1
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
2
|
Bitter EE, Townsend MH, Erickson R, Allen C, O'Neill KL. Thymidine kinase 1 through the ages: a comprehensive review. Cell Biosci 2020; 10:138. [PMID: 33292474 PMCID: PMC7694900 DOI: 10.1186/s13578-020-00493-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022] Open
Abstract
Proliferation markers, such as proliferating cell nuclear antigen (PCNA), Ki-67, and thymidine kinase 1 (TK1), have potential as diagnostic tools and as prognostic factors in assessing cancer treatment and disease progression. TK1 is involved in cellular proliferation through the recovery of the nucleotide thymidine in the DNA salvage pathway. TK1 upregulation has been found to be an early event in cancer development. In addition, serum levels of TK1 have been shown to be tied to cancer stage, so that higher levels of TK1 indicate a more serious prognosis. As a result of these findings and others, TK1 is not only a potentially viable biomarker for cancer recurrence, treatment monitoring, and survival, but is potentially more advantageous than current biomarkers. Compared to other proliferation markers, TK1 levels during S phase more accurately determine the rate of DNA synthesis in actively dividing tumors. Several reviews of TK1 elaborate on various assays that have been developed to measure levels in the serum of cancer patients in clinical settings. In this review, we include a brief history of important TK1 discoveries and findings, a comprehensive overview of TK1 regulation at DNA to protein levels, and recent findings that indicate TK1’s potential role in cancer pathogenesis and its growing potential as a tumor biomarker and therapeutic target.
Collapse
Affiliation(s)
- Eliza E Bitter
- Department of Microbiology and Molecular Biology, Brigham Young University, 701 E University Pkwy, LSB room 4007, Provo, UT, 84602, USA.
| | - Michelle H Townsend
- Department of Microbiology and Molecular Biology, Brigham Young University, 701 E University Pkwy, LSB room 4007, Provo, UT, 84602, USA
| | - Rachel Erickson
- Department of Microbiology and Molecular Biology, Brigham Young University, 701 E University Pkwy, LSB room 4007, Provo, UT, 84602, USA
| | - Carolyn Allen
- Department of Microbiology and Molecular Biology, Brigham Young University, 701 E University Pkwy, LSB room 4007, Provo, UT, 84602, USA
| | - Kim L O'Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, 701 E University Pkwy, LSB room 4007, Provo, UT, 84602, USA.
| |
Collapse
|
3
|
Coffman KA, Burke GR. Genomic analysis reveals an exogenous viral symbiont with dual functionality in parasitoid wasps and their hosts. PLoS Pathog 2020; 16:e1009069. [PMID: 33253317 PMCID: PMC7728225 DOI: 10.1371/journal.ppat.1009069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/10/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Insects are known to host a wide variety of beneficial microbes that are fundamental to many aspects of their biology and have substantially shaped their evolution. Notably, parasitoid wasps have repeatedly evolved beneficial associations with viruses that enable developing wasps to survive as parasites that feed from other insects. Ongoing genomic sequencing efforts have revealed that most of these virus-derived entities are fully integrated into the genomes of parasitoid wasp lineages, representing endogenous viral elements (EVEs) that retain the ability to produce virus or virus-like particles within wasp reproductive tissues. All documented parasitoid EVEs have undergone similar genomic rearrangements compared to their viral ancestors characterized by viral genes scattered across wasp genomes and specific viral gene losses. The recurrent presence of viral endogenization and genomic reorganization in beneficial virus systems identified to date suggest that these features are crucial to forming heritable alliances between parasitoid wasps and viruses. Here, our genomic characterization of a mutualistic poxvirus associated with the wasp Diachasmimorpha longicaudata, known as Diachasmimorpha longicaudata entomopoxvirus (DlEPV), has uncovered the first instance of beneficial virus evolution that does not conform to the genomic architecture shared by parasitoid EVEs with which it displays evolutionary convergence. Rather, DlEPV retains the exogenous viral genome of its poxvirus ancestor and the majority of conserved poxvirus core genes. Additional comparative analyses indicate that DlEPV is related to a fly pathogen and contains a novel gene expansion that may be adaptive to its symbiotic role. Finally, differential expression analysis during virus replication in wasps and fly hosts demonstrates a unique mechanism of functional partitioning that allows DlEPV to persist within and provide benefit to its parasitoid wasp host.
Collapse
Affiliation(s)
- Kelsey A. Coffman
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
| | - Gaelen R. Burke
- Department of Entomology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
4
|
Seo MJ, Park JH, Lee KC, Lee YJ, Lee TS, Choi TH, Lee SW, Kim KI, Kang JH. Small Animal PET Imaging of hTERT RNA-Targeted HSV1-tk Gene Expression with Trans-Splicing Ribozyme. Cancer Biother Radiopharm 2019; 35:26-32. [PMID: 31746630 DOI: 10.1089/cbr.2019.2839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Trans-splicing ribozymes (TSR) are useful anticancer agents targeting cancer-specific transcripts and replacing the RNA to induce anticancer gene expression specifically and selectively in cancer cells. Similar to other gene therapy methods, it is also important to evaluate the transgene expression for target specificity and ribozyme activity. Materials and Methods: In this study, the authors performed in vivo small animal positron emission tomography (PET) imaging and biodistribution assay to evaluate human telomerase reverse transcriptase (hTERT) RNA-targeting-specific TSR, which directs the expression of herpes simplex virus type 1 thymidine kinase (HSV1-tk) gene selectively in hTERT-positive tumors through targeted RNA replacement of the hTERT transcript. Results: The hTERT RNA-targeted HSV1-tk expression with TSR was monitored by PET imaging with 124I labeled 2'-fluoro-2'-deoxy-1-β-D-arabinofuranosyl-5-iodouracil, which is one of the thymidine derivatives acting as substrates for HSV1-tk, in hTERT-positive tumor-bearing mice. Conclusions: Imaging of hTERT RNA-targeted HSV1-tk expression by TSR could be used in the development of advanced gene therapy using tumor-specific TSR.
Collapse
Affiliation(s)
- Min-Jung Seo
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Ju Hui Park
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Tae Sup Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Tae Hyun Choi
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Seong-Wook Lee
- Department of Integrated Life Sciences, Research Institute of Advanced Omics, Dankook University, Yongin, Korea
| | - Kwang Il Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Joo Hyun Kang
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| |
Collapse
|
5
|
Xie Y, Wu L, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Chen X. Alpha-Herpesvirus Thymidine Kinase Genes Mediate Viral Virulence and Are Potential Therapeutic Targets. Front Microbiol 2019; 10:941. [PMID: 31134006 PMCID: PMC6517553 DOI: 10.3389/fmicb.2019.00941] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022] Open
Abstract
Alpha-herpesvirus thymidine kinase (TK) genes are virulence-related genes and are nonessential for viral replication; they are often preferred target genes for the construction of gene-deleted attenuated vaccines and genetically engineered vectors for inserting and expressing foreign genes. The enzymes encoded by TK genes are key kinases in the nucleoside salvage pathway and have significant substrate diversity, especially the herpes simplex virus 1 (HSV-1) TK enzyme, which phosphorylates four nucleosides and various nucleoside analogues. Hence, the HSV-1 TK gene is exploited for the treatment of viral infections, as a suicide gene in antitumor therapy, and even for the regulation of stem cell transplantation and treatment of parasitic infection. This review introduces the effects of α-herpesvirus TK genes on viral virulence and infection in the host and classifies and summarizes the current main application domains and potential uses of these genes. In particular, mechanisms of action, clinical limitations, and antiviral and antitumor therapy development strategies are discussed.
Collapse
Affiliation(s)
- Ying Xie
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liping Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Increased Cytotoxicity of Herpes Simplex Virus Thymidine Kinase Expression in Human Induced Pluripotent Stem Cells. Int J Mol Sci 2019; 20:ijms20040810. [PMID: 30769780 PMCID: PMC6413063 DOI: 10.3390/ijms20040810] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
Human induced pluripotent stem cells (iPSCs) hold enormous promise for regenerative medicine. The major safety concern is the tumorigenicity of transplanted cells derived from iPSCs. A potential solution would be to introduce a suicide gene into iPSCs as a safety switch. The herpes simplex virus type 1 thymidine kinase (HSV-TK) gene, in combination with ganciclovir, is the most widely used enzyme/prodrug suicide system from basic research to clinical applications. In the present study, we attempted to establish human iPSCs that stably expressed HSV-TK with either lentiviral vectors or CRISPR/Cas9-mediated genome editing. However, this task was difficult to achieve, because high-level and/or constitutive expression of HSV-TK resulted in the induction of cell death or silencing of HSV-TK expression. A nucleotide metabolism analysis suggested that excessive accumulation of thymidine triphosphate, caused by HSV-TK expression, resulted in an imbalance in the dNTP pools. This unbalanced state led to DNA synthesis inhibition and cell death in a process similar to a “thymidine block”, but more severe. We also demonstrated that the Tet-inducible system was a feasible solution for overcoming the cytotoxicity of HSV-TK expression. Our results provided a warning against using the HSV-TK gene in human iPSCs, particularly in clinical applications.
Collapse
|
7
|
Persson T, Hörnfeldt AB, Gronowitz S, Johansson NG. Synthesis of Various 5-(5″-Substituted-3″-Bromophenyl)-2′-β-Deoxyuridines. Antivir Chem Chemother 2016. [DOI: 10.1177/095632029600700206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of 5-(5″-substituted-3″-bromophenyl)-2′-β-deoxyuridines were prepared and investigated for their activity against HCMV and HIV. None of the compounds exhibited any activity against HIV at the highest concentration, 100μgml−1. In the HCMV ELISA assay the ED50 and CD50 values of the 5-(5″-substituted-3″-bromophenyl)-2′-deoxyuridines were about 60μg ml−1 150μg ml−1, respectively.
