1
|
Qi F, Zhang J, Li J, Li D, Gao N, Qi Z, Kong X, Yu Z, Fang Y, Cui W, Xia J. Synergistic immunochemotherapy targeted SAMD4B-APOA2-PD-L1 axis potentiates antitumor immunity in hepatocellular carcinoma. Cell Death Dis 2024; 15:421. [PMID: 38886351 PMCID: PMC11183041 DOI: 10.1038/s41419-024-06699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 06/20/2024]
Abstract
Targeted and immunotherapy combined with interventional therapy can improve the prognosis of advanced cancer patients, and it has become a hot spot to find the new therapeutic schemes, but most of which are not satisfactory. Single-cell RNA sequencing was performed in PDX mouse models with or without TCC therapy. 2-'O-Methylation modification and multiplex immunofluorescence staining were used to explore the function and mechanism of SAMD4B in the immune context of HCC. Here, we propose for the first time a synergistic immunochemotherapy that exerts a potent antitumour effect for patients with advanced hepatocellular carcinoma (HCC) in clinical practice based on three common antitumour drugs and found that HCC patients with new synergistic immunochemotherapy had better three-year overall survival (p = 0.004) and significantly higher survival ratio (increased by 2.3 times) than the control group. We further reveal the immunoregulatory mechanism of synergistic immunochemotherapy through 2'-O-Methylation modification mediated by SAMD4B, a tumour suppressor gene. Mechanistically, SAMD4B, increased by the reduced mutations of upstream genes NOTCH1 and NOTCH2, affected the instability of APOA2 mRNA by 2-'O-Methylation modification of the C-terminus. The decreased APOA2 further attenuated programmed death ligand 1 (PD-L1) level with a direct interaction pattern. The high-SAMD4B tumour tissues contained fewer native CD29+CD8+ T cells, which improved immune microenvironment to achieve the effect of antitumour effect. Overall, we developed a potent synergistic immunochemotherapy strategy that exerts an efficient anti-HCC effect inducing SAMD4B-APOA2-PD-L1 axis to inhibit tumour immune evasion.
Collapse
Affiliation(s)
- Feng Qi
- National Medical Center & National Clinical Research Center for Interventional Medicine. Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jian Zhang
- National Medical Center & National Clinical Research Center for Interventional Medicine. Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jia Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, China
| | - Donghe Li
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Na Gao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Zhuoran Qi
- National Medical Center & National Clinical Research Center for Interventional Medicine. Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xiuyan Kong
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhijie Yu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuan Fang
- Department of Liver Surgery, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| | - Jinglin Xia
- National Medical Center & National Clinical Research Center for Interventional Medicine. Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Lee H, Neri P, Bahlis NJ. Cereblon-Targeting Ligase Degraders in Myeloma: Mechanisms of Action and Resistance. Hematol Oncol Clin North Am 2024; 38:305-319. [PMID: 38302306 DOI: 10.1016/j.hoc.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Cereblon-targeting degraders, including immunomodulatory imide drugs lenalidomide and pomalidomide alongside cereblon E3 ligase modulators like iberdomide and mezigdomide, have demonstrated significant anti-myeloma effects. These drugs play a crucial role in diverse therapeutic approaches for multiple myeloma (MM), emphasizing their therapeutic importance across various disease stages. Despite their evident efficacy, approximately 5% to 10% of MM patients exhibit primary resistance to lenalidomide, and resistance commonly develops over time. Understanding the intricate mechanisms of action and resistance to this drug class becomes imperative for refining and advancing novel therapeutic combinations.
Collapse
Affiliation(s)
- Holly Lee
- Arnie Charbonneau Cancer Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | - Paola Neri
- Arnie Charbonneau Cancer Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | - Nizar J Bahlis
- Arnie Charbonneau Cancer Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
3
|
Molecular Mechanisms of Cereblon-Interacting Small Molecules in Multiple Myeloma Therapy. J Pers Med 2021; 11:jpm11111185. [PMID: 34834536 PMCID: PMC8623651 DOI: 10.3390/jpm11111185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Thalidomide analogues (or immunomodulatory imide drugs, IMiDs) are cornerstones in the treatment of multiple myeloma (MM). These drugs bind Cereblon (CRBN), a receptor for the Cullin-ring 4 ubiquitin-ligase (CRL4) complex, to modify its substrate specificity. IMiDs mediate CRBN-dependent engagement and proteasomal degradation of ‘neosubstrates’, Ikaros (IKZF1) and Aiolos (IKZF3), conveying concurrent antimyeloma activity and T-cell costimulation. There is now a greater understanding of physiological CRBN functions, including endogenous substrates and chaperone activity. CRISPR Cas9-based genome-wide screening has further elucidated the complex cellular machinery implicated in IMiD sensitivity, including IKZF1/3-independent mechanisms. New-generation IMiD derivatives with more potent anti-cancer properties—the CELMoDs (Cereblon E3 ligase modulators)—are now being evaluated. Rational drug design also allows ‘hijacking’ of CRL4CRBN utilising proteolysis targeting chimeras (PROTACs) to convey entirely distinct substrate repertoires. As all these chemotypes—thalidomide, IMiDs, CELMoDs and PROTACs—engage CRBN and modify its functions, we describe them here in aggregate as ‘CRBN-interacting small molecules’ (CISMs). In this review, we provide a contemporary summary of the biological consequences of CRBN modulation by CISMs. Detailed molecular insight into CRBN–CISM interactions now provides an opportunity to more effectively target previously elusive cancer dependencies, representing a new and powerful tool for the implementation of precision medicine.
Collapse
|
4
|
Pemmaraju N, Chen NC, Verstovsek S. Immunotherapy and Immunomodulation in Myeloproliferative Neoplasms. Hematol Oncol Clin North Am 2021; 35:409-429. [PMID: 33641877 DOI: 10.1016/j.hoc.2020.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Myeloproliferative neoplasms are characterized by chronic inflammation. The discovery of constitutively active JAK-STAT signaling associated with driver mutations has led to clinical and translational breakthroughs. Insights into the other pathways and novel factors of potential importance are being actively investigated. Various classes of agents with immunomodulating or immunosuppressive properties have been used with varying degrees of success in treating myeloproliferative neoplasms. Early clinical trials are investigating the feasibility, effectiveness, and safety of immune checkpoint inhibitors, cell-based immunotherapies, and SMAC mimetics. The dynamic landscape of immunotherapy and immunomodulation in myeloproliferative neoplasms is the topic of the present review.
Collapse
Affiliation(s)
- Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard #3000, Houston, TX 77030, USA.
| | - Natalie C Chen
- Department of Internal Medicine, The University of Texas School of Health Sciences at Houston, 6431 Fannin, MSB 1.150, Houston, TX 77030, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard #428, Houston, TX 77030, USA
| |
Collapse
|
5
|
Lopalco G, Rigante D, Lopalco A, Emmi G, Venerito V, Vitale A, Capozio G, Denora N, Cantarini L, Iannone F. Safety of systemic treatments for Behçet's syndrome. Expert Opin Drug Saf 2020; 19:1269-1301. [PMID: 32883123 DOI: 10.1080/14740338.2020.1817379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Treatment of Behçet's syndrome (BS) is aimed at controlling all symptoms of such a complex disorder, ensuring a good quality of life and preventing life-threatening complications. A better understanding of the pathogenic role of different chemokines has improved our knowledge of BS and elicited a more specific use of therapies currently available, minimizing the burden of potential side-effects related to treatment. AREAS COVERED This work aims to provide a detailed overview of the safety profile for current therapies available in the treatment of BS, focusing on the main side-effects, toxicity and contraindications. EXPERT OPINION The greatest experience in the management of BS has been achieved with the employment of monoclonal anti-tumor necrosis factor antibodies which have been advocated for BS refractory manifestations. Moreover, interleukin-1 inhibitors have proven to be effective as well as safe, despite escalation of their dosage, especially to manage the most severe and difficult-to-treat ocular manifestations. However, general treatment of BS patients remains awkward as protean clinical features may respond differently to the same treatment or even worsen. Therefore, patients' safety for therapies used in BS promotes the implementation of precision medicine, which could help targeting accurately the pathogenetic mechanisms concealed behind specific clinical phenotypes.
