1
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Ruiz-Pastor MJ, Kutsyr O, Lax P, Cuenca N. Decrease in DHA and other fatty acids correlates with photoreceptor degeneration in retinitis pigmentosa. Exp Eye Res 2021; 209:108667. [PMID: 34119484 DOI: 10.1016/j.exer.2021.108667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Fatty acids, and especially docosahexaenoic acid (DHA), are essential for photoreceptor cell integrity and are involved in the phototransduction cascade. In this study, we analyzed the changes in the fatty acid profile in the retina of the rd10 mouse, model of retinitis pigmentosa, in order to identify potential risk factors for retinal degeneration and possible therapeutic approaches. Fatty acids from C57BL/6J and rd10 mouse retinas were extracted with Folch's method and analyzed by gas chromatography/mass spectrometry. Changes in retinal morphology were evaluated by immunohistochemistry. The rd10 mouse retina showed a decreased number of photoreceptor rows and alterations in photoreceptor morphology compared to C57BL/6J mice. The total amount of fatty acids dropped by 29.4% in the dystrophic retinas compared to C57BL/6J retinas. A positive correlation was found between the retinal content of specific fatty acids and the number of photoreceptor rows. We found that the amount of several short-chain and long-chain saturated fatty acids, as well as monounsaturated fatty acids, decreased in the retina of rd10 mice. Moreover, the content of the n-6 polyunsaturated fatty acid arachidonic acid and the n-3 polyunsaturated DHA decreased markedly in the dystrophic retina. The fall of DHA was more pronounced, hence the n-6/n-3 ratio was significantly increased in the diseased retina. The content of specific fatty acids in the retina decreased with photoreceptor degeneration in retinitis pigmentosa mice, with a remarkable reduction in DHA and other saturated and unsaturated fatty acids. These fatty acids could be essential for photoreceptor cell viability, and they should be evaluated for the design of therapeutical strategies and nutritional supplements.
Collapse
Affiliation(s)
- María José Ruiz-Pastor
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - Oksana Kutsyr
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - Pedro Lax
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain.
| | - Nicolás Cuenca
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain.
| |
Collapse
|
3
|
Ruiz-Roso MB, Olivares-Álvaro E, Quintela JC, Ballesteros S, Espinosa-Parrilla JF, Ruiz-Roso B, Lahera V, de Las Heras N, Martín-Fernández B. Effects of Low Phytanic Acid-Concentrated DHA on Activated Microglial Cells: Comparison with a Standard Phytanic Acid-Concentrated DHA. Neuromolecular Med 2018; 20:328-342. [PMID: 29846873 DOI: 10.1007/s12017-018-8496-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/24/2018] [Indexed: 02/04/2023]
Abstract
Docosahexaenoic acid (DHA, 22:6 n-3) is an essential omega-3 (ω-3) long chain polyunsaturated fatty acid of neuronal membranes involved in normal growth, development, and function. DHA has been proposed to reduce deleterious effects in neurodegenerative processes. Even though, some inconsistencies in findings from clinical and pre-clinical studies with DHA could be attributed to the presence of phytanic acid (PhA) in standard DHA treatments. Thus, the aim of our study was to analyze and compare the effects of a low PhA-concentrated DHA with a standard PhA-concentrated DHA under different neurotoxic conditions in BV-2 activated microglial cells. To this end, mouse microglial BV-2 cells were stimulated with either lipopolysaccharide (LPS) or hydrogen peroxide (H2O2) and co-incubated with DHA 50 ppm of PhA (DHA (PhA:50)) or DHA 500 ppm of PhA (DHA (PhA:500)). Cell viability, superoxide anion (O2-) production, Interleukin 6 (L-6), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), glutathione peroxidase (GtPx), glutathione reductase (GtRd), Caspase-3, and the brain-derived neurotrophic factor (BDNF) protein expression were explored. Low PhA-concentrated DHA protected against LPS or H2O2-induced cell viability reduction in BV-2 activated cells and O2- production reduction compared to DHA (PhA:500). Low PhA-concentrated DHA also decreased COX-2, IL-6, iNOS, GtPx, GtRd, and SOD-1 protein expression when compared to DHA (PhA:500). Furthermore, low PhA-concentrated DHA increased BDNF protein expression in comparison to DHA (PhA:500). The study provides data supporting the beneficial effect of low PhA-concentrated DHA in neurotoxic injury when compared to a standard PhA-concentrated DHA in activated microglia.
Collapse
Affiliation(s)
- María Belén Ruiz-Roso
- Department of Physiology, Faculty of Medicine, Complutense University, 28040, Madrid, Spain
| | - Elena Olivares-Álvaro
- Department of Physiology, Faculty of Medicine, Complutense University, 28040, Madrid, Spain
| | | | - Sandra Ballesteros
- Department of Physiology, Faculty of Medicine, Complutense University, 28040, Madrid, Spain
| | | | - Baltasar Ruiz-Roso
- Department of Nutrition and Bromatology I (Nutrition), Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Vicente Lahera
- Department of Physiology, Faculty of Medicine, Complutense University, 28040, Madrid, Spain
| | - Natalia de Las Heras
- Department of Physiology, Faculty of Medicine, Complutense University, 28040, Madrid, Spain
| | - Beatriz Martín-Fernández
- Department of Physiology, Faculty of Medicine, Complutense University, 28040, Madrid, Spain.