Collapse
Affiliation(s)
- T. Persson
- Organic Chemistry 1, Chemical Centre, Box 124, S-221 00 Lund, Sweden
| | - A.-B. Hörnfeldt
- Organic Chemistry 1, Chemical Centre, Box 124, S-221 00 Lund, Sweden
| | - S. Gronowitz
- Organic Chemistry 1, Chemical Centre, Box 124, S-221 00 Lund, Sweden
| | | |
Collapse
|
8
|
Wachsman M, Hamzeh FM, Assadi NB, Lietman PS. Antiviral Activity of Inhibitors of Pyrimidine De-Novo Biosynthesis. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029600700102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Evaluation of the elevation of host cell biosynthesis of deoxynucleoside triphosphates (dNTP's) induced by human cytomegalovirus (HCMV) infection as a target for antiviral therapeutics was carried out. The concentrations of all four intracellular dNTP's rose rapidly following HCMV infection, and were markedly above baseline by 8 h post infection (p.i.). All four deoxynucleoside triphosphates remained elevated above baseline for at least 72 h p.i. The effects of inhibitors of the de-novo pathway of pyrimidine biosynthesis on HCMV viral replication-were quantified by DNA dot blot. All pyrimidine biosynthesis inhibitors examined inhibited the HCMV DNA replication at concentrations that were non-toxic to the cell. These drugs were also more effective against HCMV, which is highly dependent on host denovo synthesis, than against HSV-1 which encodes enzymes capable of increasing the supply of dNTP's. The antiviral effect of brequinar, an inhibitor of one of the enzymes of the de-novo pathway (dihydroorotate dehydrogenase), was examined to determine if it coincided with a decrease in dNTP's. HCMV-infected fibroblasts and uninfected control cells were treated with a concentration of brequinar able to inhibit HCMV DNA levels 90%. It was found that brequinar markedly lowered the levels of dTTP found in treated cells compared to untreated cells in both HCMV-infected and uninfected cells.
Collapse
Affiliation(s)
- M. Wachsman
- Division of Clinical Pharmacology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
9
|
Structural and Kinetic Characterization of Thymidine Kinase from Leishmania major. PLoS Negl Trop Dis 2015; 9:e0003781. [PMID: 25978379 PMCID: PMC4433323 DOI: 10.1371/journal.pntd.0003781] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/23/2015] [Indexed: 01/17/2023] Open
Abstract
Leishmania spp. is a protozoan parasite and the causative agent of leishmaniasis. Thymidine kinase (TK) catalyses the transfer of the γ-phosphate of ATP to 2’-deoxythymidine (dThd) forming thymidine monophosphate (dTMP). L. major Type II TK (LmTK) has been previously shown to be important for infectivity of the parasite and therefore has potential as a drug target for anti-leishmanial therapy. In this study, we determined the enzymatic properties and the 3D structures of holo forms of the enzyme. LmTK efficiently phosphorylates dThd and dUrd and has high structural homology to TKs from other species. However, it significantly differs in its kinetic properties from Trypanosoma brucei TK since purines are not substrates of the enzyme and dNTPs such as dUTP inhibit LmTK. The enzyme had Km and kcat values for dThd of 1.1 μM and 2.62 s-1 and exhibits cooperative binding for ATP. Additionally, we show that the anti-retroviral prodrug zidovudine (3-azido-3-deoxythymidine, AZT) and 5’-modified dUrd can be readily phosphorylated by LmTK. The production of recombinant enzyme at a level suitable for structural studies was achieved by the construction of C-terminal truncated versions of the enzyme and the use of a baculoviral expression system. The structures of the catalytic core of LmTK in complex with dThd, the negative feedback regulator dTTP and the bi-substrate analogue AP5dT, were determined to 2.74, 3.00 and 2.40 Å, respectively, and provide the structural basis for exclusion of purines and dNTP inhibition. The results will aid the process of rational drug design with LmTK as a potential target for anti-leishmanial drugs. The DNA within the genome of an organism encodes all the information, firstly for reproduction and secondly for translation into proteins—the workhorses of a biological cell. Proteins carry out a host of essential biological activities within the cell. A full understanding of a protein now requires determination of a wide range of its properties in solution in the cell and in vitro in solution, but in addition, its 3D structure usually determined by X-ray crystallography. Leishmania species are a family of protozoan parasites of humans and the causative agent of leishmaniasis, a major health concern in the developing world. Selective inhibition of key enzymes in these parasites is a key route for combating these diseases. We have focused our work on thymidine kinase, an important enzyme from Leishmania major, and a potential target for the development of new drugs. We have carried out kinetic studies of the enzyme’s activity in solution and determined its 3D crystal structure, enabling rational drug design.
Collapse
|
10
|
Zeifman AA, Novikov FN, Stroylov VS, Stroganov OV, Chilov GG, Skoblov AY, Miroshnikov AI, Skoblov YS. 2,3-Dihydroxy-quinoxaline induces ATPase activity of Herpes Simplex Virus thymidine kinase. FEBS Lett 2014; 588:509-11. [PMID: 24374341 DOI: 10.1016/j.febslet.2013.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/06/2013] [Indexed: 11/17/2022]
Abstract
2,3-Dihydroxy-quinoxaline, a small molecule that promotes ATPase catalytic activity of Herpes Simplex Virus thymidine kinase (HSV-TK), was identified by virtual screening. This compound competitively inhibited HSV-TK catalyzed phosphorylation of acyclovir with Ki=250 μM (95% CI: 106-405 μM) and dose-dependently increased the rate of the ATP hydrolysis with KM=112 μM (95% CI: 28-195 μM). The kinetic scheme consistent with this experimental data is proposed.
Collapse
Affiliation(s)
- Alexey A Zeifman
- N.D. Zelinsky Institute Of Organic Chemistry (ZIOC RAS), Leninsky prospekt, 47, 119991 Moscow, Russia.
| | - Fedor N Novikov
- N.D. Zelinsky Institute Of Organic Chemistry (ZIOC RAS), Leninsky prospekt, 47, 119991 Moscow, Russia
| | - Victor S Stroylov
- N.D. Zelinsky Institute Of Organic Chemistry (ZIOC RAS), Leninsky prospekt, 47, 119991 Moscow, Russia
| | - Oleg V Stroganov
- N.D. Zelinsky Institute Of Organic Chemistry (ZIOC RAS), Leninsky prospekt, 47, 119991 Moscow, Russia
| | - Ghermes G Chilov
- N.D. Zelinsky Institute Of Organic Chemistry (ZIOC RAS), Leninsky prospekt, 47, 119991 Moscow, Russia
| | - Alexander Y Skoblov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Anatoly I Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Yuri S Skoblov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| |
Collapse
|
11
|
Austin WR, Armijo AL, Campbell DO, Singh AS, Hsieh T, Nathanson D, Herschman HR, Phelps ME, Witte ON, Czernin J, Radu CG. Nucleoside salvage pathway kinases regulate hematopoiesis by linking nucleotide metabolism with replication stress. ACTA ACUST UNITED AC 2012; 209:2215-28. [PMID: 23148236 PMCID: PMC3501349 DOI: 10.1084/jem.20121061] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Nucleotide deficiency causes replication stress (RS) and DNA damage in dividing cells. How nucleotide metabolism is regulated in vivo to prevent these deleterious effects remains unknown. In this study, we investigate a functional link between nucleotide deficiency, RS, and the nucleoside salvage pathway (NSP) enzymes deoxycytidine kinase (dCK) and thymidine kinase (TK1). We show that inactivation of dCK in mice depletes deoxycytidine triphosphate (dCTP) pools and induces RS, early S-phase arrest, and DNA damage in erythroid, B lymphoid, and T lymphoid lineages. TK1(-/-) erythroid and B lymphoid lineages also experience nucleotide deficiency but, unlike their dCK(-/-) counterparts, they still sustain DNA replication. Intriguingly, dCTP pool depletion, RS, and hematopoietic defects induced by dCK inactivation are almost completely reversed in a newly generated dCK/TK1 double-knockout (DKO) mouse model. Using NSP-deficient DKO hematopoietic cells, we identify a previously unrecognized biological activity of endogenous thymidine as a strong inducer of RS in vivo through TK1-mediated dCTP pool depletion. We propose a model that explains how TK1 and dCK "tune" dCTP pools to both trigger and resolve RS in vivo. This new model may be exploited therapeutically to induce synthetic sickness/lethality in hematological malignancies, and possibly in other cancers.
Collapse
Affiliation(s)
- Wayne R Austin
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bray M, Di Mascio M, de Kok-Mercado F, Mollura DJ, Jagoda E. Radiolabeled antiviral drugs and antibodies as virus-specific imaging probes. Antiviral Res 2010; 88:129-142. [PMID: 20709111 PMCID: PMC7125728 DOI: 10.1016/j.antiviral.2010.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 08/09/2010] [Indexed: 12/04/2022]
Abstract
A number of small-molecule drugs inhibit viral replication by binding directly to virion structural proteins or to the active site of a viral enzyme, or are chemically modified by a viral enzyme before inhibiting a downstream process. Similarly, antibodies used to prevent or treat viral infections attach to epitopes on virions or on viral proteins expressed on the surface of infected cells. Such drugs and antibodies can therefore be thought of as probes for the detection of viral infections, suggesting that they might be used as radiolabeled tracers to visualize sites of viral replication by single-photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging. A current example of this approach is the PET imaging of herpes simplex virus infections, in which the viral thymidine kinase phosphorylates radiolabeled thymidine analogues, trapping them within infected cells. One of many possible future applications might be the use of a radiolabeled hepatitis C protease inhibitor to image infection in animals or humans and provide a quantitative measure of viral burden. This article reviews the basic features of radionuclide imaging and the characteristics of ideal tracer molecules, and discusses how antiviral drugs and antibodies could be evaluated for their suitability as virus-specific imaging probes. The use of labeled drugs as low-dose tracers would provide an alternative application for compounds that have failed to advance to clinical use because of insufficient in vivo potency, an unsuitable pharmacokinetic profile or hepato- or nephrotoxicity.