Collapse
Affiliation(s)
- Giuseppe Lopalco
- Department of Emergency and Organ Transplantation, Rheumatology Unit, University of Bari , Bari, Italy
| | - Donato Rigante
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario "A. Gemelli" IRCCS , Rome, Italy.,Università Cattolica Sacro Cuore , Rome, Italy
| | - Antonio Lopalco
- Department of Pharmacy - Drug Sciences, University of Bari , Bari, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Florence , Florence, Italy
| | - Vincenzo Venerito
- Department of Emergency and Organ Transplantation, Rheumatology Unit, University of Bari , Bari, Italy
| | - Antonio Vitale
- Research Centre of Systemic Autoinflammatory Diseases, Behçet's Disease Clinic and Rheumatology-Ophthalmology Collaborative Uveitis Centre, Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena, Italy
| | - Giovanna Capozio
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario "A. Gemelli" IRCCS , Rome, Italy
| | - Nunzio Denora
- Department of Pharmacy - Drug Sciences, University of Bari , Bari, Italy
| | - Luca Cantarini
- Research Centre of Systemic Autoinflammatory Diseases, Behçet's Disease Clinic and Rheumatology-Ophthalmology Collaborative Uveitis Centre, Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena, Italy
| | - Florenzo Iannone
- Department of Emergency and Organ Transplantation, Rheumatology Unit, University of Bari , Bari, Italy
| |
Collapse
|
6
|
Role of the Bone Marrow Milieu in Multiple Myeloma Progression and Therapeutic Resistance. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:e752-e768. [PMID: 32651110 DOI: 10.1016/j.clml.2020.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 01/10/2023]
Abstract
Multiple myeloma (MM) is a cancer of the plasma cells within the bone marrow (BM). Studies have shown that the cellular and noncellular components of the BM milieu, such as cytokines and exosomes, play an integral role in MM pathogenesis and progression by mediating drug resistance and inducing MM proliferation. Moreover, the BM microenvironment of patients with MM facilitates cancer tolerance and immune evasion through the expansion of regulatory immune cells, inhibition of antitumor effector cells, and disruption of the antigen presentation machinery. These are of special relevance, especially in the current era of cancer immunotherapy. An improved understanding of the supportive role of the MM BM microenvironment will allow for the development of future therapies targeting MM in the context of the BM milieu to elicit deeper and more durable responses. In the present review, we have discussed our current understanding of the role of the BM microenvironment in MM progression and resistance to therapy and discuss novel potential approaches to alter its pro-MM function.
Collapse
|
7
|
Wang B, Li PK, Ma JX, Chen D. Therapeutic Effects of a Novel Phenylphthalimide Analog for Corneal Neovascularization and Retinal Vascular Leakage. Invest Ophthalmol Vis Sci 2019; 59:3630-3642. [PMID: 30029250 PMCID: PMC6054429 DOI: 10.1167/iovs.18-24015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose Neovascularization (NV) and retinal vascular leakage are major causes of impaired vision in ocular diseases. The purpose of this study was to identify novel phenylphthalimide analogs with therapeutic effects on NV and vascular leakage and to explore the mechanism of action. Methods Antiangiogenic activities of novel phenylphthalimide analogs were assessed in vitro by using VEGF ELISA and endothelial cell proliferation assay. Their efficacies on retinal vascular leakage were evaluated using rat models of oxygen-induced retinopathy (OIR) and streptozotocin (STZ)-induced diabetes. The in vivo antiangiogenic activity was evaluated using topical administration in the alkali burn-induced corneal NV model. The expression of VEGF and intercellular adhesion molecule-1 (ICAM-1) were measured using ELISA. Results Thalidomide and three novel analogs all showed inhibitory effects on endothelial cell proliferation and VEGF expression in vitro. Through intravitreal injection, all of the compounds reduced retinal vascular leakage in the OIR and STZ-induced diabetic models. Among these compounds, (2,6-diisopropylphenyl)-5-amino-1H-isoindole-1,3-dione (DAID) displayed the most potent efficacy and reduced retinal vascular leakage in a dose-dependent manner in both the OIR and STZ-diabetes models. Topical administration of DAID also inhibited alkali burn-induced corneal NV. Furthermore, DAID attenuated the overexpression of VEGF and ICAM-1 in the retina of the OIR model. Intravitreal injection of DAID did not result in any detectable side effects, as shown by electroretinogram and retinal histological analysis. Conclusions DAID is a novel phenylphthalimide analog with potent effects on NV and retinal vascular leakage through downregulation of VEGF and inflammatory factors and has therapeutic potential.
Collapse
Affiliation(s)
- Bing Wang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.,Department of Ophthalmology, Fujian Medical University Union Hospital, Fujian Province, China
| | - Pui-Kai Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio, United States
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Danyang Chen
- Charlesson, LLC, Oklahoma City, Oklahoma, United States
| |
Collapse
|
8
|
Mohammadi Kian M, Mohammadi S, Tavallaei M, Chahardouli B, Rostami S, Zahedpanah M, Ghavamzadeh A, Nikbakht M. Inhibitory Effects of Arsenic Trioxide and Thalidomide on Angiogenesis and Vascular Endothelial Growth Factor Expression in Leukemia Cells. Asian Pac J Cancer Prev 2018; 19:1127-1134. [PMID: 29699374 PMCID: PMC6031772 DOI: 10.22034/apjcp.2018.19.4.1127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia (AML) is a blood disorder characterized by uncontrolled proliferation of myeloid progenitors and decrease in the apoptosis rate. The vascular endothelial growth factor (VEGF) promotes blood vessel regeneration which might play important roles in development and progression of neoplasia. Our previous studies focused on cytotoxicity and anticancer effects of arsenic trioxide (ATO) and thalidomide (THAL) as an anti-VEGF compound in the AML cell model. ATO also affects regulatory genes involved in cell proliferation and apoptosis. The aim of present study was to examine the effects of ATO and THAL alone and in combination on U937 and KG-1 cells, with attention to mRNA expression for VEGF isoforms. Growth inhibitory effects was assessed by MTT assay and apoptosis induction was determined by Annexin/PI staining. mRNA expression levels were evaluated by real-time PCR. Our data indicated that ATO (1.618μM and 1μM in KG-1 and U937 cell lines respectively), THAL (80μM and 60μM) and their combination inhibited proliferation and induced apoptosis in our cell lines. mRNA expression of VEGF (A, B) decreased while C and D isoforms did not show any significant changes. Taken together, according to the obtained results, the VEGF autocrine loop could be a target as a therapeutic strategy for cases of AML.
Collapse
Affiliation(s)
- Mahnaz Mohammadi Kian
- Hematology Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Xu PP, Sun YF, Fang Y, Song Q, Yan ZX, Chen Y, Jiang XF, Fei XC, Zhao Y, Leboeuf C, Li B, Wang CF, Janin A, Wang L, Zhao WL. JAM-A overexpression is related to disease progression in diffuse large B-cell lymphoma and downregulated by lenalidomide. Sci Rep 2017; 7:7433. [PMID: 28785100 PMCID: PMC5547054 DOI: 10.1038/s41598-017-07964-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/06/2017] [Indexed: 01/10/2023] Open
Abstract
Cancer stem cells play an important role on tumor progression. Biomarkers of stem cell property and their relationship to extranodal involvement of malignant lymphocytes are undefined in diffuse large B-cell lymphoma (DLBCL). Here we showed that junctional adhesion molecule-A (JAM-A) was highly expressed in DLBCL patients with multiple extranodal lesions. JAM-A maintained B-lymphoma cell stemness and was associated with cell invasion and epithelial-to-mesenchymal transition both in vitro and in vivo. As mechanism of action, JAM-A overexpression selectively activated transforming growth factor-β (TGF-β)/NODAL signaling, thereby enhanced B-lymphoma cell aggressiveness and induced extranodal involvement to mesoendoderm-derived organs in DLBCL. Lenalidomide downregulated JAM-A and downstream NODAL expression, resulting in inhibition of B-lymphoma cell invasion and epithelial-to-mesenchymal transition. In a murine xenograft model established with subcutaneous injection of JAM-A-overexpressing B-lymphoma cells, lenalidomide retarded tumor growth and prevented cell invasion to mesoendoderm-derived organs, consistent with the downregulation of JAM-A and NODAL expression. Collectively, these findings indicated that JAM-A was related to extranodal involvement in DLBCL through modulating TGF-β/NODAL signaling. Identified as a biomarker of stem cell property, JAM-A indicated the sensitivity of B-lymphoma cells to lenalidomide. Therapeutic targeting of JAM-A/NODAL axis could thus be a promising clinical strategy to impede tumor progression in DLBCL.
Collapse
Affiliation(s)
- Peng-Peng Xu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France
| | - Yi-Feng Sun
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France
| | - Ying Fang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France
| | - Qi Song
- Department of Radiology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France
| | - Zi-Xun Yan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France
| | - Yi Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France
| | - Xu-Feng Jiang
- Department of Nuclear Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France
| | - Xiao-Chun Fei
- Department of Pathology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France
| | - Yan Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France
| | - Christophe Leboeuf
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France.,U1165 Inserm/Université Paris 7, Hôpital Saint Louis, Pairs, France
| | - Biao Li
- Department of Nuclear Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France
| | - Chao-Fu Wang
- Department of Pathology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France
| | - Anne Janin
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France.,U1165 Inserm/Université Paris 7, Hôpital Saint Louis, Pairs, France
| | - Li Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France. .,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France.
| | - Wei-Li Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France. .,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Pairs, France.
| |
Collapse
|
10
|
Barwe SP, Quagliano A, Gopalakrishnapillai A. Eviction from the sanctuary: Development of targeted therapy against cell adhesion molecules in acute lymphoblastic leukemia. Semin Oncol 2017; 44:101-112. [PMID: 28923207 DOI: 10.1053/j.seminoncol.2017.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/10/2017] [Accepted: 06/29/2017] [Indexed: 02/04/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant hematological disease afflicting hematopoiesis in the bone marrow. While 80%-90% of patients diagnosed with ALL will achieve complete remission at some point during treatment, ALL is associated with high relapse rate, with a 5-year overall survival rate of 68%. The initial remission failure and the high rate of relapse can be attributed to intrinsic chemoprotective mechanisms that allow persistence of ALL cells despite therapy. These mechanisms are mediated, at least in part, through the engagement of cell adhesion molecules (CAMs) within the bone marrow microenvironment. This review assembles CAMs implicated in protection of leukemic cells from chemotherapy. Such studies are limited in ALL. Therefore, CAMs that are associated with poor outcomes or are overexpressed in ALL and have been shown to be involved in chemoprotection in other hematological cancers are also included. It is likely that these molecules play parallel roles in ALL because the CAMs identified to be a factor in ALL chemoresistance also work similarly in other hematological malignancies. We review the signaling mechanisms activated by the engagement of CAMs that provide protection from chemotherapy. Development of targeted therapies against CAMs could improve outcome and raise the overall cure rate in ALL.
