1
|
Kriström K, Häggström J, Fascetti AJ, Ström L, Dirven M, Yu J, Essén TS, Tidholm A, Pion PD, Ljungvall I. The association between taurine concentrations and dog characteristics, clinical variables, and diet in English cocker spaniels: The Canine taURinE (CURE) project. J Vet Intern Med 2024; 38:2620-2632. [PMID: 39136304 PMCID: PMC11423459 DOI: 10.1111/jvim.17150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/16/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Occurrence of low blood taurine concentrations (B-TauC) and predisposing factors to taurine deficiency in English Cocker Spaniels (ECS) are incompletely understood. OBJECTIVES Investigate the occurrence of low B-TauC in a Swedish population of ECS and evaluate the association between B-TauC and dog characteristics, clinical variables, and diet composition. ANIMALS One-hundred eighty privately owned ECS. METHODS Dogs were prospectively recruited and underwent physical examination, blood analyses, and echocardiographic and ophthalmic examinations. Dogs with clinical signs of congestive heart failure (CHF) also underwent thoracic radiography. Taurine concentrations were analyzed in plasma (EDTA and heparin) and whole blood. Diets consumed by the dogs at the time of the examination were analyzed for dietary taurine- (D-TauC), cysteine- (D-CysC), and methionine concentrations (D-MetC). RESULTS Fifty-three of 180 dogs (29%) had low B-TauC, of which 13 (25%) dogs had clinical and radiographic signs of CHF, increased echocardiographic left ventricular (LV) dimensions and volumes, and impaired LV systolic function. Five (9%) dogs with low B-TauC had retinal abnormalities. Dietary MetC, dietary animal protein source (red/white meat), and age were associated with B-TauC in the final multivariable regression model (P < .001, R2 adj = .39). CONCLUSIONS AND CLINICAL IMPORTANCE Low B-TauC suggests that taurine deficiency may play a role in the development of myocardial failure and CHF in ECS. Low D-MetC and diets with red meat as the animal protein source were associated with low B-TauC. Dogs with B-TauC below the normal reference range were older than dogs with normal concentrations.
Collapse
Affiliation(s)
- Karin Kriström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Evidensia Södra Animal Hospital, Huddinge, Sweden
| | - Jens Häggström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Andrea J Fascetti
- Department of Molecular Biosciences, School of Veterinary Medicine University of California Davis, Davis, California, USA
| | - Lena Ström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mark Dirven
- Evidensia Södra Animal Hospital, Huddinge, Sweden
| | - Joshua Yu
- Department of Molecular Biosciences, School of Veterinary Medicine University of California Davis, Davis, California, USA
| | | | - Anna Tidholm
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Anicura Albano Animal Hospital, Danderyd, Sweden
| | - Paul D Pion
- Veterinary Information Network, Davis, California, USA
| | - Ingrid Ljungvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
2
|
Centeno D, Farsinejad S, Kochetkova E, Volpari T, Gladych-Macioszek A, Klupczynska-Gabryszak A, Polotaye T, Greenberg M, Kung D, Hyde E, Alshehri S, Pavlovic T, Sullivan W, Plewa S, Vakifahmetoglu-Norberg H, Monsma FJ, Muller PAJ, Matysiak J, Zaborowski M, DiFeo A, Norberg E, Martin LA, Iwanicki M. Modeling of Intracellular Taurine Levels Associated with Ovarian Cancer Reveals Activation of p53, ERK, mTOR and DNA-damage-sensing-dependent Cell Protection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.24.529893. [PMID: 36909636 PMCID: PMC10002676 DOI: 10.1101/2023.02.24.529893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Taurine, a non-proteogenic amino acid, and commonly used nutritional supplement can protect various tissues from degeneration associated with the action of the DNA-damaging chemotherapeutic agent cisplatin. Whether and how taurine protects human ovarian cancer (OC) cells from DNA damage caused by cisplatin is not well understood. We have found that OC ascites-derived cells contained significantly more intracellular taurine than cell cultures modeling OC. In culture, elevation of intracellular taurine concentration to OC ascites-cells-associated levels suppressed proliferation of various OC cell lines and patient-derived organoids, reduced glycolysis, and induced cell protection from cisplatin. Taurine cell protection was associated with decreased DNA damage in response to cisplatin. A combination of RNA sequencing, reverse phase protein arrays, live-cell microscopy, flow cytometry, and biochemical validation experiments provided evidence for taurine-mediated induction of mutant- or wild-type p53 binding to DNA, and activation of p53 effectors involved in negative regulation of the cell cycle (p21), and glycolysis (TIGAR). Paradoxically, taurine's suppression of cell proliferation was associated with activation of pro-mitogenic signal transduction including ERK, mTOR, and increased mRNA expression of major DNA damage sensing molecules such as DNAPK, ATM and ATR. While inhibition of ERK or p53 did not interfere with taurine's ability to protect cells from cisplatin, suppression of mTOR with Torin2, a clinically relevant inhibitor that also targets DNAPK and ATM/ATR, broke taurine's cell protection. Our studies implicate that elevation of intracellular taurine could suppress cell growth, metabolism, and activate cell protective mechanisms involving mTOR and DNA damage sensing signal transduction.