Collapse
Affiliation(s)
- Mike Bray
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702, United States
| | - Michele Di Mascio
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Fabian de Kok-Mercado
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702, United States
| | - Daniel J Mollura
- Center for Infectious Disease Imaging, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - Elaine Jagoda
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
13
|
Lutz S, Liu L, Liu Y. Engineering Kinases to Phosphorylate Nucleoside Analogs for Antiviral and Cancer Therapy. Chimia (Aarau) 2009; 63:737-744. [PMID: 20305804 DOI: 10.2533/chimia.2009.737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Enzyme engineering by directed evolution presents a powerful strategy for tailoring the function and physicochemical properties of biocatalysts to therapeutic and industrial applications. Our laboratory's research focuses on developing novel molecular tools for protein engineering, as well as on utilizing these methods to customize enzymes and to study fundamental aspects of their structure and function. Specifically, we are interested in nucleoside and nucleotide kinases which are responsible for the intracellular phosphorylation of nucleoside analog (NA) prodrugs to their biologically active triphosphates. The high substrate specificity of the cellular kinases often interferes with prodrug activation and consequently lowers the potency of NAs as antiviral and cancer therapeutics. A working solution to the problem is the co-adminstration of a promiscuous kinase from viruses, bacteria, and other mammals. However, further therapeutic enhancements of NAs depend on the selective and efficient prodrug phosphorylation. In the absence of true NA kinases in nature, we are pursuing laboratory evolution strategies to generate efficient phosphoryl-transfer catalysts. This review summarizes some of our recent work in the field and outlines future challenges.
Collapse
|
14
|
Liu L, Li Y, Liotta D, Lutz S. Directed evolution of an orthogonal nucleoside analog kinase via fluorescence-activated cell sorting. Nucleic Acids Res 2009; 37:4472-81. [PMID: 19474348 PMCID: PMC2715250 DOI: 10.1093/nar/gkp400] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nucleoside analogs (NAs) represent an important category of prodrugs for the treatment of viral infections and cancer, yet the biological potency of many analogs is compromised by their inefficient activation through cellular 2′-deoxyribonucleoside kinases (dNKs). We herein report the directed evolution and characterization of an orthogonal NA kinase for 3′-deoxythymidine (ddT), using a new FACS-based screening protocol in combination with a fluorescent analog of ddT. Four rounds of random mutagenesis and DNA shuffling of Drosophila melanogaster 2′-deoxynucleoside kinase, followed by FACS analysis, yielded an orthogonal ddT kinase with a 6-fold higher activity for the NA and a 20-fold kcat/KM preference for ddT over thymidine, an overall 10 000-fold change in substrate specificity. The contributions of individual amino acid substitutions in the ddT kinase were evaluated by reverse engineering, enabling a detailed structure–function analysis to rationalize the observed changes in performance. Based on our results, kinase engineering with fluorescent NAs and FACS should prove a highly versatile method for evolving selective kinase:NA pairs and for studying fundamental aspects of the structure–function relationship in dNKs.
Collapse
Affiliation(s)
- Lingfeng Liu
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
15
|
Rana grylio virus thymidine kinase gene: an early gene of iridovirus encoding for a cytoplasmic protein. Virus Genes 2009; 38:345-52. [DOI: 10.1007/s11262-008-0318-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 12/18/2008] [Indexed: 11/27/2022]
|
16
|
Terent’ev LL, Terent’eva NA, Rasskazov VA. Thymidine and thymidylate kinases from the scallop Mizuhopecten yessoensis gonads. APPL BIOCHEM MICRO+ 2008. [DOI: 10.1134/s0003683808050025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Thiel M, Harder S, Wiese M, Kroemer M, Bruchhaus I. Involvement of a Leishmania thymidine kinase in flagellum formation, promastigote shape and growth as well as virulence. Mol Biochem Parasitol 2008; 158:152-62. [DOI: 10.1016/j.molbiopara.2007.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 12/06/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022]
|
18
|
Iyidogan P, Lutz S. Systematic exploration of active site mutations on human deoxycytidine kinase substrate specificity. Biochemistry 2008; 47:4711-20. [PMID: 18361501 DOI: 10.1021/bi800157e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human deoxycytidine kinase (dCK) is responsible for the phosphorylation of a number of clinically important nucleoside analogue prodrugs in addition to its natural substrates, 2'-deoxycytidine, 2'-deoxyguanosine, and 2'-deoxyadenosine. To improve the low catalytic activity and tailor the substrate specificity of dCK, we have constructed libraries of mutant enzymes and tested them for thymidine kinase (tk) activity. Random mutagenesis was employed to probe for amino acid positions with an impact on substrate specificity throughout the entire enzyme structure, identifying positions Arg104 and Asp133 in the active site as key residues for substrate specificity. Kinetic analysis indicates that Arg104Gln/Asp133Gly creates a "generalist" kinase with broader specificity and elevated turnover for natural and prodrug substrates. In contrast, the substitutions of Arg104Met/Asp133Thr, obtained via site-saturation mutagenesis, yielded a mutant with reversed substrate specificity, elevating the specific constant for thymidine phosphorylation by over 1000-fold while eliminating activity for dC, dA, and dG under physiological conditions. The results illuminate the key contributions of these two amino acid positions to enzyme function by demonstrating their ability to moderate substrate specificity.
Collapse
Affiliation(s)
- Pinar Iyidogan
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | | |
Collapse
|
19
|
Tehrani OS, Douglas KA, Lawhorn-Crews JM, Shields AF. Tracking cellular stress with labeled FMAU reflects changes in mitochondrial TK2. Eur J Nucl Med Mol Imaging 2008; 35:1480-8. [PMID: 18265975 DOI: 10.1007/s00259-008-0738-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 01/22/2008] [Indexed: 12/31/2022]
Abstract
PURPOSE Fluoropyrimidines like 1-(2'-deoxy-2'-fluoro-beta-D: -arabinofuranosyl)-thymine (FMAU) and 3'-deoxy-3'-fluorothymidine (FLT) accumulate in tumors and are being used as positron emission tomography tumor-imaging tracers. Proliferating tissues with high thymidine kinase 1 (TK1) activity retain FLT; however, the mechanism of selective accumulation of FMAU in tumors and certain other tissues requires further study. METHODS Retention of [(3)H]FLT and [(3)H]FMAU was measured in prostate cancer cell lines PC3, LNCaP, DU145, and the breast cancer cell line MD-MBA-231, and the tracer metabolites were analyzed by high-performance liquid chromatography (HPLC). FMAU retention, thymidine kinase 2 (TK2) activity, and mitochondrial mass were determined in cells stressed by depleted cell culture medium or by treating with oxidative, reductive, and energy stress, or specific adenosine monophosphate-activated protein kinase activator, or eIF2 inhibitor. TK1 and TK2 activities and mitochondrial mass were determined by FLT phosphorylation, 1-beta-D: -arabinofuranosylthymine (Ara-T) phosphorylation, and flow cytometry, respectively. RESULTS FMAU retention in rapidly proliferating cancer cell lines was five to ten times lower than FLT after 10 min incubation. HPLC analysis of the cellular extracts showed that phosphorylated tracers are the main retained metabolites. Nutritional stress decreased TK1 activity and FLT retention but increased retained FMAU. TK2 inhibition decreased FMAU retention and phosphorylation with negligible effects on FLT. Oxidative, reductive, or energy stress increased FMAU retention and correlated with mitochondrial mass (r (2) = 0.88, p = 0.006). FMAU phosphorylation correlated with increased TK2 activity (r (2) = 0.87, p = 0.0002). CONCLUSION FMAU is preferably phosphorylated by TK2 and can track TK2 activity and mitochondrial mass in cellular stress. FMAU may provide an early marker of treatment effects.
Collapse
Affiliation(s)
- Omid S Tehrani
- Karmanos Cancer Institute, Wayne State University, 4100 John R, 4 HWCRC, Detroit, MI 48201-2013, USA
| | | | | | | |
Collapse
|
20
|
Hussein ITM, Miguel RN, Tiley LS, Field HJ. Substrate specificity and molecular modelling of the feline herpesvirus-1 thymidine kinase. Arch Virol 2008; 153:495-505. [DOI: 10.1007/s00705-007-0021-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 12/13/2007] [Indexed: 11/28/2022]
|
21
|
Hida K, Hanes J, Ostermeier M. Directed evolution for drug and nucleic acid delivery. Adv Drug Deliv Rev 2007; 59:1562-78. [PMID: 17933418 DOI: 10.1016/j.addr.2007.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 08/20/2007] [Indexed: 12/18/2022]
Abstract
Directed evolution is a term used to describe a variety of related techniques to rapidly evolve peptides and proteins into new forms that exhibit improved properties for specific applications. In this process, molecular biology techniques allow the creation of up to billions of mutants in a single experiment, which are then subjected to high-throughput screening to identify those with enhanced activity. Applications of directed evolution to drug and gene delivery have been recently described, including those that improve the effectiveness of therapeutic enzymes, targeting peptides and antibodies, and the effectiveness or tropism of viral vectors for use in gene therapy. This review first introduces fundamental concepts of directed evolution, and then discusses emerging applications in the field of drug and gene delivery.