Collapse
Affiliation(s)
- Sonali P Barwe
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE.
| | - Anthony Quagliano
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE
| | | |
Collapse
|
11
|
Holmberg LA, Becker PS, Bensinger W. Results from Two Consecutive Studies of Consolidation Therapy after Autologous Transplant for Multiple Myeloma: Thalidomide, Dexamethasone, and Clarithromycin or Lenalidomide, Dexamethasone, and Clarithromycin. Acta Haematol 2017; 137:123-131. [PMID: 28355602 DOI: 10.1159/000455937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/10/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND In multiple myeloma (MM), relapse is a problem after autologous hematopoietic stem cell transplantation (ASCT). In the nontransplant setting, thalidomide/dexamethasone/clarithromycin (BLT-D) and lenalidomide/dexamethasone/clarithromycin (BiRd) achieve responses with acceptable toxicity. Both regimens are reasonable objects of study in the post-ASCT setting. PATIENTS AND METHODS We report on BLT-D and BiRd given post-ASCT. Studies were conducted consecutively. After recovery from ASCT, therapy was started. All 3 drugs were given for 1 year, and then immunomodulatory drugs alone were given as long as tolerated or until disease progression. RESULTS For BLT-D, the most common toxicity was peripheral neuropathy (PN). For BiRd, infection, PN, and neutropenia were the most common adverse events. BiRd was associated with a higher frequency of secondary cancers. The median follow-up for BLT-D was 10.2 years (range 8.6-10.7) and for BiRd it was 7.5 years (range 6.4-8.4). After BLT-D, 18 patients (67%) were alive and 10 (37%) were alive without disease progression, and after BiRd, 18 patients (58%) were alive and 10 (32%) were alive without disease progression. CONCLUSIONS BLT-D and BiRd can be given post-ASCT with different toxicity profiles and comparable disease-free and overall survival rates. A randomized study comparing these regimens to single-agent lenalidomide is needed to determine which approach is superior. Key Message: Relapse of MM is a major problem after ASCT. Strategies are needed post-ASCT to improve outcomes. In the nontransplant setting, thalidomide or lenalidomide/dexamethasone/clarithromycin treat MM with acceptable toxicity. We, thus, studied both regimens post- ASCT. They can be given with different toxicity profiles and result in good disease control.
Collapse
Affiliation(s)
- Leona A Holmberg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, and Department of Medicine, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
12
|
Therapeutic effect of the immunomodulatory drug lenalidomide, but not pomalidomide, in experimental models of rheumatoid arthritis and inflammatory bowel disease. Exp Mol Med 2017; 49:e290. [PMID: 28154372 PMCID: PMC5336556 DOI: 10.1038/emm.2016.143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022] Open
Abstract
Thalidomide is an immunomodulatory drug (IMiD) with proven therapeutic action in several autoimmune/inflammatory diseases; however, its inherent high toxicity has led to the development of more powerful and safer thalidomide analogs, including lenalidomide and pomalidomide. These are new generation IMiDs that exhibit direct antitumor activity as well as anti-inflammatory/immunomodulatory properties, and are FDA-approved for the treatment of several hematological malignances. Here we investigated the potential therapeutic effects of lenalidomide and pomalidomide in several experimental murine models of autoimmune/inflammatory diseases: 2,4,6-trinitrobenzene sulfonic acid- and dextran sulfate sodium-induced inflammatory bowel disease and type II collagen-induced arthritis. Lenalidomide displayed a strong therapeutic effect in all these models of autoimmune/inflammatory diseases, while the effect of pomalidomide was less pronounced. In vitro experiments confirmed the immunosuppressive effect of both IMiDs on the proliferative response of stimulated human lymphocytes and on the balance of secreted cytokines toward an anti-inflammatory profile. We conclude that lenalidomide may offer a therapeutic opportunity against autoimmune/inflammatory diseases.
Collapse
|
13
|
Abstract
Background. Multiple myeloma accounts for 10% of all haematologic malignancies worldwide. In Europe, over 10 000 new cases and nearly 8000 deaths were attributed to multiple myeloma in 2000. Unlike other malignancies, in which surgery and radiation are important treatment modalities, myeloma is exclusively treated with stem cell transplantation and drug therapy, requiring pharmacists to stay abreast of new developments. The melphalan-prednisolone and vincristine-doxorubicin-dexamethasone (VAD) regimens, which have been standard treatments for multiple myeloma over the past few decades, have yielded responses without real survival benefits. Transplantation utilizing high-dose chemotherapy has produced the only meaningful survival benefits for patients with multiple myeloma, but many patients are not candidates for this aggressive treatment option. More effective therapies for multiple myeloma are needed. Objective. To address the mechanisms of action, safety, and efficacy of novel approaches to the treatment of myeloma involving bortezomib, thalidomide and its analogues, lenalidomide and CC-4047 (ActimidTM), and arsenic trioxide as single agents or in combination regimens. Data sources. Published preclinical and primary clinical trial results, as well as scientific or clinical meeting abstracts. The author determined the relevance and subsequent inclusion of the data. Conclusions. Bortezomib is approved in the US and Europe as single-agent therapy for the treatment of relapsed or refractory multiple myeloma. Thalidomide, its analogues, and arsenic trioxide have demonstrated activity and are under investigation in this disease. Further clinical trials of the efficacy and toxicity of these novel agents are ongoing and will further define optimal combinations and sequencing with conventional therapies.
Collapse
|
14
|
Frings K, Gruber S, Kuess P, Kleiter M, Dörr W. Modulation of radiation-induced oral mucositis by thalidomide : Preclinical studies. Strahlenther Onkol 2016; 192:561-8. [PMID: 27282278 DOI: 10.1007/s00066-016-0989-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/26/2016] [Indexed: 12/23/2022]
Abstract
PURPOSE Oral mucositis is a common, dose-limiting early side effect of radio(chemo)therapy for head-and-neck tumors. The epithelial radiation response is accompanied by changes in the inflammatory signaling cascades mediated by the transcription factor nuclear factor-kappa B (NF-κB). The present study was initiated to determine the effect of the NF-κB inhibitor thalidomide on the clinical manifestation of oral mucositis in the established mouse tongue model. MATERIALS AND METHODS Treatment protocols comprised single dose irradiation and daily fractionated irradiation (5 fractions of 3 Gy/week) over 1 (days 0-4) or 2 weeks (days 0-4, 7-11), alone or in combination with daily thalidomide application (100 mg/kg intraperitoneally) over varying time intervals. Fractionation protocols were terminated by graded local radiation doses (day 7/14) to generate full dose-effect curves. Tongue epithelial ulcerations, corresponding to confluent mucositis, served as the clinically relevant endpoint. RESULTS Thalidomide application did not show a significant radioprotective potential when administered in combination with single dose irradiation. Thalidomide in combination with one week of fractionated irradiation significantly increased the isoeffective top-up doses. Similar results were observed during two weeks of fractionated irradiation in all but one experiment. CONCLUSION Thalidomide treatment demonstrated a significant mucositis-ameliorating effect during fractionated irradiation, which is likely to result from NF-κB inhibition. However, further mechanistic studies are required to define the underlying mechanisms of the observed mucoprotective effect.
Collapse
Affiliation(s)
- Katharina Frings
- Platform Radiooncology and Nuclear Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine of Vienna, Vienna, Austria.,Department of Radiotherapy, ATRAB - Applied and Translational Radiotherapy, Medical University of Vienna/General Hospital of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Sylvia Gruber
- Department of Radiotherapy, ATRAB - Applied and Translational Radiotherapy, Medical University of Vienna/General Hospital of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.,Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Peter Kuess
- Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Miriam Kleiter
- Platform Radiooncology and Nuclear Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine of Vienna, Vienna, Austria
| | - Wolfgang Dörr
- Department of Radiotherapy, ATRAB - Applied and Translational Radiotherapy, Medical University of Vienna/General Hospital of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria. .,Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
15
|
Jones JR, Pawlyn C, Davies FE, Morgan GJ. The safety of pomalidomide for the treatment of multiple myeloma. Expert Opin Drug Saf 2016; 15:535-47. [DOI: 10.1517/14740338.2016.1154039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- J. R. Jones
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - C. Pawlyn
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - F. E. Davies
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - G. J. Morgan
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
16
|
Jelinek T, Kufova Z, Hajek R. Immunomodulatory drugs in AL amyloidosis. Crit Rev Oncol Hematol 2016; 99:249-60. [PMID: 26806146 DOI: 10.1016/j.critrevonc.2016.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 11/20/2015] [Accepted: 01/12/2016] [Indexed: 01/20/2023] Open
Abstract
Immunoglobulin light chain amyloidosis (AL amyloidosis) is indeed a rare plasma cell disorder, yet the most common of the systemic amyloidoses. The choice of adequate treatment modality is complicated and depends dominantly on the risk stratification of these fragile patients. Immunomodulatory drugs (IMiDs) are currently used in newly diagnosed patients as well as in salvage therapy in relapsed/refractory patients. IMiDs have a pleiotropic effect on malignant cells and the exact mechanism of their action has been described recently. Thalidomide is the most ancient representative, effective but toxic. Lenalidomide seems to be more effective, nevertheless the toxicity remains high, especially in patients with renal insufficiency. Pomalidomide is the newest IMiD used in this indication with a good balance between efficacy and tolerable toxicity and represents the most promising compound. This review is focused on the evaluation of all three representatives of IMiDs and their roles in the treatment of this malignant disorder.