Collapse
|
3
|
Márquez García A, Salazar V, Lima Pérez L. Consequences of zinc deficiency on zinc localization, taurine transport, and zinc transporters in rat retina. Microsc Res Tech 2022; 85:3382-3390. [PMID: 35836361 DOI: 10.1002/jemt.24193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/07/2022] [Accepted: 06/20/2022] [Indexed: 11/06/2022]
Abstract
The colocalization of taurine and zinc transporters (TAUT, ZnTs) has not been explored in retina. Our objective is to evaluate the effect of the intracellular zinc chelator N,N,N,N-tetrakis-(2-pyridylmethyl) ethylenediamine (TPEN) on zinc localization and colocalization TAUT and ZnT-1 (of plasma membrane), 3 (vesicular), and 7 (vesicular and golgi apparatus) in layers of retina by immunohistochemistry. To mark zinc, it was used cell-permeable fluorescent Zinquin ethyl ester. Specific first and secondary antibodies, conjugated with rhodamine or fluorescein-isothiocyanate were used to mark TAUT and ZnTs. The fluorescence results were reported as integrated optical density (IOD). Zinc was detected in all layers of the retina. The treatment with TPEN produced changes in the distribution of zinc in layers of retina less in the outer nuclear layer compared with the control. TAUT was detected in all layers of retina and TPEN chelator produced decrease of IOD in all layers of retina except in the photoreceptor compared with the control. ZnT 1, 3, and 7 were distributed in all retina layers, with more intensity in ganglion cell layer (GCL) and in the layers where there is synaptic connection. For all transporters, the treatment with TPEN produced significant decrease of IOD in layers of retina least in the inner nuclear layer for ZnT1, in the photoreceptor for ZnT3 and in the GCL and outer plexiform layer for ZnT7. The distribution of zinc, TAUT, and ZnTs in the layers of retina is indicative of the interaction of taurine and zinc for the function of the retina and normal operation of said layers. HIGHLIGHTS: Taurine and zinc are two molecules highly concentrated in the retina and with relevant functions in this structure. Maintaining zinc homeostasis in this tissue is necessary for the normal function of the taurine system in the retina. The study of the taurine transporter and the different zinc transporters in the retina (responsible for maintaining adequate levels of taurine and zinc) is relevant and novel, since it is indicative of the interactions between both molecules in this structure.
Collapse
Affiliation(s)
- Asarí Márquez García
- Laboratorio de Neuroquímica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apdo, Caracas, Venezuela.,Universidad de Granada-Junta de Andalucía de Genómica e investigación Oncológica, Granada, Spain
| | - Víctor Salazar
- Servicio de Microscopía de Luz, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apdo, Caracas, Venezuela
| | - Lucimey Lima Pérez
- Laboratorio de Neuroquímica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apdo, Caracas, Venezuela
| |
Collapse
|
4
|
Taurine Ameliorates Streptozotocin-Induced Diabetes by Modulating Hepatic Glucose Metabolism and Oxidative Stress in Mice. Metabolites 2022; 12:metabo12060524. [PMID: 35736457 PMCID: PMC9228042 DOI: 10.3390/metabo12060524] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 12/30/2022] Open
Abstract
Taurine is a sulfated amino acid derivative that plays an important role in maintaining the cell function of the living body. Although taurine has been shown to ameliorate diabetes, its mechanism of action has not yet been fully elucidated. The present study investigated the effects of taurine on diabetes focusing on glucose metabolism and oxidative stress. Type 1 diabetes was induced by the administration of streptozotocin (STZ) to male C57BL/6J mice. Taurine was dissolved in drinking water at 3% (w/v) and allowed to be freely ingested by diabetic mice. The weight and blood glucose levels were measured weekly. After nine weeks, mice were sacrificed and their serum, liver, and kidney were removed and used for biochemical and histological analyses. A microarray analysis was also performed in normal mice. Taurine alleviated STZ-induced hyperglycemia and hyperketonemia, accompanied by the suppression of the decrease in hepatic glycogen and upregulation of the mRNA expression of hepatic glucose transporter GLUT-2. Furthermore, STZ-induced elevation of oxidative stress in the liver and kidney was suppressed by taurine treatment. These results showed that taurine ameliorated diabetes and diabetic complications by improving hepatic glucose metabolism and reducing oxidative stress.