Collapse
Affiliation(s)
- Kaoru Hida
- Department of Biomedical Engineering, The Johns Hopkins University, 3400 N. Charles St., Baltimore MD, 21218, USA
| | | | | |
Collapse
|
22
|
Gill MB, Kutok JL, Fingeroth JD. Epstein-Barr virus thymidine kinase is a centrosomal resident precisely localized to the periphery of centrioles. J Virol 2007; 81:6523-35. [PMID: 17428875 PMCID: PMC1900094 DOI: 10.1128/jvi.00147-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The thymidine kinase (TK) encoded by Epstein-Barr virus (EBV) differs not only from that of the alphaherpesviruses but also from that of the gamma-2 herpesvirus subfamily. Because cellular location is frequently a determinant of regulatory function, to gain insight into additional role(s) of EBV TK and to uncover how the lymphocryptovirus and rhadinovirus enzymes differ, the subcellular localizations of EBV TK and the related cercopithecine herpesvirus-15 TK were investigated. We show that in contrast to those of the other family members, the gamma-1 herpesvirus TKs localize to the centrosome and even more precisely to the periphery of the centriole, tightly encircling the tubulin-rich centrioles in a microtubule-independent fashion. Centrosomal localization is observed in diverse cell types and occurs whether the protein is expressed independently or in the context of lytic EBV infection. Surprisingly, analysis of mutants revealed that the unique N-terminal domain was not critical for targeting to the centrosome, but rather, peptide sequences located C terminal to this domain were key. This is the first herpesvirus protein documented to reside in the centrosome, or microtubule-organizing center, an amembranous organelle that regulates the structural biology of the cell cycle through control of chromosome separation and cytokinesis. More recently, proteasome-mediated degradation of cell cycle regulatory proteins, production and loading of antigenic peptides onto HLA molecules, and transient homing of diverse virion proteins required for entry and/or egress have been shown to be coordinated at the centrosome. Potential implications of centrosomal localization for EBV TK function are discussed.
Collapse
Affiliation(s)
- Michael B Gill
- Divison of Infectious Disease, Beth Israel Deaconess Medical Center, Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
23
|
Eriksson S, Wang L. Substrate Specificities, Expression and Primary Sequences of Deoxynucleoside Kinases; Implications for Chemotherapy. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/07328319708002930] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Staffan Eriksson
- a Department of Veterinary Medical Chemistry , Swedish University of Agricultural Sciences, The Biomedical Centre , Box 575, 5751 23, Uppsala , Sweden
| | - Liya Wang
- a Department of Veterinary Medical Chemistry , Swedish University of Agricultural Sciences, The Biomedical Centre , Box 575, 5751 23, Uppsala , Sweden
| |
Collapse
|
24
|
Gill MB, Murphy JE, Fingeroth JD. Functional divergence of Kaposi's sarcoma-associated herpesvirus and related gamma-2 herpesvirus thymidine kinases: novel cytoplasmic phosphoproteins that alter cellular morphology and disrupt adhesion. J Virol 2006; 79:14647-59. [PMID: 16282465 PMCID: PMC1287549 DOI: 10.1128/jvi.79.23.14647-14659.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The nucleoside kinase encoded by Kaposi's sarcoma-associated herpesvirus (KSHV) is a relatively inefficient enzyme with substrate specificity for thymidine alone, unlike alphaherpesvirus thymidine kinases (TKs). Similar to all gammaherpesvirus TKs, KSHV TK is composed of two distinct domains, a conserved C-terminal kinase and a novel and uncharacterized N terminus. Ectopic expression of KSHV TK in adherent cells induced striking morphological changes and anchorage independence although cells survived, a property shared with the related rhadinovirus TKs of rhesus monkey rhadinovirus and herpesvirus saimiri. To determine whether KSHV TK served alternate functions relevant to the rhadinovirus life cycle and to reveal the contribution of the N terminus, an enhanced green fluorescent protein-tagged fusion protein and serial mutants were generated for investigation of intracellular localization and cell biology. Analysis of truncation mutants showed that a proline-rich region located within the N terminus cooperated with the conserved C-terminal kinase to tether KSHV TK to a reticular network in the cytoplasm and to induce morphological change. Fusion of the KSHV N terminus to herpes simplex virus type 1 TK, a nucleus-localized enzyme, similarly resulted in cytoplasmic redistribution of the chimeric protein but did not alter cell shape or adhesion. Unlike other human herpesvirus TKs, KSHV TKs and related rhadinovirus TKs are constitutively tyrosine phosphorylated; a KSHV TK mutant that was hypophosphorylated failed to detach and grow in suspension. Loss of adhesion may enhance terminal differentiation, viral replication, and egress at the cellular level and at the organism level may facilitate detachment and distant migration of KSHV-replicating cells within body fluids--promoting oropharyngeal transmission and perhaps contributing to the multifocal lesions that characterize KS.
Collapse
Affiliation(s)
- Michael B Gill
- Division of Infectious Disease, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | | | | |
Collapse
|
25
|
Dvir-Ginzberg M, Konson A, Cohen S, Agbaria R. Entrapment of retroviral vector producer cells in three-dimensional alginate scaffolds for potential use in cancer gene therapy. J Biomed Mater Res B Appl Biomater 2006; 80:59-66. [PMID: 16680730 DOI: 10.1002/jbm.b.30568] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We explored the possibility of entrapping retroviral vector producing cells (VPC) within porous 3D matrix to induce a local and sustained release of viral particles to the malignant milieu. PA317/STK, which constantly shed retroviral vectors, was used to transduce cancer cells with the herpes simplex virus thymidine kinase (HSV-tk) gene. Once HSV-tk is expressed, it preferentially phosphorylates nucleoside analog prodrugs, such as ganciclovir (GCV) and N-methanocarbathymidine (N-MCT), to their active triphosphate metabolites, which when incorporated into cellular DNA cause cell death. PA317/STK cells were seeded within 3D alginate scaffold at two different cell densities via static seeding procedure. In vitro assays determined that PA317/STK seeded at high-cell density in scaffolds maintained constant cell number, low cell leakage, and spheroid morphology with viral vector transfection activity. Postcell-seeding viral vector activity was confirmed by transfection of murine colon cancer cells (MC38) with conditioned media originated from VPC-containing scaffolds and the subsequent ability to generate N-MCT triphosphate. Preliminary in vivo transplantation of VPC-containing scaffolds into the peritoneal cavity of mice bearing intraperitoneal MC38 tumors with 2 weeks subsequent GCV administration resulted in a significantly higher survival rate relative to control groups. Our results demonstrate the feasibility of employing alginate scaffolds to efficiently entrap and support PA317/STK cells for cancer gene therapy.
Collapse
Affiliation(s)
- Mona Dvir-Ginzberg
- Department of Biomedical Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | |
Collapse
|
26
|
Welin M, Skovgaard T, Knecht W, Zhu C, Berenstein D, Munch-Petersen B, Piskur J, Eklund H. Structural basis for the changed substrate specificity of Drosophila melanogaster deoxyribonucleoside kinase mutant N64D. FEBS J 2005; 272:3733-42. [PMID: 16008571 DOI: 10.1111/j.1742-4658.2005.04803.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Drosophila melanogaster deoxyribonucleoside kinase (Dm-dNK) double mutant N45D/N64D was identified during a previous directed evolution study. This mutant enzyme had a decreased activity towards the natural substrates and decreased feedback inhibition with dTTP, whereas the activity with 3'-modified nucleoside analogs like 3'-azidothymidine (AZT) was nearly unchanged. Here, we identify the mutation N64D as being responsible for these changes. Furthermore, we crystallized the mutant enzyme in the presence of one of its substrates, thymidine, and the feedback inhibitor, dTTP. The introduction of the charged Asp residue appears to destabilize the LID region (residues 167-176) of the enzyme by electrostatic repulsion and no hydrogen bond to the 3'-OH is made in the substrate complex by Glu172 of the LID region. This provides a binding space for more bulky 3'-substituents like the azido group in AZT but influences negatively the interactions between Dm-dNK, substrates and feedback inhibitors based on deoxyribose. The detailed picture of the structure-function relationship provides an improved background for future development of novel mutant suicide genes for Dm-dNK-mediated gene therapy.
Collapse
Affiliation(s)
- Martin Welin
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Center, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wu CC, Chen MC, Chang YR, Hsu TY, Chen JY. Identification and characterization of the conserved nucleoside-binding sites in the Epstein-Barr virus thymidine kinase. Biochem J 2004; 379:795-803. [PMID: 14705959 PMCID: PMC1224098 DOI: 10.1042/bj20031832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Accepted: 01/05/2004] [Indexed: 11/17/2022]
Abstract
Thymidine kinase (TK), encoded by EBV (Epstein-Barr virus), is an attractive target for antiviral therapy and provides a novel approach to the treatment of EBV-associated malignancies. Despite the extensive use of nucleoside analogues for the treatment of viral infections and cancer, the structure-function relationship of EBV TK has been addressed rarely. In the absence of any structural information, we sought to identify and elucidate the functional roles of amino acids in the nucleoside-binding site using site-directed mutagenesis. Through alignment with other human herpesviral TK protein sequences, we predicted that certain conserved regions comprise the nucleoside-binding site of EBV TK and, through site-directed mutagenesis, showed significant changes in activity and binding affinity for thymidine of site 3 (-DRH-) and 4 (-VFP-) mutants. For site 3, only mutants D392E (Asp392-->Glu) and R393H retain activity, indicating that a negative charge is important for Asp392 and a positive charge is required for Arg393. The increased binding affinities of these two mutants for 3'-deoxy-2',3'-didehydrothymidine suggest that the two residues are also important for substrate selection. Interestingly, the changed metal-ion usage pattern of D392E reveals that Asp392 plays multiple roles in this region. His394 cannot be compensated by other amino acids, also indicating a crucial role. In site 4, the F402Y mutant retains full activity; however, F402S retains only 60% relative activity. Strikingly, when Phe402 is substituted with serine residue, the original preferred pyrimidine substrates, such as 3'-azido-3'-deoxythymidine, iododeoxyuridine and beta-L-5-iododioxolane uracil (L-form substrate), have decreased competitiveness with thymidine, suggesting that Phe402 plays a crucial role in substrate specificity and that the aromatic ring is important for function.