Collapse
Affiliation(s)
- T Jelinek
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
| | - Z Kufova
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - R Hajek
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
17
|
Huang XE, Yan XC, Wang L, Ji ZQ, Li L, Liu MY, Qian T, Shen HL, Gu HG, Liu Y, Gu M, Deng LC. Thalidomide Combined with Chemotherapy in Treating Patients with Advanced Colorectal Cancer. Asian Pac J Cancer Prev 2015; 16:7867-9. [DOI: 10.7314/apjcp.2015.16.17.7867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
Wang J, Guo H, Zhou X. Clinical utility and patient consideration in the use of lenalidomide for multiple myeloma in Chinese patients. Onco Targets Ther 2015; 8:1277-84. [PMID: 26082645 PMCID: PMC4459627 DOI: 10.2147/ott.s65762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy caused by the autonomous growth of malignant plasma cells. In the last decade, the introduction of novel targeted agents such as thalidomide, bortezomib, and lenalidomide has dramatically improved the clinical outcome of MM patients in both the frontline and recurrent settings. Lenalidomide is a synthetic derivative of thalidomide, which has been shown to significantly improve overall survival, time to progression, and overall response rates in patients with MM. The China Food and Drug Administration approved the use of lenalidomide in patients with MM in 2013. In a Phase II trial, lenalidomide plus low-dose dexamethasone was associated with a high response rate and acceptable safety profile in heavily pretreated Chinese patients with relapsed/refractory MM, including those with renal impairment and IgD subtype. However, lenalidomide will remain as a second-line antimyeloma drug in the near future because of its high price and the policy of health insurance reimbursement in People’s Republic of China. In this review, we summarize the clinical utility and patient considerations in the use of lenalidomide for MM in Chinese patients. Further studies with larger sample sizes are required to investigate the better quality, longer duration, and more clinically meaningful outcomes of lenalidomide in the treatment of MM in Chinese patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Hematology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, People's Republic of China
| | - Hongfeng Guo
- Department of Hematology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, People's Republic of China
| | - Xin Zhou
- Department of Hematology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, People's Republic of China
| |
Collapse
|
19
|
Hassler MR, Sax C, Flechl B, Ackerl M, Preusser M, Hainfellner JA, Woehrer A, Dieckmann KU, Rössler K, Prayer D, Marosi C. Thalidomide as palliative treatment in patients with advanced secondary glioblastoma. Oncology 2015; 88:173-9. [PMID: 25427949 DOI: 10.1159/000368903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/05/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND For its numerous abilities including sedation, we have been using thalidomide (TH) as the 'last therapeutic option' in patients with advanced gliomas. We noticed that a small subgroup, i.e. patients with secondary glioblastoma (GBM, whose GBM has evolved over several months or years from a less malignant glioma), survived for prolonged periods. Therefore, we retrospectively evaluated the outcomes of patients with secondary GBM treated with TH at our centre. PATIENTS AND METHODS Starting in the year 2000, we have studied 23 patients (13 females, 10 males, with a median age of 31.5 years) with secondary GBM who have received palliative treatment with TH 100 mg at bedtime. All patients had previously undergone radiotherapy and received at least 1 and up to 5 regimens of chemotherapy. RESULTS The median duration of TH administration was 4.0 months (range 0.8-32). The median duration of overall survival after the start of TH therapy was 18.3 months (range 0.8-57). Eleven patients with secondary GBM survived longer than 1 year. Symptomatic improvement was most prominent in the restoration of a normal sleep pattern. CONCLUSION The palliative effects of TH, especially the normalization of a sleep pattern, were highly valued by patients and families. The prolongation of survival of patients with secondary GBM has not been reported previously.
Collapse
|
20
|
Diamanti A, Capriati T, Papadatou B, Knafelz D, Bracci F, Corsetti T, Elia D, Torre G. The clinical implications of thalidomide in inflammatory bowel diseases. Expert Rev Clin Immunol 2015; 11:699-708. [PMID: 25865355 DOI: 10.1586/1744666x.2015.1027687] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Thalidomide has anti-inflammatory and anti-angiogenetic activity that makes it suitable for treating inflammatory bowel diseases (IBD). The recent guidelines from the European Crohn's and Colitis Organization/European Society for Pediatric Gastroenterology Hepatology and Nutrition conclude that thalidomide cannot be recommended in refractory pediatric Crohn's disease but that it may be considered in selected cohorts of patients who are not anti-TNFα agent responders. The main adverse effect is the potential teratogenicity that renders the long-term use of thalidomide problematic in young adults due to the strict need for contraceptive use. In short-term use it is relatively safe; the most likely adverse effect is the neuropathy, which is highly reversible in children. So far the use of thalidomide is reported in 223 adult and pediatric IBD patients (206 with Crohn's disease). In the following sections, the authors will discuss efficacy and safety of thalidomide, in the short-term treatment of IBD.
Collapse
Affiliation(s)
- Antonella Diamanti
- Hepatology, Gastroenterology and Nutrition Unit, Bambino Gesù Children's Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kortüm KM, Zhu YX, Shi CX, Jedlowski P, Stewart AK. Cereblon binding molecules in multiple myeloma. Blood Rev 2015; 29:329-34. [PMID: 25843596 DOI: 10.1016/j.blre.2015.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/04/2015] [Accepted: 03/17/2015] [Indexed: 12/20/2022]
Abstract
Immunomodulation is an established treatment strategy in multiple myeloma with thalidomide and its derivatives lenalidomide and pomalidomide as its FDA approved representatives. Just recently the method of action of these cereblon binding molecules was deciphered and results from large phase 3 trials confirmed the backbone function of this drug family in various combination therapies. This review details the to-date knowledge concerning mechanism of IMiD action, clinical applications and plausible escape mechanisms in which cells may become resistant/refractory to cereblon binding molecule based treatment.
Collapse
Affiliation(s)
- K M Kortüm
- Mayo Clinic in AZ, Department of Hematology, USA
| | - Y X Zhu
- Mayo Clinic in AZ, Department of Hematology, USA
| | - C X Shi
- Mayo Clinic in AZ, Department of Hematology, USA
| | - P Jedlowski
- Mayo Clinic in AZ, Department of Hematology, USA
| | - A K Stewart
- Mayo Clinic in AZ, Department of Hematology, USA.
| |
Collapse
|
22
|
Papamerkouriou YM, Kenanidis E, Gamie Z, Papavasiliou K, Kostakos T, Potoupnis M, Sarris I, Tsiridis E, Kyrkos J. Treatment of multiple myeloma bone disease: experimental and clinical data. Expert Opin Biol Ther 2014; 15:213-30. [DOI: 10.1517/14712598.2015.978853] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Ghosh N, Tucker N, Zahurak M, Wozney J, Borrello I, Huff CA. Clarithromycin overcomes resistance to lenalidomide and dexamethasone in multiple myeloma. Am J Hematol 2014; 89:E116-20. [PMID: 24723438 DOI: 10.1002/ajh.23733] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 03/25/2014] [Accepted: 04/07/2014] [Indexed: 12/17/2022]
Abstract
The combination of clarithromycin, lenalidomide and dexamethasone (BiRd) has led to highly durable responses in newly diagnosed myeloma. However, the ability of clarithromycin to overcome resistance to lenalidomide and dexamethasone (Rd) is not known. To study this, we performed a retrospective analysis of 24 patients with myeloma for which clarithromycin was added to Rd at the time of progression on Rd. The median number of prior therapies was 3 (range 1-8). The best response was complete response (CR) in one (4.2%), very good partial response (VGPR) in one (4.2%) and partial response in eight (33.3%) patients. Ten patients, 41.7% (95% CI: 22.1, 63.4), achieved ≥PR. The median time to response was 4.4 months (range 1-13.6 months) and the median duration of response was 6.9 months (range 3-52.2 months). The clinical benefit rate (CR + VGPR + PR + MR) was 45.8% (95% CI 25.6, 67.2). The median progression-free survival was 4 months. Median overall survival was 25 months with a median follow-up of 27.5 months. The regimen was well tolerated and only 2 patients needed a clarithromycin dose reduction. Addition of clarithromycin to Rd can overcome resistance to Rd in a subset of patients and lead to durable clinical responses.
