for DiPA consisting of protease resistant cores joined by protease sensitive linkers containing the RRKR site. This motif is absent between DiPA-TR3 and TR4 and has been altered to KR between DiPA-TR4 and TR5. An immunoblot of D. immitis extract probed with anti-DiPA-TR4/5 serum demonstrates the absence of cleavage at these sites. These divergent repeats provide an opportunity to investigate processing of the D. immitis polyprotein in vivo.
Collapse
Affiliation(s)
- C B Poole
- Molecular Parasitology Division, New England Biolabs, Beverly, MA 01915, USA
| | | | | | | | | |
Collapse
|
17
|
Evans DJ, Evans DG, Takemura T, Nakano H, Lampert HC, Graham DY, Granger DN, Kvietys PR. Characterization of a Helicobacter pylori neutrophil-activating protein. Infect Immun 1995; 63:2213-20. [PMID: 7768601 PMCID: PMC173288 DOI: 10.1128/iai.63.6.2213-2220.1995] [Citation(s) in RCA: 224] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Helicobacter pylori-associated gastritis is mainly an inflammatory cell response. In earlier work we showed that activation of human neutrophils by a cell-free water extract of H. pylori is characterized by increased expression of neutrophil CD11b/CD18 and increased adhesiveness to endothelial cells. The work reported here indicates that the neutrophil-activating factor is a 150,000-molecular-weight protein (150K protein). Neutrophil proadhesive activity copurified with this protein, which is a polymer of identical 15K subunits. Specific antibody, prepared against the purified 15K subunit, neutralized the proadhesive activity of the pure protein and of water extracts obtained from different strains of H. pylori. The gene (napA) for this protein (termed HP-NAP, for H. pylori neutrophil-activating protein) was detected, by PCR amplification, in all of the H. pylori isolates tested; however, there was considerable strain variation in the level of expression of HP-NAP activity in vitro. HP-NAP could play an important role in the gastric inflammatory response to H. pylori infection.
Collapse
Affiliation(s)
- D J Evans
- Bacterial Enteropathogens Laboratory, Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Grieve RB, Wisnewski N, Frank GR, Tripp CA. Vaccine research and development for the prevention of filarial nematode infections. PHARMACEUTICAL BIOTECHNOLOGY 1995; 6:737-68. [PMID: 7551246 DOI: 10.1007/978-1-4615-1823-5_33] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The development of vaccines for the prevention of filarial nematode infections is in a state of relative infancy in comparison to vaccines for other parasitic diseases, such as schistosomiasis and malaria. There are many reasons for this slow start. Some of the principal problems are: (1) the lengthy and complex life cycle of these organisms with attendant complex immune responses, (2) the unique characteristics associated with a relatively large number of different pathogens, (3) the lack of suitable model systems for study of medically important infections, (4) the paucity of parasite material for antigen discovery and recombinant library construction, (5) the lack of substantial evidence suggesting the natural occurrence of protective immune responses, and (6) the limited data on mechanisms responsible for protective immunity. As technical hurdles are considered, it is also critical to focus on the characteristics of a vaccine necessary for its eventual utility. In the case of a vaccine for D. immitis a completely successful product will need to approach a 99+% efficacy. This is because of the 99+% efficacy of competitive chemotherapeutic products and the fact that microfilaremia observed on blood examination, resulting from as few as two worms, would present as a vaccine failure. Although very low worm burdens in large dogs could be perceived as success in the context of protection from clinical disease, because of the option of virtually complete chemoprophylactic protection, the typical veterinary practitioner would probably fail to appreciate less than complete vaccine protection. In contrast, a vaccine that produced a reduction in adult worm burdens without complete protection in either lymphatic filariasis or onchocerciasis would be very important. Highly effective chemoprophylactic agents are not widely available for prevention of the human filariases, and dramatically reduced clinical disease provided by less than a completely effective vaccine could occur as the result of fewer adult worms. The importance of developing these vaccines has outweighed the obstacles to this research. There has been a great deal of epidemiological and experimental evidence to suggest a vaccine is feasible and antigen discovery has progressed relatively rapidly within just the past few years. Efforts to generate appropriate larval cDNA libraries are beginning to yield dividends and a variety of fascinating vaccine candidates have been cloned. Additional antigen discovery, research on appropriate modalities for overexpression of genes from these parasites, and the complex tasks associated with vaccinology remain as significant research and development obstacles.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R B Grieve
- Paravax, Inc., Fort Collins, Colorado 80525, USA
| | | | | | | |
Collapse
|