Collapse
Affiliation(s)
- Chung-Chun Wu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Jen-Ai Road, Taipei 100, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
28
|
Carnrot C, Wehelie R, Eriksson S, Bölske G, Wang L. Molecular characterization of thymidine kinase from Ureaplasma urealyticum: nucleoside analogues as potent inhibitors of mycoplasma growth. Mol Microbiol 2004; 50:771-80. [PMID: 14617140 DOI: 10.1046/j.1365-2958.2003.03717.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ureaplasma urealyticum (U. urealyticum), belonging to the class Mollicutes, is a human pathogen colonizing the urogenital tract and causes among other things respiratory diseases in premature infants. We have studied the salvage of pyrimidine deoxynucleosides in U. urealyticum and cloned a key salvage enzyme, thymidine kinase (TK) from U. urealyticum. Recombinant Uu-TK was expressed in E. coli, purified and characterized with regards to substrate specificity and feedback inhibition. Uu-TK efficiently phosphorylated thymidine (dThd) and deoxyuridine (dUrd) as well as a number of pyrimidine nucleoside analogues. All natural ribonucleoside/deoxyribonucleoside triphosphates, except dTTP, served as phosphate donors, while dTTP was a feedback inhibitor. The level of Uu-TK activity in U. urealyticum extracts increased upon addition of dUrd to the growth medium. Fluoropyrimidine nucleosides inhibited U. urealyticum and M. pneumoniae growth and this inhibitory effect could be reversed by addition of dThd, dUrd or deoxytetrahydrouridine to the growth medium. Thus, the mechanism of inhibition was most likely the depletion of dTTP, either via a blocked thymidine kinase reaction and/or thymidylate synthesis step and these metabolic reactions should be suitable targets for antimycoplasma chemotherapy.
Collapse
Affiliation(s)
- Cecilia Carnrot
- Department of Molecular Biosciences, The Swedish University of Agricultural Sciences, The Biomedical Centre, PO Box 575, SE-751 23 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
29
|
Van Rompay AR, Johansson M, Karlsson A. Substrate specificity and phosphorylation of antiviral and anticancer nucleoside analogues by human deoxyribonucleoside kinases and ribonucleoside kinases. Pharmacol Ther 2003; 100:119-39. [PMID: 14609716 PMCID: PMC7126524 DOI: 10.1016/j.pharmthera.2003.07.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Structural analogues of nucleosides, nucleoside analogues (NA), are used in the treatment of cancer and viral infections. Antiviral NAs inhibit replication of the viral genome, whereas anticancer NAs inhibit cellular DNA replication and repair. NAs are inactive prodrugs that are dependent on intracellular phosphorylation to their pharmacologically active triphosphate form. The deoxyribonucleoside kinases (dNK) and ribonucleoside kinases (rNK) catalyze the first phosphorylation step, converting deoxyribonucleosides and ribonucleosides to their corresponding monophosphate form. The dNKs have been studied intensively, whereas the rNKs have not been as thoroughly investigated. This overview is focused on the substrate specificity, tissue distribution, and subcellular location of the mammalian dNKs and rNKs and their role in the activation of NAs.
Collapse
Key Words
- antiviral therapy
- anticancer therapy
- chemotherapy
- nucleoside analogue
- deoxyribonucleoside kinase
- ribonucleoside kinase
- adk, adenosine kinase
- aids, aquired immunodeficiency syndrome
- arac, 1-β-d-arabinofuranosylcytosine (cytarabine)
- arag, 9-β-d-arabinofuranosylguanine (nelarabine)
- azt, 3′-azido-2′,3′-dideoxythymidine (zidovudine)
- cafda, 2-chloro-2′-fluoro-9-β-d-arabinofuranosyladenine (clofarabine)
- cda, 2-chloro-2′-deoxyadenosine (cladribine)
- dck, deoxycytidine kinase
- ddc, 2′,3′-dideoxycytidine (zalcitabine)
- ddi, 2′,3′-dideoxyinosine (didanosine)
- dgk, deoxyguanosine kinase
- dfdc, 2′,2′-difluorodeoxycytidine (gemcitabine)
- dnk, deoxyribonucleoside kinase
- d4t, 2′,3′-didehydro-3′-deoxythymidine (stavudine)
- f-araa, 2-fluoro-9-β-d-arabinofuranosyladenine (fludarabine)
- fda, food and drug administration
- fiau, 1-(2′-deoxy-2′-fluoro-β-d-arabinofuranosyl)-5-iodouracil (fialuridine)
- hbv, hepatitis b virus
- mtdna, mitochondrial dna
- hiv, human immunodeficiency virus
- na, nucleoside analogue
- ndpk, nucleoside diphosphate kinase
- nmpk, nucleoside monophosphate kinase
- 5′-nt, 5′-nucleotidase
- rnk, ribonucleoside kinase
- rr, ribonucleotide reductase
- rt, reverse transcriptase
- tk1, thymidine kinase 1
- tk2, thymidine kinase 2
- uck1, uridine-cytidine kinase 1
- uck2, uridine-cytidine kinase 2
- 3tc, 2′-deoxy-3′-thiacytidine (lamivudine)
Collapse
Affiliation(s)
- An R Van Rompay
- Department of Nephrology-Hypertension, University of Antwerp, 2610 Antwerp, Belgium
| | | | | |
Collapse
|
30
|
Krawiec K, Kierdaszuk B, Kalinichenko EN, Rubinova EB, Mikhailopulo IA, Eriksson S, Munch-Petersen B, Shugar D. Striking ability of adenosine-2'(3')-deoxy-3'(2')-triphosphates and related analogues to replace ATP as phosphate donor for all four human, and the Drosophila melanogaster, deoxyribonucleoside kinases. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2003; 22:153-73. [PMID: 12744603 DOI: 10.1081/ncn-120019510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In extension of an earlier report, six non-conventional analogues of ATP, three adenosine-2'-triphosphates (3'-deoxy, 3'-deoxy-3'-fluoro- and 3'-deoxy-3'-fluoroxylo-), and three adenosine-3'-triphosphates (2'-deoxy-, 2'-deoxy-2'-fluoro- and 2'-deoxy-2'-fluoroara-), were compared with ATP as potential phosphate donors for human deoxycytidine kinase (dCK), cytosolic thymidine kinase (TK1), mitochondrial TK2, deoxyguanosine kinase (dGK), and the deoxyribonucleoside kinase (dNK) from Drosophila melanogaster. With one group of enzymes, comprising TK1, TK2, dNK and dCK (with dAdo as acceptor), only 3'-deoxyadenosine-2'-triphosphate was an effective donor (5-60% that for ATP), and the other five analogues much less so, or inactive. With a second set, including dCK (dCyd, but not dAdo, as acceptor) and dGK (dGuo as acceptor), known to share high sequence similarity (approximately 45% sequence identity), all six analogues were good to excellent donors (13-119% that for ATP). With dCK and ATP1, products were shown to be 5'-phosphates. With dCK, donor properties of the analogues were dependent on the nature of the acceptor, as with natural 5'-triphosphate donors. With dCK (dCyd as acceptor), Km and Vmax for the two 2'(3')-deoxyadenosine-3'(2')-triphosphates are similar to those for ATP. With dGK, Km values are higher than for ATP, while Vmax values are comparable. Kinetic studies further demonstrated Michaelis-Menten (non-cooperative) or cooperative kinetics, dependent on the enzyme employed and the nature of the donor. The physiological significance, if any, of the foregoing remains to be elucidated. The overall results are, on the other hand, highly relevant to studies on the modes of interaction of nucleoside kinases with donors and acceptors; and, in particular, to interpretations of the recently reported crystal structures of dGK with bound ATP, of dNK with bound dCyd, and associated modeling studies.
Collapse
Affiliation(s)
- Krzysztof Krawiec
- Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Dobrovolsky VN, Bucci T, Heflich RH, Desjardins J, Richardson FC. Mice deficient for cytosolic thymidine kinase gene develop fatal kidney disease. Mol Genet Metab 2003; 78:1-10. [PMID: 12559842 DOI: 10.1016/s1096-7192(02)00224-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The thymidine kinase (Tk) gene codes for a cytosolic protein involved in the pyrimidine nucleotide salvage pathway. A functional Tk gene is not necessary for cells in culture, and a naturally occurring Tk deficient phenotype has not been described in humans or animal models. In order to determine the biological significance of the Tk gene, we created Tk(-/-) knockout (KO) mice through homologous recombination in mouse embryonic stem cells. Tk KO mice have shortened life spans compared with their wild-type or Tk heterozygous (HET) siblings. All Tk KO mice develop sclerosis of kidney glomeruli and die before one year of age of kidney failure. Among other changes in KO animals, the most consistent is a switch from exclusively mucous secretion to predominantly serous secretion in the sublingual salivary gland. HET parents can produce KO mice at a frequency approaching Mendelian inheritance. Other observations in KO animals include an elevated level of serum thymidine, a significant decrease in the cloning efficiency of splenic lymphocytes, an increase in the frequency of hypoxanthine guanine phosphoribosyl transferase gene mutant lymphocytes, and histological alteration in the lymphoid structure of the spleen. In addition, KO animals sporadically exhibit inflammation of the arteries, which taken together with the lymphocyte and spleen abnormalities, suggest an abnormal immune system. Alterations in Tk KO mice indicate that the pyrimidine nucleotide salvage pathway is indispensable in vivo.
Collapse
Affiliation(s)
- Vasily N Dobrovolsky
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA.
| | | | | | | | | |
Collapse
|
32
|
Kokoris MS, Black ME. Characterization of herpes simplex virus type 1 thymidine kinase mutants engineered for improved ganciclovir or acyclovir activity. Protein Sci 2002; 11:2267-72. [PMID: 12192082 PMCID: PMC2373606 DOI: 10.1110/ps.2460102] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Herpes Simplex Virus type 1 (HSV-1) thymidine kinase (TK) is currently the most widely used suicide agent for gene therapy of cancer. Tumor cells that express HSV-1 thymidine kinase are rendered sensitive to prodrugs due to preferential phosphorylation by this enzyme. Although ganciclovir (GCV) is the prodrug of choice for use with TK, this approach is limited in part by the toxicity of this prodrug. From a random mutagenesis library, seven thymidine kinase variants containing multiple amino acid substitutions were identified on the basis of activity towards ganciclovir and acyclovir based on negative selection in Escherichia coli. Using a novel affinity chromatography column, three mutant enzymes and the wild-type TK were purified to homogeneity and their kinetic parameters for thymidine, ganciclovir, and acyclovir determined. With ganciclovir as the substrate, one mutant (mutant SR39) demonstrated a 14-fold decrease in K(m) compared to the wild-type enzyme. The most dramatic change is displayed by mutant SR26, with a 124-fold decrease in K(m) with acyclovir as the substrate. Such new "prodrug kinases" could provide benefit to ablative gene therapy by now making it feasible to use the relatively nontoxic acyclovir at nanomolar concentrations or ganciclovir at lower, less immunosuppressive doses.