Collapse
Affiliation(s)
- Nilanjan Ghosh
- Levine Cancer Institute, Carolinas Healthcare System; Charlotte North Carolina
| | - Noah Tucker
- The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology; The Johns Hopkins University School of Medicine; Baltimore Maryland
| | - Marianna Zahurak
- The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology; The Johns Hopkins University School of Medicine; Baltimore Maryland
| | - Jocelyn Wozney
- The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology; The Johns Hopkins University School of Medicine; Baltimore Maryland
| | - Ivan Borrello
- The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology; The Johns Hopkins University School of Medicine; Baltimore Maryland
| | - Carol Ann Huff
- The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology; The Johns Hopkins University School of Medicine; Baltimore Maryland
| |
Collapse
|
24
|
The role of antiangiogenic agents in the treatment of patients with advanced colorectal cancer according to K-RAS status. Angiogenesis 2014; 17:805-21. [PMID: 24793846 DOI: 10.1007/s10456-014-9433-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 04/21/2014] [Indexed: 12/30/2022]
Abstract
Colorectal cancer (CRC) is the fourth most commonly diagnosed cancer worldwide. Recently, it has been found that about 40 % of patients with CRC have mutations in the K-RAS gene. Several clinical trials have showed that patients with metastatic colorectal cancer (mCRC) who present tumour-promoting mutations in signalling pathways involving the epidermal growth factor receptor (EGFR), which includes activating K-RAS mutations, do not respond to anti-EGFR drugs such as panitumumab and cetuximab. Hence, K-RAS status is now considered an important negative predictive factor for response to anti-EGFR drugs. Moreover, K-RAS status seems to have also a prognostic role in CRC, but this fact is somewhat controversial. Activity of antiangiogenic agents seems not to be influenced by K-RAS gene status. Tumour angiogenesis has attracted interest in attempts to improve the management of mCRC. The vascular endothelial growth factor (VEGF) pathway is fundamental to the regulation of angiogenesis, and research has focused on developing agents that selectively target it. In this way, the anti-VEGF antibody bevacizumab in combination with chemotherapy has provided important clinical benefits in terms of response rate, progression-free survival and overall survival to patients with mCRC. Efficacy data of bevacizumab in K-RAS wild-type patients seem to be comparable with the efficacy data observed with anti-EGFR therapies in a cross-trial comparison. Although there is a lack of prospective and randomized data in this setting, the combination of chemotherapy plus antiangiogenic agents could be considered as an effective alternative for the treatment of mCRC with independence of K-RAS gene status. Here, we review the available data we have in the literature of the use of antiangiogenic strategies in the treatment of mCRC nowadays.
Collapse
|
25
|
Chang X, Zhu Y, Shi C, Stewart AK. Mechanism of immunomodulatory drugs' action in the treatment of multiple myeloma. Acta Biochim Biophys Sin (Shanghai) 2014; 46:240-53. [PMID: 24374776 DOI: 10.1093/abbs/gmt142] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although immunomodulatory drugs (IMiDs), such as thalidomide, lenalidomide, and pomalidomide, are widely used in the treatment of multiple myeloma (MM), the molecular mechanism of IMiDs' action is largely unknown. In this review, we will summarize recent advances in the application of IMiDs in MM cancer treatment as well as their effects on immunomodulatory activities, anti-angiogenic activities, intervention of cell surface adhesion molecules between myeloma cells and bone marrow stromal cells, anti-inflammatory activities, anti-proliferation, pro-apoptotic effects, cell cycle arrest, and inhibition of cell migration and metastasis. In addition, the potential IMiDs' target protein, IMiDs' target protein's functional role, and the potential molecular mechanisms of IMiDs resistance will be discussed. We wish, by presentation of our naive discussion, that this review article will facilitate further investigation in these fields.
Collapse
Affiliation(s)
- Xiubao Chang
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Multiple myeloma continues to be an incurable disease. The understanding of the disease's pathophysiology has significantly improved over the past few years, partly due to the discovery of the role of immunomodulatory agents and the study of their mechanism of action. Thalidomide, the first of the immunomodulatory family to be used in the management of multiple myeloma, proved not only to be effective in the treatment of multiple myeloma, but also instigated a wide range of in vitro and in vivo studies to define the pathophysiology of the plasma cell dyscrasia. The attention thalidomide has received in the past and recent history has not been without a price. The drug has a side-effect profile that, if managed appropriately, provides the most unique active molecule in the management of the disease, where it maintains the same response rate in newly diagnosed patients as in advanced relapsed/refractory multiple myeloma patients.
Collapse
Affiliation(s)
- Mohamad A Hussein
- Cleveland Clinic Multidisciplinary Multiple Myeloma Research Program, Cleveland, OH 44195, USA.
| |
Collapse
|
27
|
Antiangiogenesis beyond VEGF inhibition: a journey from antiangiogenic single-target to broad-spectrum agents. Cancer Treat Rev 2013; 40:548-57. [PMID: 24360358 DOI: 10.1016/j.ctrv.2013.11.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 11/21/2022]
Abstract
Although the inhibition of angiogenesis is an established modality of cancer treatment, concerns regarding toxicity and drug resistance still constitute barriers to be overcome. For almost a decade since the approval of bevacizumab in 2004, the efforts on antiangiogenic therapeutics have been mainly focused in inhibiting the VEGF pathway. The ongoing understanding of the complexity of the angiogenic process has broadened the spotlight to include concurrent and downstream players to the list of targeted inhibitors. In this review, we summarize the currently existing and the promising antiangiogenic treatments, envisioning an apparent evolutionary trend towards the development of angiogenesis inhibitors of three modalities: single-target, multi-target, and broad-spectrum agents. The clinical efficacy and some structural aspects of monoclonal antibodies, small molecules, endogenous and synthetic angiogenesis inhibitors and their molecular targets are discussed, and the targeting of endothelial cells with the use of cytotoxic drugs in a metronomic schedule is appraised. The reader is invited to revisit current expectations about antiangiogenic therapy in an attempt to set consistent clinical endpoints from which patients could gain real and lasting clinical benefits.
Collapse
|
28
|
Semeraro M, Vacchelli E, Eggermont A, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Lenalidomide-based immunochemotherapy. Oncoimmunology 2013; 2:e26494. [PMID: 24482747 PMCID: PMC3897503 DOI: 10.4161/onci.26494] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 09/14/2013] [Indexed: 12/19/2022] Open
Abstract
Lenalidomide is a synthetic derivative of thalidomide currently approved by the US Food and Drug Administration for use in patients affected by multiple myeloma (in combination with dexamethasone) and low or intermediate-1 risk myelodysplastic syndromes that harbor 5q cytogenetic abnormalities. For illustrative purposes, the mechanism of action of lenalidomide can be subdivided into a cancer cell-intrinsic, a stromal, and an immunological component. Indeed, lenalidomide not only exerts direct cell cycle-arresting and pro-apoptotic effects on malignant cells, but also interferes with their physical and functional interaction with the tumor microenvironment and mediates a robust, pleiotropic immunostimulatory activity. In particular, lenalidomide has been shown to stimulate the cytotoxic functions of T lymphocytes and natural killer cells, to limit the immunosuppressive impact of regulatory T cells, and to modulate the secretion of a wide range of cytokines, including tumor necrosis factor α, interferon γ as well as interleukin (IL)-6, IL-10, and IL-12. Throughout the last decade, the antineoplastic and immunostimulatory potential of lenalidomide has been investigated in patients affected by a wide variety of hematological and solid malignancies. Here, we discuss the results of these studies and review the status of clinical trials currently assessing the safety and efficacy of this potent immunomodulatory drug in oncological indications.