- Natac Biotech S.L., 28923, Alcorcón, Madrid, Spain.
| |
Collapse
|
4
|
Bazan NG, Molina MF, Gordon WC. Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer's, and other neurodegenerative diseases. Annu Rev Nutr 2011; 31:321-51. [PMID: 21756134 DOI: 10.1146/annurev.nutr.012809.104635] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Essential polyunsaturated fatty acids (PUFAs) are critical nutritional lipids that must be obtained from the diet to sustain homeostasis. Omega-3 and -6 PUFAs are key components of biomembranes and play important roles in cell integrity, development, maintenance, and function. The essential omega-3 fatty acid family member docosahexaenoic acid (DHA) is avidly retained and uniquely concentrated in the nervous system, particularly in photoreceptors and synaptic membranes. DHA plays a key role in vision, neuroprotection, successful aging, memory, and other functions. In addition, DHA displays anti-inflammatory and inflammatory resolving properties in contrast to the proinflammatory actions of several members of the omega-6 PUFAs family. This review discusses DHA signalolipidomics, comprising the cellular/tissue organization of DHA uptake, its distribution among cellular compartments, the organization and function of membrane domains rich in DHA-containing phospholipids, and the cellular and molecular events revealed by the uncovering of signaling pathways regulated by DHA and docosanoids, the DHA-derived bioactive lipids, which include neuroprotectin D1 (NPD1), a novel DHA-derived stereoselective mediator. NPD1 synthesis agonists include neurotrophins and oxidative stress; NPD1 elicits potent anti-inflammatory actions and prohomeostatic bioactivity, is anti-angiogenic, promotes corneal nerve regeneration, and induces cell survival. In the context of DHA signalolipidomics, this review highlights aging and the evolving studies on the significance of DHA in Alzheimer's disease, macular degeneration, Parkinson's disease, and other brain disorders. DHA signalolipidomics in the nervous system offers emerging targets for pharmaceutical intervention and clinical translation.
Collapse
Affiliation(s)
- Nicolas G Bazan
- Neuroscience Center of Excellence and Department of Ophthalmology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
5
|
Bazan NG. Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci 2006; 29:263-71. [PMID: 16580739 DOI: 10.1016/j.tins.2006.03.005] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 02/24/2006] [Accepted: 03/16/2006] [Indexed: 11/26/2022]
Abstract
Recent data have provided important clues about the molecular mechanisms underlying certain retinal degenerative diseases, including retinitis pigmentosa and age-related macular degeneration. Photoreceptor cell degeneration is a feature common to these diseases, and the death of these cells in many instances seems to involve the closely associated retinal pigment epithelial (RPE) cells. Under normal circumstances, both cell types are subject to potentially damaging stimuli (e.g. sunlight and high oxygen tension). However, the mechanism or mechanisms by which homeostasis is maintained in this part of the eye, which is crucial for sight, are an unsolved riddle. The omega-3 fatty acid family member docosahexaenoic acid (DHA), which is enriched in these cells, is the precursor of neuroprotectin D1 (NPD1). NPD1 inhibits oxidative-stress-mediated proinflammatory gene induction and apoptosis, and consequently promotes RPE cell survival. This enhanced understanding of the molecular basis of endogenous anti-inflammatory and neuroprotective signaling in the RPE presents an opportunity for the development of therapies for retinal degenerative diseases.
Collapse
Affiliation(s)
- Nicolas G Bazan
- LSU Neuroscience Center of Excellence and Department of Ophthalmology, Louisiana State University Health Sciences Center School of Medicine in New Orleans, LA 70112, USA.
| |
Collapse
|
6
|
Petersen-Jones SM. A review of research to elucidate the causes of the generalized progressive retinal atrophies. Vet J 1998; 155:5-18. [PMID: 9455155 DOI: 10.1016/s1090-0233(98)80028-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progressive retinal atrophy (PRA) is a leading hereditary cause of blindness in pedigree dogs as is its counterpart retinitis pigmentosa (RP) in humans. PRA shows genetic heterogeneity, as does RP, with several distinct forms already recognized and several more remaining to be investigated. Progress in molecular genetics has allowed the identification of the gene mutation responsible for an early onset form of PRA in the Irish setter, classified as rod-cone dysplasia type 1. The gene involved is the beta-subunit of cyclic guanosine monophosphate phosphodiesterase which encodes a protein of the visual transduction cascade. Investigation of this gene in other breeds of dog with PRA has failed to find further breeds with the same mutation. Other genes that have been investigated include those encoding other proteins in the visual transduction cascade and for photoreceptor specific structural proteins. Further disease causing mutations have not yet been identified. Recently, developments in the mapping of the canine genome have produced sufficient markers to allow preliminary mapping of PRA genes. Already linkage to the most common form of PRA, progressive rod-cone degeneration (prcd), has been established. prcd occurs in poodles, cocker spaniels and Labrador retrievers and possibly other breeds. The prcd-linked marker should enable development of a DNA-based test for the disease locus and facilitate identification of the actual disease causing gene mutation. Over the next few years we can look forward to the identification of several more PRA-causing gene mutations. This article will review research that seeks to characterize PRA in the dog, identify the responsible gene mutations, and elucidate the disease processes involved.
Collapse
Affiliation(s)
- S M Petersen-Jones
- University of Cambridge, Centre for Veterinary Science, Department of Veterinary Clinical Medicine, UK
| |
Collapse
|