Collapse
Affiliation(s)
- Mark S Kokoris
- Department of Pharmaceutical Sciences, Washington State University, Pullman, Washington 99164-6534, USA
| | | |
Collapse
|
33
|
Tzeng HF, Chang ZF, Peng SE, Wang CH, Lin JY, Kou GH, Lo CF. Chimeric polypeptide of thymidine kinase and thymidylate kinase of shrimp white spot syndrome virus: thymidine kinase activity of the recombinant protein expressed in a baculovirus/insect cell system. Virology 2002; 299:248-55. [PMID: 12202227 DOI: 10.1006/viro.2002.1480] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The unique chimeric organization of the white spot syndrome virus (WSSV) tk-tmk gene encodes a protein which has significant homology to both cellular-type thymidine kinase (TK) and cellular-type thymidylate kinase (TMK), but the functional activity of this protein has not been demonstrated. Because TK is usually expressed only at very low levels in host cells, in this study, the coding region of WSSV tk-tmk was expressed in an insect/baculovirus expression system. The His-tagged recombinant WSSV TK-TMK was purified by affinity chromatography, and its enzyme activity was characterized by steady-state kinetics. The recombinant WSSV TK-TMK catalyzed the phosphorylation of thymidine to form thymidine monophosphate (TMP), but we found no evidence that it was able to catalyze the further phosphorylation of TMP to form thymidine diphosphate (or thymidine triphosphate). This TK activity is sensitive to feedback inhibition by thymidine triphosphate. In addition to thymidine, of the nine other substrates tested, including acyclovir, ganciclovir, and 5-(2-bromovinyl)-2'-deoxyuridine, only 2'-deoxyuridine and 5-bromo-2'-deoxyuridine could also serve as substrates. These data suggest that the enzymatic characteristics of the recombinant WSSV TK-TMK are similar to those of the eukaryotic cytosolic TKs. We also found that TK activity increased as infection advanced in the integument and gills of experimentally infected shrimp, suggesting its functional involvement during WSSV infection.
Collapse
Affiliation(s)
- Huey-Fen Tzeng
- Department of Zoology, National Taiwan University, Taipei 106, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
34
|
Zalah L, Huleihel M, Manor E, Konson A, Ford H, Marquez VE, Johns DG, Agbaria R. Metabolic pathways of N-methanocarbathymidine, a novel antiviral agent, in native and herpes simplex virus type 1 infected Vero cells. Antiviral Res 2002; 55:63-75. [PMID: 12076752 DOI: 10.1016/s0166-3542(02)00010-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
N-methanocarbathymidine ((N)-MCT), a thymidine analog incorporating a pseudosugar with a fixed Northern conformation, exhibits potent antiherpetic activity against herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). This study contrasts the metabolic pathway of (N)-MCT and the well-known antiherpetic agent ganciclovir (GCV) in HSV-1-infected and uninfected Vero cells. Treatment of HSV-1 infected Vero cells immediately after viral infection with (N)-MCT profoundly inhibited the development of HSV-1 infection. Using standard plaque reduction assay to measure viral infection, (N)-MCT showed a potency greater than that of ganciclovir (GCV), the IC50s were 0.02 and 0.25 microM for (N)-MCT and GCV, respectively. (N)-MCT showed no cytotoxic effect on uninfected Vero cells (CC50>100 microM). Dose and time dependence studies showed high levels of (N)-MCT-triphosphate ((N)-MCT-TP), and GCV-triphosphate (GCV-TP) in HSV-1-infected cells incubated with (N)-MCT or GCV, respectively. In contrast, uninfected cells incubated with (N)-MCT showed elevated levels of (N)-MCT-monophosphate only, while low levels of mono, di- and triphosphates of GCV were found following incubation with GCV. Although the accumulation rate of (N)-MCT and GCV phosphates in HSV-1-infected cells were similar, the decay rate of (N)-MCT-TP was slower than that of GCV-TP. These results suggest that: (1) the antiviral activity of (N)-MCT against herpes viruses is mediated through its triphosphate metabolite; (2) in contrast to GCV, the diphosphorylation of (N)-MCT in HSV-1- infected cells is the rate limiting step; (3) (N)-MCT-TP accumulates rapidly and has a long half-life in HSV-1-infected cells; and (4) HSV-tk catalyzed the mono, and diphosphorylation of (N)-MCT while monophosphorylating GCV only. These results provide a biochemical rational for the highly selective and effective inhibition of HSV-1 by (N)-MCT.
Collapse
Affiliation(s)
- Livnat Zalah
- Department of Clinical Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Park I, Ives DH. Mutations within the Putative Active Site of Heterodimeric Deoxyguanosine Kinase Block the Allosteric Activation of the Deoxyadenosine Kinase Subunit. BMB Rep 2002; 35:244-7. [PMID: 12297037 DOI: 10.5483/bmbrep.2002.35.2.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replacement of the Asp-84 residue of the deoxyguanosine kinase subunit of the tandem deoxyadenosine kinase/ deoxyguanosine kinase (dAK/dGK) from Lactobacillus acidophilus R-26 by Ala, Asn, or Glu produced increased Km values for deoxyguanosine on dGK. However, it did not seem to affect the binding of Mg-ATP. The Asp-84 dGK replacements had no apparent effect on the binding of deoxyadenosine by dAK. However, the mutant dGKs were no longer inhibited by dGTP, normally a potent distal endproduct inhibitor of dGK. Moreover, the allosteric activation of dAK activity by dGTP or dGuo was lost in the modified heterodimeric dAK/dGK enzyme. Therefore, it seems very likely that Asp-84 participates in dGuo binding at the active site of the dGK subunit of dAK/dGK from Lactobacillus acidophilus R-26.
Collapse
Affiliation(s)
- Inshik Park
- Faculty of Food Science, Dong-A University, Pusan 604-714, Korea.
| | | |
Collapse
|
36
|
Jacobsson B, Albertioni F, Eriksson S. Deoxynucleoside anabolic enzyme levels in acute myelocytic leukemia and chronic lymphocytic leukemia cells. Cancer Lett 2001; 165:195-200. [PMID: 11275369 DOI: 10.1016/s0304-3835(01)00430-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The deoxynucleoside kinase reaction is often rate-limiting in the anabolism of pharmacologically active anti-cancer nucleosides. The levels of thymidine kinase (TK), deoxycytidine kinase, deoxyguanosine kinase (dGK), and thymidylate kinase were determined in leukocyte extracts from patients with chronic lymphocytic leukemia (CLL) and acute myelocytic leukemia (AML). The extracts from AML patients showed significantly higher TK activity than the ones from CLL patients. There were no differences in the levels of the other three kinases. In the case of dGK, the determinations were carried out with both an immunoblotting assay and selective enzyme activity measurements.
Collapse
Affiliation(s)
- B Jacobsson
- Department of Infectious Diseases, Huddinge Hospital, SE-141 86, Huddinge, Sweden
| | | | | |
Collapse
|
37
|
Degrève B, Esnouf R, De Clercq E, Balzarini J. Mutation of Gln125 to Asn selectively abolishes the thymidylate kinase activity of herpes simplex virus type 1 thymidine kinase. Mol Pharmacol 2001; 59:285-93. [PMID: 11160865 DOI: 10.1124/mol.59.2.285] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The broad substrate specificity of herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) has provided the basis for selective antiherpetic therapy and, more recently, suicide gene therapy for the treatment of cancer. We have now constructed an HSV-1 TK mutant enzyme, in which an asparagine (N) residue is substituted for glutamine (Q) at position 125, and have evaluated the effect of this amino acid change on enzymatic activity. In marked contrast with wild-type HSV-1 TK, which displays both thymidine kinase and thymidylate kinase activities, the HSV-1 TK(Q125N) mutant was unable to phosphorylate pyrimidine nucleoside monophosphates but retained significant phosphorylation activity for thymidine and a series of antiherpetic pyrimidine and purine nucleoside analogs. The abrogation of HSV-1 TK-associated thymidylate kinase activity resulted in a 100-fold accumulation of the monophosphate form of (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) in osteosarcoma cells transfected with the HSV-1 TK(Q125N) gene compared with osteosarcoma cells expressing wild-type HSV-1 TK. BVDU monophosphate accumulation gave rise to a much greater inhibition of cellular thymidylate synthase in HSV-1 TK(Q125N) gene-transfected cells than wild-type HSV-1 TK gene-transfected osteosarcoma tumor cells without significantly changing the cytostatic potency of BVDU for the HSV-1 TK gene-transfected tumor cells. Accordingly, the presence of the Q125N mutation in HSV-1 TK gene-transfected tumor cells was found to result in a multilog decrease in the cytostatic activity of those pyrimidine nucleoside analogs that in their monophosphate form do not have marked affinity for thymidylate synthase [i.e., 1-beta-D-arabinofuranosylthymine and (E)-5-(2-bromovinyl)-1-beta-D-arabinofuranosyluracil].