Collapse
Affiliation(s)
- Michaela Semeraro
- Gustave Roussy; Villejuif, France ; INSERM, U1015, CICBT507; Villejuif, France
| | - Erika Vacchelli
- Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; INSERM, U848; Villejuif, France
| | | | - Jerome Galon
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; Equipe 15, Centre de Recherche des Cordeliers; Paris, France ; INSERM, U872; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015, CICBT507; Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Metabolomics and Cell Biology Platforms, Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Paris, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Metabolomics and Cell Biology Platforms, Gustave Roussy; Villejuif, France
| |
Collapse
|
29
|
Santos ES, Goodman M, Byrnes JJ, Fernandez HF. Thalidomide Effects in the Post-transplantation Setting in Patients with Multiple Myeloma. Hematology 2013; 9:35-9. [PMID: 14965866 DOI: 10.1080/10245330310001652428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
UNLABELLED Thalidomide recently has been proven to have an impact on plasma cell dyscrasia through multiple mechanisms. Its effects on hematopoietic stem cells both in harvesting and in the immediate post-transplant setting are still unknown. We report on 12 cases (9 males and 3 females), median age 56 years old (range 41-65 years old) who underwent autologous peripheral stem cell transplantation for multiple myeloma and received thalidomide as maintenance therapy post-transplantation. Patients received various cytoreductive therapies prior to stem cell harvest. Eleven patients were in partial remission (PR) and one in complete remission (CR) on entry into the transplant phase of therapy. The median CD34+/kg harvested was 4.7 x 10(6) (range 1.9-55.4 x 10(6) CD34+/kg). All patients received intravenous melphalan 200 mg/m2 as their conditioning regimen. Six of twelve patients attained a CR post-transplant, and six a PR. Thalidomide was started after all patients engrafted post-transplant (absolute neutrophil count >0.5 x 10(9)/l and self-sustained platelet count >20 x 10(9)/l) and following satisfactory resolution of transplant toxicity including mucositis and diarrhea. Thalidomide was initiated at a median of 43 days post-transplant (range 23-138 days). The median leukocyte and platelet counts at the moment of thalidomide initiation were 5.8 x 10(9)/l (range 2.9-8.6 x 10(9)/l) and 196 x 10(9)/l (range 30-351 x 10(9)/l), respectively. Thalidomide was started at 100 mg daily, increasing 100 mg/day/month until reaching a dose of 400 mg/day. One patient failed to tolerate thalidomide due to CNS symptoms and stopped therapy at 12 days. Another patient stopped thalidomide therapy after 71 days, because of severe fatigue secondary to hypothyroidism. The most common adverse effects were constipation (5), rash (4), dry skin (3) and dizziness (3). No grade 3-4 adverse effects were documented. Neutropenia, previously reported as an adverse effect in this setting, was not seen to date in our cohort. All patients attained a CR or PR after transplant and thalidomide maintenance. We have had two relapses during a median follow-up of 68 weeks (range 42-172 weeks). CONCLUSION Thalidomide appears to be a safe drug in the post-transplant setting, perhaps adding to the response achieved post-transplant without major toxicity. Longer follow up and future randomized trials will be needed to validate the role of thalidomide and its long-term effect when used as maintenance therapy in the post-transplant setting.
Collapse
Affiliation(s)
- Edgardo S Santos
- Division of Hematology/Oncology, Sylvester Comprehensive Cancer Center, University of Miami, FL 33136, USA
| | | | | | | |
Collapse
|
30
|
Kuruvilla J, Song K, Mollee P, Panzarella T, McCrae J, Nagy T, Crump M, Keating A. A phase II study of thalidomide and vinblastine for palliative patients with Hodgkin's lymphoma. Hematology 2013; 11:25-9. [PMID: 16522545 DOI: 10.1080/10245330500276592] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
INTRODUCTION Patients with Hodgkin's Lymphoma (HL) who relapse or progress after primary therapy and subsequent high dose chemotherapy with autologous stem cell transplantation (ASCT) cannot be cured with conventional treatment. We combined thalidomide (THAL), an agent with anti-angiogenic and immunomodulatory properties, with vinblastine, which is active after ASCT, to determine the objective response rate, improvement in B symptoms and toxicity in patients with refractory HD. METHODS Patients were eligible if they HD that progressed after chemotherapy and ASCT or had declined or were ineligible for curative therapy. Treatment consisted of THAL 200 mg orally given daily. After 2 weeks, VBL 6 mg IV was given weekly x 6 doses on an eight-week cycle. Response and toxicity assessment occurred following each cycle. RESULTS Eleven patients were enrolled, 1 progressed within 6 days of study enrollment and was subsequently treated with alternative palliative therapy and thus 11 patients are response evaluable and 10 are evaluable for toxicity. PATIENT CHARACTERISTICS relapsed after ASCT: 7; median number of prior chemotherapy regimens: 3 (range 1-5); median time to progression post-ASCT: 7 months (range 2-29). Four patients had a partial response to treatment (response rate 36%); two patients had stable disease. B symptoms were present at enrollment in four patients and resolved completely on treatment in two patients. Five had disease progression within 3 months of starting treatment. The median duration of response was 9 months (range 0-22 months). Toxicity was mild and limited to grade 2 neuropathy in 6 patients and grade 2 or 3 neutropenia in 4 patients. CONCLUSIONS In this small study in chemotherapy- refractory HL, THAL and VBL demonstrated encouraging activity with some durable responses and acceptable toxicity. These results suggest that chronic low dose chemotherapy combined with less toxic immunomodulatory or anti-angiogenic drugs warrants further study.
Collapse
Affiliation(s)
- John Kuruvilla
- The University of Toronto Autologous Blood and Marrow Transplant Program, Princess Margaret Hospital, Toronto, Ont., Canada.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Gentile M, Recchia AG, Mazzone C, Morabito F. Emerging biological insights and novel treatment strategies in multiple myeloma. Expert Opin Emerg Drugs 2013; 17:407-38. [PMID: 22920042 DOI: 10.1517/14728214.2012.713345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Survival in multiple myeloma (MM) has improved significantly in the past 10 years due to new treatments, such as thalidomide and lenalidomide (immunomodulatory drugs or IMiDs) bortezomib and advances in supportive care. Nevertheless, almost all MM patients show disease relapse and develop drug resistance. AREAS COVERED The authors review the therapeutic approach for untreated MM patients. Furthermore, the prognostic stratification of patients and the proposed risk-adapted strategy are discussed. Finally, preclinical and clinical data regarding newer antimyeloma agents, currently undergoing examination such as proteasome inhibitors (PIs, carfilzomib), IMiDs (pomalidomide), epigenetic agents (histone deacetylase inhibitors vorinostat and panobinostat), humanized monoclonal antibodies (elotuzumab and MOR03087) and targeted therapies (inhibitors of NF-κB, MAPK, HSP90 and AKT) are reported. EXPERT OPINION MM patient outcome has remarkably improved due to the use of three to four drug combination therapies including PIs and IMiDs, which target the tumor in its bone marrow microenvironment, however MM treatment remains challenging. The use of high-throughput techniques has allowed to discover new insights into MM biology. The identification of candidate therapeutic targets and availability of respective investigative agents will allow for a substantial progress in the development and implementation of personalized medicine in MM.
Collapse
Affiliation(s)
- Massimo Gentile
- Unità Operativa Complessa di Ematologia, Dipartimento Oncoematologico, Azienda Ospedaliera di Cosenza, Viale della Repubblica, 87100 Cosenza, Italy
| | | | | | | |
Collapse
|
32
|
Quach H, Kalff A, Spencer A. Lenalidomide in multiple myeloma: Current status and future potential. Am J Hematol 2012; 87:1089-95. [PMID: 22641420 DOI: 10.1002/ajh.23234] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/06/2012] [Accepted: 04/11/2012] [Indexed: 11/05/2022]
Abstract
The clinical development of lenalidomide (Revlimid™), then pomalidomide (Actimid™) as members of immunomodulatory drugs (IMiDs) for the treatment of multiple myeloma (MM), exemplifies how insight into disease biology can lead to design of effective therapeutic agents. Increased experience and understanding of IMiD's diverse biological effects has lead to rational design of lenalidomide-based treatment-regimens over recent years. However, much about lenalidomide is yet to be understood and fully exploited. Here, we review what is known of lenalidomide's biological effects, clinical certainties and uncertainties in the treatment of MM, and explore its future potential with other synergistic therapeutic agents.
Collapse
Affiliation(s)
- Hang Quach
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University, Clayton, Victoria, Australia.
| | | | | |
Collapse
|
33
|
Zhu YX, Kortuem KM, Stewart AK. Molecular mechanism of action of immune-modulatory drugs thalidomide, lenalidomide and pomalidomide in multiple myeloma. Leuk Lymphoma 2012; 54:683-7. [PMID: 22966948 DOI: 10.3109/10428194.2012.728597] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although several mechanisms have been proposed to explain the activity of thalidomide, lenalidomide and pomalidomide in multiple myeloma (MM), including demonstrable anti-angiogenic, anti-proliferative and immunomodulatory effects, the precise cellular targets and molecular mechanisms have only recently become clear. A landmark study recently identified cereblon (CRBN) as a primary target of thalidomide teratogenicity. Subsequently it was demonstrated that CRBN is also required for the anti-myeloma activity of thalidomide and related drugs, the so-called immune-modulatory drugs (IMiDs). Low CRBN expression was found to correlate with drug resistance in MM cell lines and primary MM cells. One of the downstream targets of CRBN identified is interferon regulatory factor 4 (IRF4), which is critical for myeloma cell survival and is down-regulated by IMiD treatment. CRBN is also implicated in several effects of IMiDs, such as down-regulation of tumor necrosis factor-α (TNF-α) and T cell immunomodulatory activity, demonstrating that the pleotropic actions of the IMiDs are initiated by binding to CRBN. Future dissection of CRBN downstream signaling will help to delineate the underlying mechanisms for IMiD action and eventually lead to development of new drugs with more specific anti-myeloma activities. It may also provide a biomarker to predict IMiD response and resistance.
Collapse
Affiliation(s)
- Yuan Xiao Zhu
- Division of Hematology-Oncology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | | | | |
Collapse
|
34
|
Abstract
Thalidomide is a drug that, since its development, has made history in the world of medicine--having been withdrawn and now has returned with a boom as an anticancer and immunomodulatory drug. However, its mode of action in various diseases (i.e. different types of hematologic malignancies, solid tumors) as well as in various infections (i.e. pneumonia, tuberculosis, HIV infection etc.) and related inflammatory conditions is not well understood. As the immune system plays an important role in the pathogenesis of both infection-related as well as noninfectious (i.e. cancer) inflammatory diseases, much research has been done in the past few years to discover and design better immunomodulatory agents. Such immunomodulatory agents should be able to target the immune system in such a way that host suffers minimum damage and normal function of the immune system remains intact. In the present review an attempt is made to highlight the immunomodulatory action of thalidomide in various pathologic conditions.
Collapse
Affiliation(s)
- V Kumar
- Department of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.
| | | |
Collapse
|
35
|
van de Donk NW, Görgün G, Groen RW, Jakubikova J, Mitsiades CS, Hideshima T, Laubach J, Nijhof IS, Raymakers RA, Lokhorst HM, Richardson PG, Anderson KC. Lenalidomide for the treatment of relapsed and refractory multiple myeloma. Cancer Manag Res 2012; 4:253-68. [PMID: 22956884 PMCID: PMC3430086 DOI: 10.2147/cmar.s27087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lenalidomide is an amino-substituted derivative of thalidomide with direct antiproliferative and cytotoxic effects on the myeloma tumor cell, as well as antiangiogenic activity and immunomodulatory effects. Together with the introduction of bortezomib and thalidomide, lenalidomide has significantly improved the survival of patients with relapsed and refractory myeloma. The most common adverse events associated with lenalidomide include fatigue, skin rash, thrombocytopenia, and neutropenia. In addition, when lenalidomide is combined with dexamethasone or other conventional cytotoxic agents, there is an increase in the incidence of venous thromboembolic events. There is now evidence that continued treatment with lenalidomide has a significant impact on survival by improving the depth and duration of response. This highlights the value of adverse event management and appropriate dose adjustments to prevent toxicity, and of allowing continued treatment until disease progression. In this review, we will discuss the different lenalidomide-based treatment regimens for patients with relapsed/refractory myeloma. This is accompanied by recommendations of how to manage and prevent adverse events associated with lenalidomide-based therapy.
Collapse
Affiliation(s)
- Niels Wcj van de Donk
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bringhen S, Gay F, Pautasso C, Cerrato C, Boccadoro M, Palumbo A. Evaluation of the pharmacokinetics, preclinical, and clinical efficacy of lenalidomide for the treatment of multiple myeloma. Expert Opin Drug Metab Toxicol 2012; 8:1209-22. [DOI: 10.1517/17425255.2012.712685] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Molecular action of lenalidomide in lymphocytes and hematologic malignancies. Adv Hematol 2012; 2012:513702. [PMID: 22888354 PMCID: PMC3409527 DOI: 10.1155/2012/513702] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 05/12/2012] [Accepted: 06/18/2012] [Indexed: 01/10/2023] Open
Abstract
The immunomodulatory agent, lenalidomide, is a structural analogue of thalidomide approved by the US Food and Drug Administration for the treatment of myelodysplastic syndrome (MDS) and multiple myeloma (MM). This agent is also currently under active investigation for the treatment of chronic lymphocytic leukemia (CLL) and non-Hodgkin's lymphoma (NHL), as well as in drug combinations for some solid tumors and mantle cell lymphoma (MCL). Although treatment with lenalidomide has translated into a significant extension in overall survival in MM and MDS and has superior safety and efficacy relative to thalidomide, the mechanism of action as it relates to immune modulation remains elusive. Based on preclinical models and clinical trials, lenalidomide, as well as other structural thalidomide derivatives, enhances the proliferative and functional capacity of T-lymphocytes and amplifies costimulatory signaling pathways that activate effector responses and suppress inflammation. This paper summarizes our current understanding of T- and natural killer (NK) cell pathways that are modified by lenalidomide in hematopoietic neoplasms to inform future decisions about potential combination therapies.
Collapse
|
38
|
Luptakova K, Rosenblatt J, Glotzbecker B, Mills H, Stroopinsky D, Kufe T, Vasir B, Arnason J, Tzachanis D, Zwicker JI, Joyce RM, Levine JD, Anderson KC, Kufe D, Avigan D. Lenalidomide enhances anti-myeloma cellular immunity. Cancer Immunol Immunother 2012; 62:39-49. [PMID: 22733396 DOI: 10.1007/s00262-012-1308-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/06/2012] [Indexed: 12/31/2022]
Abstract
Lenalidomide is an effective therapeutic agent for multiple myeloma that exhibits immunomodulatory properties including the activation of T and NK cells. The use of lenalidomide to reverse tumor-mediated immune suppression and amplify myeloma-specific immunity is currently being explored. In the present study, we examined the effect of lenalidomide on T-cell activation and its ability to amplify responses to a dendritic cell-based myeloma vaccine. We demonstrate that exposure to lenalidomide in the context of T-cell expansion with direct ligation of CD3/CD28 complex results in polarization toward a Th1 phenotype characterized by increased IFN-γ, but not IL-10 expression. In vitro exposure to lenalidomide resulted in decreased levels of regulatory T cells and a decrease in T-cell expression of the inhibitory marker, PD-1. Lenalidomide also enhanced T-cell proliferative responses to allogeneic DCs. Most significantly, lenalidomide treatment potentiated responses to the dendritic cell/myeloma fusion vaccine, which were characterized by increased production of inflammatory cytokines and increased cytotoxic lymphocyte-mediated lysis of autologous myeloma targets. These findings indicate that lenalidomide enhances the immunologic milieu in patients with myeloma by promoting T-cell proliferation and suppressing inhibitory factors, and thereby augmenting responses to a myeloma-specific tumor vaccine.
Collapse
Affiliation(s)
- Katarina Luptakova
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mechanism of immunomodulatory drugs in multiple myeloma. Leuk Res 2012; 36:1218-24. [PMID: 22727252 DOI: 10.1016/j.leukres.2012.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 03/18/2012] [Accepted: 05/25/2012] [Indexed: 11/24/2022]
Abstract
Multiple myeloma is the second most common hematological cancer in the world. It is characterized by accumulation of malignant plasma cells in the bone marrow, osteolytic lesions and monoclonal immunoglobulins in blood/urine. With the introduction of immunomodulatory drugs into the treatment protocol, the outcome of multiple myeloma patients has dramatically improved with more than 30% of patients surviving for 10 years thus shifting multiple myeloma to a treatable condition.
Collapse
|
40
|
Sánchez JM. Continued treatment with lenalidomide in multiple myeloma. Adv Ther 2011. [DOI: 10.1007/s12325-011-0076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
41
|
Vangsted A, Klausen TW, Vogel U. Genetic variations in multiple myeloma II: association with effect of treatment. Eur J Haematol 2011; 88:93-117. [DOI: 10.1111/j.1600-0609.2011.01696.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
|
43
|
Israyelyan A, Sandoval F, Baghian A, Kearney MT, Shannon EJ. Thalidomide delayed the ability of 4T1 cells to amass into tumors in Balb/c mice. Immunopharmacol Immunotoxicol 2011; 34:408-12. [PMID: 21942927 DOI: 10.3109/08923973.2011.611519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Thalidomide (Thal) can suppress the growth of established, as well as explanted tumors in mice. We wanted to determine if it could suppress the ability of tumor cells to assemble and establish a primary tumor at the injection site. Using the mouse 4T1 mammary tumor model, we fed Thal to mice for 4 days, then injected 10(5) 4T1 cells into the interscapular region of Balb/c mice. After 20 days on treatment with Thal, all seven control mice, fed with meal had tumors ranging from 3 to 93 mm(3) (median 20). Two of the eight mice fed with meal + Thal had no tumors, and the remaining mice had tumors ranging from 2 to 22 mm(3) (median 5). The median volume of the tumors in the control group was significantly more than that of mice treated with Thal (p = 0.03, Mann-Whitney test). In vitro treatment of the 4T1cells with Thal did not inhibit their ability to proliferate, to adhere to plastic, or to bind to Concanavalin-A. Thal caused a marked reduction in the ability of the 4T1 cells to assemble into palpable tumors.
Collapse
Affiliation(s)
- Anna Israyelyan
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA.
| | | | | | | | | |
Collapse
|
44
|
Agliano A, Martin-Padura I, Marighetti P, Gregato G, Calleri A, Prior C, Redrado M, Calvo A, Bertolini F. Therapeutic effect of lenalidomide in a novel xenograft mouse model of human blastic NK cell lymphoma/blastic plasmacytoid dendritic cell neoplasm. Clin Cancer Res 2011; 17:6163-73. [PMID: 21856771 DOI: 10.1158/1078-0432.ccr-11-0212] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Blastic natural killer (NK) cell lymphoma/blastic plasmacytoid dendritic cell neoplasm (BNKL) is a rare and aggressive neoplasia characterized by infiltration of blast CD4(+)/CD56(+) cells in the skin, the bone marrow, and peripheral blood. Currently, more efforts are required to better define molecular and biological mechanisms associated with this pathology. To the best of our knowledge, no mouse model recapitulated human BNKL so far. EXPERIMENTAL DESIGN Primary bone marrow cells from a BNKL patient were injected in nonobese diabetes/severe combined immunodeficient interleukin (IL) 2rγ(-/-) mice with the intent to generate the first BNKL orthotopic mouse model. Moreover, because of the lack of efficient treatments for BNKL, we treated mice with lenalidomide, an immunomodulatory and antiangiogenic drug. RESULTS We generated in mice a fatal disease resembling human BNKL. After lenalidomide treatment, we observed a significant reduction in the number of peripheral blood, bone marrow, and spleen BNKL cells. Tumor reduction parallels with a significant decrease in the number of circulating endothelial and progenitor cells and CD31(+) murine endothelial cells. In mice treated with lenalidomide, BNKL levels of active caspase-3 were significantly augmented, thus showing proapoptotic and cytotoxic effects of this drug in vivo. An opposite result was found for proliferating cell nuclear antigen, a proliferation marker. CONCLUSIONS Our BNKL model might better define the cellular and molecular mechanisms involved in this disease, and lenalidomide might be considered for the future therapy of BNKL patients.