Collapse
Affiliation(s)
- B Degrève
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | | | | | | |
Collapse
|
38
|
Tjarks W. The use of boron clusters in the rational design of boronated nucleosides for neutron capture therapy of cancer. J Organomet Chem 2000. [DOI: 10.1016/s0022-328x(00)00574-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Tsai MF, Yu HT, Tzeng HF, Leu JH, Chou CM, Huang CJ, Wang CH, Lin JY, Kou GH, Lo CF. Identification and characterization of a shrimp white spot syndrome virus (WSSV) gene that encodes a novel chimeric polypeptide of cellular-type thymidine kinase and thymidylate kinase. Virology 2000; 277:100-10. [PMID: 11062040 DOI: 10.1006/viro.2000.0597] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
From previously constructed genomic libraries of a Taiwan WSSV isolate, a putative WSSV tk-tmk gene was identified. Uniquely, the open reading frame (ORF) of this gene was predicted to encode a novel chimeric protein of 388 amino acids with significant homology to two proteins: thymidine kinase (TK) and thymidylate kinase (TMK). Northern blot analysis with a WSSV tk-tmk-specific riboprobe detected a major transcript of 1.6 kb. When healthy adult Penaeus monodon shrimp were inoculated with WSSV, the tk-tmk gene transcript was first detected by RT-PCR analysis at 4 h postinfection and transcription levels continued to increase over the first 18 h. The gene's major in vitro transcription and translation product, equivalent to the predicted size (43 kDa), is a single chimeric protein that includes both the TK and TMK functional motifs. Evidence for phylogenetic analysis and sequence alignment suggested that the gene may have resulted from the fusion of a cellular-type TK gene and a cellular-type TMK gene. Its unique arrangement may also provide a valuable gene marker for WSSV.
Collapse
Affiliation(s)
- M F Tsai
- Department of Zoology, Institute of Biochemistry, Taipei, 106, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Maury G. The enantioselectivity of enzymes involved in current antiviral therapy using nucleoside analogues: a new strategy? Antivir Chem Chemother 2000; 11:165-89. [PMID: 10901289 DOI: 10.1177/095632020001100301] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review is primarily intended for synthetic bio-organic chemists and enzymologists who are interested in new strategies in the design of virus inhibitors. It is an attempt to assess the importance of the enzymatic properties of L-nucleosides and their analogues, particularly those that are active against viruses such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), herpes simplex virus (HSV), etc. Only data obtained with purified enzymes have been considered and discussed. The examined enzymes include nucleoside- or nucleotide-phosphorylating enzymes, catabolic enzymes, viral target enzymes and cellular polymerases. The enantioselectivities of these enzymes were determined from existing data and are significant only when a sufficient number of enantiomeric pairs of substrates could be examined. The reported data emphasize the weak enantioselectivities of cellular or viral nucleoside kinases and some viral DNA polymerases. Thus, cellular deoxycytidine kinase has a considerably relaxed enantioselectivity with respect to a large number of nucleosides or their analogues, and it occupies a strategic position in the intracellular activation of the compounds. Similarly, HIV-1 reverse transcriptase often has a relatively weak enantioselectivity and can be inhibited by the 5-triphosphates of a large series of L-nucleosides and analogues. In contrast, degradation enzymes, such as adenosine or cytidine deaminases, generally demonstrate strict enantioselectivities favouring D-enantiomers and are used by chemists in asymmetric syntheses. The weak enantioselectivities of some enzymes involved in nucleoside metabolism are more or less pronounced, and one enantiomer or the other is favoured depending on the substrate. This suggests that the low enantioselectivity is fortuitous and does not result from evolutionary pressure, since these enzymes do not create or modify asymmetric centres in substrates. The combined enantioselectivities of the enzymes examined in this review strongly suggest that the field of L-nucleosides and their analogues should be systematically explored in the search for new virus inhibitors.
Collapse
Affiliation(s)
- G Maury
- UMR 5625 du CNRS, Université Montpellier II, France.
| |
Collapse
|
41
|
Munch-Petersen B, Knecht W, Lenz C, Søndergaard L, Piskur J. Functional expression of a multisubstrate deoxyribonucleoside kinase from Drosophila melanogaster and its C-terminal deletion mutants. J Biol Chem 2000; 275:6673-9. [PMID: 10692477 DOI: 10.1074/jbc.275.9.6673] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The occurrence of a deoxyribonucleoside kinase in Drosophila melanogaster (Dm-dNK) with remarkably broad substrate specificity has recently been indicated (Munch-Petersen, B., Piskur, J., and Søndergaard, L. (1998) J. Biol. Chem. 273, 3926-3931). To prove that the capacity to phosphorylate all four deoxyribonucleosides is in fact associated to one polypeptide chain, partially sequenced cDNA clones, originating from the Berkeley Drosophila genome sequencing project, were searched for homology with human deoxyribonucleoside kinases. The total sequence of one cDNA clone and the corresponding genomic DNA was determined and expressed in Escherichia coli as a glutathione S-transferase fusion protein. The purified and thrombin cleaved recombinant protein phosphorylated the four deoxyribonucleosides with high turnover and K(m) values similar to those of the native Dm-dNK, as well as the four ribonucleosides and many therapeutical nucleoside analogs. Dm-dNK has apparently the same origin as the mammalian kinases, thymidine kinase 2, deoxycytidine kinase, deoxyguanosine kinase, and the herpes viral thymidine kinases, but it has a unique C terminus that seems to be important for catalytic activity and specificity. The C-terminal 20 amino acids were dispensable for phosphorylation of deoxyribonucleosides but necessary for full activity with purine ribonucleosides. Removal of the C-terminal 20 amino acids increased the specific activity 2-fold, but 99% of the activity was lost after removal of the C-terminal 30 amino acids.
Collapse
Affiliation(s)
- B Munch-Petersen
- Department of Life Sciences and Chemistry, Roskilde University, P. O. Box 260, DK 4000 Roskilde, Denmark.
| | | | | | | | | |
Collapse
|
42
|
Kierdaszuk B, Krawiec K, Kazimierczuk Z, Jacobsson U, Johansson NG, Munch-Petersen B, Eriksson S, Shugar D. Substrate/inhibitor properties of human deoxycytidine kinase (dCK) and thymidine kinases (TK1 and TK2) towards the sugar moiety of nucleosides, including O'-alkyl analogues. NUCLEOSIDES & NUCLEOTIDES 1999; 18:1883-903. [PMID: 10478487 DOI: 10.1080/07328319908044850] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Nucleoside analogues with modified sugar moieties have been examined for their substrate/inhibitor specificities towards highly purified deoxycytidine kinase (dCK) and thymidine kinases (tetrameric high-affinity form of TK1, and TK2) from human leukemic spleen. In particular, the analogues included the mono- and di-O'-methyl derivatives of dC, dU and dA, syntheses of which are described. In general, purine nucleosides with modified sugar rings were feebler substrates than the corresponding cytosine analogues. Sugar-modified analogues of dU were also relatively poor substrates of TK1 and TK2, but were reasonably good inhibitors, with generally lower Ki values vs TK2 than TK1. An excellent discriminator between TK1 and TK2 was 3'-hexanoylamino-2',3'-dideoxythymidine, with a Ki of approximately 600 microM for TK1 and approximately 0.1 microM for TK2. 3'-OMe-dC was a superior inhibitor of dCK to its 5'-O-methyl congener, consistent with possible participation of the oxygen of the (3')-OH or (3')-OMe as proton acceptor in hydrogen bonding with the enzyme. Surprisingly alpha-dT was a good substrate of both TK1 and TK2, with Ki values of 120 and 30 microM for TK1 and TK2, respectively; and a 3'-branched alpha-L-deoxycytidine analogue proved to be as good a substrate as its alpha-D-counterpart. Several 5'-substituted analogues of dC were good non-substrate inhibitors of dCK and, to a lesser extent, of TK2. Finally, some ribonucleosides are substrates of the foregoing enzymes; in particular C is a good substrate of dCK, and 2'-OMe-C is an even better substrate than dC.
Collapse
Affiliation(s)
- B Kierdaszuk
- University of Warsaw, Department of Biophysics, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Christians FC, Scapozza L, Crameri A, Folkers G, Stemmer WP. Directed evolution of thymidine kinase for AZT phosphorylation using DNA family shuffling. Nat Biotechnol 1999; 17:259-64. [PMID: 10096293 DOI: 10.1038/7003] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The thymidine kinase (TK) genes from herpes simplex virus (HSV) types 1 and 2 were recombined in vitro with a technique called DNA family shuffling. A high-throughput robotic screen identified chimeras with an enhanced ability to phosphorylate zidovudine (AZT). Improved clones were combined, reshuffled, and screened on increasingly lower concentrations of AZT. After four rounds of shuffling and screening, two clones were isolated that sensitize Escherichia coli to 32-fold less AZT compared with HSV-1 TK and 16,000-fold less than HSV-2 TK. Both clones are hybrids derived from several crossover events between the two parental genes and carry several additional amino acid substitutions not found in either parent, including active site mutations. Kinetic measurements show that the chimeric enzymes had acquired reduced K(M) for AZT as well as decreased specificity for thymidine. In agreement with the kinetic data, molecular modeling suggests that the active sites of both evolved enzymes better accommodate the azido group of AZT at the expense of thymidine. Despite the overall similarity of the two chimeric enzymes, each contains key contributions from different parents in positions influencing substrate affinity. Such mutants could be useful for anti-HIV gene therapy, and similar directed-evolution approaches could improve other enzyme-prodrug combinations.
Collapse
|
44
|
Wang J, Neuhard J, Eriksson S. An Escherichia coli system expressing human deoxyribonucleoside salvage enzymes for evaluation of potential antiproliferative nucleoside analogs. Antimicrob Agents Chemother 1998; 42:2620-5. [PMID: 9756765 PMCID: PMC105907 DOI: 10.1128/aac.42.10.2620] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deoxyribonucleoside salvage in animal cells is mainly dependent on two cytosolic enzymes, thymidine kinase (TK1) and deoxycytidine kinase (dCK), while Escherichia coli expresses only one type of deoxynucleoside kinase, i.e., TK. A bacterial whole-cell system based on genetically modified E. coli was developed in which the relevant bacterial deoxypyrimidine metabolic enzymes were mutated, and the cDNA for human dCK or TK1 under the control of the lac promoter was introduced. The TK level in extract from induced bacteria with cDNA for human TK1 was found to be 20,000-fold higher than that in the parental strain, and for the strain with human dCK, the enzyme activity was 160-fold higher. The in vivo incorporation of deoxythymidine (Thd) and deoxycytidine (dCyd) into bacterial DNA by the two recombinant strains was 20 and 40 times higher, respectively, than that of the parental cells. A number of nucleoside analogs, including cytosine arabinoside, 5-fluoro-dCyd, difluoro-dCyd, and several 5-halogenated deoxyuridine analogs, were tested with the bacterial system, as well as with human T-lymphoblast CEM cells. The results showed a close correlation between the inhibitory effects of several important cytostatic and antiviral analogs on the recombinant bacteria and the cellular system. Thus, E. coli expressing human salvage kinases is a rapid and convenient model system which may complement other screening methods in drug discovery projects.