Collapse
Affiliation(s)
- Alice Agliano
- Laboratory of Hematology-Oncology, European Institute of Oncology, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Laubach JP, Schlossman RL, Mitsiades CS, Anderson KC, Richardson PG. Thalidomide, lenalidomide and bortezomib in the management of newly diagnosed multiple myeloma. Expert Rev Hematol 2011; 4:51-60. [PMID: 21322778 DOI: 10.1586/ehm.10.83] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The field of multiple myeloma therapeutics has been an active one for many years, but perhaps no more so than in the past decade. The introduction of thalidomide, lenalidomide and bortezomib in the treatment of this disease highlights clinical advances made during this period. While these agents were initially utilized in the setting of relapsed and refactory disease, they are now part of the therapeutic armamentarium for transplant-eligible and transplant-ineligible patients with newly diagnosed multiple myeloma. The principles of management applied in the care of newly diagnosed multiple myeloma are reviewed in this article, along with the clinical studies supporting the use of thalidomide, lenalidomide and bortezomib in newly diagnosed multiple myeloma. Management of treatment-related side effects is also discussed, since it constitutes a critical element in the successful management of patients with this disease. Combination regimens utilizing thalidomide, lenalidomide and bortezomib are also highlighted, as these regimens are likely to play an increasingly important role in myeloma therapy in the future.
Collapse
Affiliation(s)
- Jacob P Laubach
- Dana Farber Cancer Institute, Department of Medical Oncology, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
46
|
Aggarwal S, van de Loosdrecht AA, Alhan C, Ossenkoppele GJ, Westers TM, Bontkes HJ. Role of immune responses in the pathogenesis of low-risk MDS and high-risk MDS: implications for immunotherapy. Br J Haematol 2011; 153:568-81. [DOI: 10.1111/j.1365-2141.2011.08683.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Koreth J, Antin JH. Current and future approaches for control of graft-versus-host disease. Expert Rev Hematol 2011; 1:111. [PMID: 20151032 DOI: 10.1586/17474086.1.1.111] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Graft-versus-host disease (GVHD), both acute and chronic, remains one of the major barriers to improving outcomes after allogeneic stem cell transplantation. The pathophysiology of GVHD is complex and incompletely understood. GVHD is believed to arise from the interaction of: tissue damage and proinflammatory cytokines causing activation of antigen-presenting cells (APCs, donor T-cell activation by APCs and cytokines and host tissue injury by effector T lymphocytes and proinflammatory cytokines. There is also a role for additional lymphocyte subtypes (naive and memory T cells, regulatory T cells, natural killer T cells and B cells) in GVHD pathogenesis. Strategies to improve donor-recipient HLA match, and to minimize conditioning toxicity, cytokine release and APC and effector T-lymphocyte activation, will likely improve prophylaxis of acute (and possibly chronic) GVHD. Therapy of established acute and chronic GVHD is still heavily dependent on corticosteroids, despite their limited efficacy and considerable toxicity. Novel agents (and/or combinations of agents) comprising pharmacologic, biologic and cellular therapies targeting specific steps or subsets involved in immune activation will likely comprise future advances in GVHD control. This article reviews the current state of knowledge regarding the prevention and treatment of acute and chronic GVHD. Novel approaches currently undergoing evaluation are also highlighted.
Collapse
Affiliation(s)
- John Koreth
- Division of Hematologic Malignancies, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | |
Collapse
|
48
|
Eichholz A, Merchant S, Gaya AM. Anti-angiogenesis therapies: their potential in cancer management. Onco Targets Ther 2010; 3:69-82. [PMID: 20616958 PMCID: PMC2895781 DOI: 10.2147/ott.s5256] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis plays an important role in normal animal growth and development. This process is also vital for the growth of tumors. Angiogenesis inhibitors have a different mechanism of action to traditional chemotherapy agents and radiation therapy. The angiogenesis inhibitors can act synergistically with conventional treatments and tend to have non-overlapping toxicities. There are four drugs which have a proven role in treating cancer patients. Bevacizumab is a humanized monoclonal antibody that binds to and neutralizes vascular endothelial growth factor (VEGF). Sunitinib and sorafenib inhibit multiple tyrosine kinase receptors that are important for angiogenesis. Thalidomide inhibits the activity of basic fibroblast growth factor-2 (bFGF). The licensed indications and the supporting evidence are discussed. Other drugs are currently being tested in clinical trials and the most promising of these drugs are discussed. Aflibercept, also known as VEGF-trap, is a recombinant fusion protein that binds to circulating VEGF. The vascular disrupting agents act by targeting established blood vessels. These exciting new treatments have the potential to transform the management of cancer.
Collapse
Affiliation(s)
- Andrew Eichholz
- Department of Clinical Oncology, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | | | | |
Collapse
|
49
|
Girgis E, Mahoney J, Darling-Reed S, Soliman M. Arsenic trioxide enhances the cytotoxic effect of thalidomide in a KG-1a human acute mylogenous leukemia cell line. Oncol Lett 2010; 1:473-479. [PMID: 21442015 DOI: 10.3892/ol_00000083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies have shown that thalidomide exerts modest activity as a single agent in the therapy of acute myeloid leukemia (AML). The present investigation was conducted to test the hypothesis that the cytotoxic effect of thalidomide is enhanced when properly combined with other chemotherapeutic agents. The human AML cell line KG-1a was used in this study. Cells were cultured for 48 h in the presence or absence of thalidomide, arsenic trioxide and a combination of the two substances. Results obtained indicate that thalidomide at concentrations of 1, 2 and 5 mg/l produced a dose-dependent cytotoxic effect and at 5 mg/ml resulted in late apoptosis in 49.39% of the total cell population (as compared to 5.35% in the control cells). When the cells were incubated with arsenic trioxide alone (4 µM), late apoptosis was detected in 16.97% of the total cell population. However, when cells were incubated with a combination of thalidomide (5 mg/l) and arsenic trioxide (4 µM), late apoptosis was noted to be 80.6% in the total cell population. This percentage of late apoptosis was statistically significant from that observed when cells were incubated with thalidomide alone. These findings clearly indicate that arsenic trioxide enhances the cytotoxic effects of thalidomide.
Collapse
Affiliation(s)
- Erian Girgis
- College of Pharmacy, Florida A and M University, Tallahassee, FL 32307; Tallahassee Memorial Hospital, Tallahassee, FL 32308, USA
| | | | | | | |
Collapse
|
50
|
Kumar V, Harjai K, Chhibber S. Thalidomide treatment modulates macrophage pro-inflammatory function and cytokine levels in Klebsiella pneumoniae B5055 induced pneumonia in BALB/c mice. Int Immunopharmacol 2010; 10:777-83. [PMID: 20399910 DOI: 10.1016/j.intimp.2010.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 03/20/2010] [Accepted: 04/10/2010] [Indexed: 11/29/2022]
Abstract
Lung innate immune response plays an important role in the clearance of pathogens from lungs, however, profound activation of innate immune cells (alveolar macrophages or neutrophils) can lead to development of acute lung inflammation or injury by producing various pro-inflammatory molecules (IL-1, TNF-alpha and H2O2 etc.). Present study is designed to investigate the immunomodulatory action of thalidomide in Klebsiella pneumoniae B5055 induced acute lung infection in BALB/c mice. Acute lung inflammation was induced by intranasal instillation of K. pneumoniae B5055 into mice without any anaesthesia and treated with thalidomide (30 mg/kg/day/po) or normal saline orally using a treatment schedule shown to modulate pro-inflammatory innate immune response. Thalidomide treatment modulated pro-inflammatory function of alveolar macrophages by significantly (p<0.05) decreasing their phagocytic potential in terms of phagocytic uptake and intracellular killing, spreading and hydrogen peroxide (H2O2) release. Besides that thalidomide treatment also significantly (p<0.05) decreased neutrophil infiltration into the lung alveoli. Remarkably, the levels of pro-inflammatory cytokines (IL-1alpha and TNF-alpha) were found to be decreased significantly (p<0.05) in thalidomide treated group but the levels of IL-10 were found to be significantly (p<0.05) elevated. Thus thalidomide proved a promising immunomodulatory agent in acute lung inflammation associated with pneumonia caused by gram negative bacterial infection.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Microbiology, Panjab University, Chandigarh-160014, India.
| | | | | |
Collapse
|