Collapse
Affiliation(s)
- J Wang
- Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, The Biomedical Center, S-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
45
|
Sjöberg AH, Wang L, Eriksson S. Substrate specificity of human recombinant mitochondrial deoxyguanosine kinase with cytostatic and antiviral purine and pyrimidine analogs. Mol Pharmacol 1998; 53:270-3. [PMID: 9463485 DOI: 10.1124/mol.53.2.270] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Deoxyguanosine kinase (dGK) is an enzyme responsible for the phosphorylation of purine deoxynucleosides in mitochondria of mammalian cells. Its role in activation of pharmacologically used nucleoside analogs is not well understood, because of the low levels of dGK found in tissue extracts and its inactivation during purification. The cDNA for dGK was recently cloned and expressed in Escherichia coli. Here we present an improved procedure for expression and purification of a highly active form of human recombinant dGK. The enzyme showed a broad substrate specificity toward natural purine and pyrimidine deoxynucleosides as well as toward important nucleoside analogs. The Km and Vmax values for deoxyguanosine, deoxyinosine, deoxyadenosine, and deoxycytidine were 4, 13, 460, 330 microM and 43, 330, 430 and 60 nmol/min/mg of protein, respectively. Antileukemic purine analogs such as arabinosyl guanine, 2-chloro-2'-deoxyadenosine, 2-chloro-2'-arabino-fluoro-2'-deoxyadenosine, and 2-fluoro-arabinosyl-adenine were phosphorylated as efficiently by dGK as the natural nucleoside substrates. This is the first report in which 2-fluoro-arabinosyl-adenine and 2-chloro-2'-arabino-fluoro-2'-deoxyadenosine were shown to be good substrates for dGK. The antiviral analogs dideoxyinosine and arabinosyl adenine also showed significant activity with dGK, as did several pyrimidine analogs (e.g., the cytostatic drugs 5-fluoro-2'-deoxycytidine and difluorodeoxycytidine). The broad specificity of dGK described here may change our understanding of the mechanisms responsible for the efficacy and mitochondrial toxicity of several nucleoside analogs.
Collapse
Affiliation(s)
- A H Sjöberg
- Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, Biomedical Center, Uppsala, Sweden
| | | | | |
Collapse
|
46
|
Verri A, Priori G, Spadari S, Tondelli L, Focher F. Relaxed enantioselectivity of human mitochondrial thymidine kinase and chemotherapeutic uses of L-nucleoside analogues. Biochem J 1997; 328 ( Pt 1):317-20. [PMID: 9359870 PMCID: PMC1218923 DOI: 10.1042/bj3280317] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Our discovery that Herpes virus thymidine kinase (TK) and cellular deoxycytidine kinase lack enantioselectivity, being able to phosphorylate both D- and L-enantiomers of the substrate, suggested the use of unnatural L-nucleoside analogues as antiviral drugs (Herpes, hepatitis and immunodeficiency viruses). Several L-nucleoside analogues have displayed a short-term cytotoxicity much lower than their corresponding D-counterpart. Since the delayed cytotoxicity of a drug often depends on its effects on mitochondrial metabolism, we have investigated the degree of enantioselectivity of human mitochondrial thymidine kinase (mt-TK). We demonstrate that mt-TK does not show an absolute enantioselectivity, being able to recognize, although with lower efficiency, the L-enantiomers of thymidine, deoxycytidine and modified deoxyuridines, such as (E)-5-(2-bromovinyl)-2'-deoxyuridine and 5-iodo-2'-deoxyuridine. Interestingly, the reported negative co-operativity of mt-TK phosphorylating beta-D-2'-deoxythymidine (D-Thd), disappears when the deoxyribose moiety has the inverted configuration, resulting in the preferential phosphorylation of d-Thd even in the presence of high concentrations of the L-enantiomer. This, coupled with the higher Km for beta-L-2'-deoxythymidine (L-Thd), makes mt-TK resistant to high concentrations of L-Thd and L-Thd analogues, minimizing the mitochondria-dependent delayed cytotoxicity that might be caused by the administration of L-nucleoside analogues as antivirals.
Collapse
Affiliation(s)
- A Verri
- Istituto di Genetica Biochimica ed Evoluzionistica, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | | | | | | | | |
Collapse
|
47
|
Dougan H, Hobbs JB, Weitz JI, Lyster DM. Synthesis and radioiodination of a stannyl oligodeoxyribonucleotide. Nucleic Acids Res 1997; 25:2897-901. [PMID: 9207040 PMCID: PMC146821 DOI: 10.1093/nar/25.14.2897] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Synthesis and radioiodination of a stannyl oligodeoxyribonucleotide were undertaken to evaluate a gamma ray emitting ODN ligand for thrombus imaging in vivo . Synthesis of the ODN was based on modified automatedbeta-cyanoethyl phosphoramidite chemistry with an organotin nucleoside (dU*) coupled to a thrombin binding aptamer sequence to give d(U*GGTTGGTGTGGTTGG). The synthesis accommodated dU*, which is destannylated by iodine or acids. Fourteen standard synthesis cycles were followed by one 'stannyl synthesis cycle', distinguished by Fmoc protection, omission of capping, oxidation by an organic peroxide and cleavage by ammonium hydroxide. The organotin nucleoside phosphoramidite {5'-[fluorenylmethoxycarbonyl]-5-(E)-[2-tri-n -butylstannylvinyl]-2'-deoxyuridine-3'-(2-cyanoethyl N,N-diisopropyl phosphoramidite)} was prepared from 5-iodo-2'-deoxyuridine. A customized mild rapid workup included deprotection with methylamine, and reverse phase HPLC with CH3CN/triethylammonium bicarbonate. Pure stannyl ODN was highly retained by reverse phase HPLC. Radioiodination of stannyl ODN (100 microg) provided 123I-labeling yields up to 97%. Five alternative oxidants were effective. High specific activity [123I]- ODN (15 000 Ci/mmol) was recovered, separated from unlabeled isomers. Excellent reverse phase HPLC resolution of ODN isomers (alternatively I, Cl, H or Br in vinyl deoxyuridine) was essential. The affinity of the iodovinyl aptamer analog (Kd = 36 nM) for human alpha-thrombin was similar to the native aptamer (Kd = 45 nM).
Collapse
Affiliation(s)
- H Dougan
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada.
| | | | | | | |
Collapse
|
48
|
Wellmar U, H�rnfeldt AB, Gronowitz S, Johansson NG. Synthesis of various 5-(3-substituted phenyl)-2?-deoxyuridines. Chem Heterocycl Compd (N Y) 1997. [DOI: 10.1007/bf01169963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Wang L, Hellman U, Eriksson S. Cloning and expression of human mitochondrial deoxyguanosine kinase cDNA. FEBS Lett 1996; 390:39-43. [PMID: 8706825 DOI: 10.1016/0014-5793(96)00623-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mammalian mitochondrial deoxyguanosine kinase (dGK) is responsible for phosphorylation of purine deoxyribonucleosides in the mitochondrial matrix. Using a RT-PCR-generated probe, based on amino acid sequence information from proteolytic fragments of purified bovine dGK, we have cloned a cDNA from a human brain cDNA library that encodes a 30 kDa protein. The deduced amino acid sequence of this protein included the sequence of all six peptides isolated and sequenced from purified dGK. Expression and purification of recombinant protein from induced Escherichia coli extracts revealed that it catalyses efficient phosphorylation of dGuo, arabinosyl guanine, dAdo, 2-chloro-2'-deoxyadenosine and dIno similar to purified dGK. Northern blot analysis demonstrated one dominant positive mRNA of 1.35 kb and it was found in several tissues at similar levels. The coding sequence of dGK showed 46% identity to the coding sequence of cytosolic deoxycytidine kinase, and conserved sequence motifs among the known deoxynucleoside kinase were identified.
Collapse
Affiliation(s)
- L Wang
- Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | |
Collapse
|
50
|
Black ME, Newcomb TG, Wilson HM, Loeb LA. Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc Natl Acad Sci U S A 1996; 93:3525-9. [PMID: 8622970 PMCID: PMC39643 DOI: 10.1073/pnas.93.8.3525] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) thymidine kinase is currently used as a suicide agent in the gene therapy of cancer. This therapy is based on the preferential phosphorylation of nucleoside analogs by tumor cells expressing HSV-1 thymidine kinase. However, the use of HSV-1 thymidine kinase is limited in part by the toxicity of the nucleoside analogs. We have used random sequence mutagenesis to create new HSV-1 thymidine kinases that, compared with wild-type thymidine kinase, render cells much more sensitive to specific nucleoside analogs. A segment of the HSV-1 thymidine kinase gene at the putative nucleoside binding site was substituted with random nucleotide sequences. Mutant enzymes that demonstrate preferential phosphorylation of the nucleoside analogs, ganciclovir or acyclovir, were selected from more than one million Escherichia coli transformants. Among the 426 active mutants we have isolated, 26 demonstrated enhanced sensitivity to ganciclovir, and 54 were more sensitive to acyclovir. Only 6 mutant enzymes displayed sensitivity to both ganciclovir and acyclovir when expressed in E. coli. Analysis of 3 drug-sensitive enzymes demonstrated that 1 produced stable mammalian cell transfectants that are 43-fold more sensitive to ganciclovir and 20-fold more sensitive to acyclovir.
Collapse
Affiliation(s)
- M E Black
- Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, School of Medicine, University of Washington, Seattle, 98195-7705, USA
| | | | | | | |
Collapse
|