Collapse
|
5
|
Characterization of Taurine/Silk Fibroin Blend Film for Application as a Carrier for Corneal Endothelial Cell Transplantation. Macromol Res 2022. [DOI: 10.1007/s13233-022-0033-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Kalloniatis M, Loh CS, Acosta ML, Tomisich G, Zhu Y, Nivison‐smith L, Fletcher EL, Chua J, Sun D, Arunthavasothy N. Retinal amino acid neurochemistry in health and disease. Clin Exp Optom 2021; 96:310-32. [DOI: 10.1111/cxo.12015] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 07/01/2012] [Accepted: 07/17/2012] [Indexed: 12/25/2022] Open
Affiliation(s)
- Michael Kalloniatis
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia,
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia,
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Chee Seang Loh
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Monica L Acosta
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Guido Tomisich
- Department of Optometry and Vision Science, The University of Melbourne, Parkville, Victoria, Australia,
| | - Yuan Zhu
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
| | - Lisa Nivison‐smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
| | - Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia,
| | - Jacqueline Chua
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Daniel Sun
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Niru Arunthavasothy
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| |
Collapse
|
7
|
Xu H, Huang L, Jin E, Liang Z, Zhao M. Plasma metabolomic profiling of central serous chorioretinopathy. Exp Eye Res 2020; 203:108401. [PMID: 33326810 DOI: 10.1016/j.exer.2020.108401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 01/05/2023]
Abstract
Our study aimed to investigate metabolites alterations in the blood plasma of central serous chorioretinopathy (CSC) patients and to identify the key biomarkers to increase the understanding of the mechanism of CSC at the molecular level. Quantitative and targeted metabolomics using liquid chromatography tandem-mass spectrometry (LCMS, Biocrates P500) assays were performed on plasma samples from the 42 subjects(CSC patients = 30, control = 12) enrolled at the Department of Ophthalmology of People's Hospital Peking University. A total of 61 altered metabolites were distinguished between CSC patients and controls. Taurine was selected as a candidate biomarker for CSC among 6 potential metobolites: taurine, glutamic acid, sarcosine, lactic acid, glutamine and C18_1. The P values of these potential metabolites were 1.01E-06, 7.35E-08, 1.27E-24, and 1.85E-10, 1.02E-05 and 8.59E-08, and the areas under the curve for them were 0.926, 0.991, 1.000, 0.900, 0.897 and 0.841, respectively. This study is the first to identify that taurine may be a biologically relevant biomarker for CSC and to provide a novel understanding of CSC.
Collapse
Affiliation(s)
- Hui Xu
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retina and Choroid Diseases, College of Optometry, Peking University Health Science Centre, China.
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retina and Choroid Diseases, College of Optometry, Peking University Health Science Centre, China.
| | - Enzhong Jin
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retina and Choroid Diseases, College of Optometry, Peking University Health Science Centre, China
| | - Zhiqiao Liang
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retina and Choroid Diseases, College of Optometry, Peking University Health Science Centre, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retina and Choroid Diseases, College of Optometry, Peking University Health Science Centre, China.
| |
Collapse
|
8
|
Bell CM, Zack DJ, Berlinicke CA. Human Organoids for the Study of Retinal Development and Disease. Annu Rev Vis Sci 2020; 6:91-114. [DOI: 10.1146/annurev-vision-121219-081855] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advances in stem cell engineering have led to an explosion in the use of organoids as model systems for studies in multiple biological disciplines. Together with breakthroughs in genome engineering and the various omics, organoid technology is making possible studies of human biology that were not previously feasible. For vision science, retinal organoids derived from human stem cells allow differentiating and mature human retinal cells to be studied in unprecedented detail. In this review, we examine the technologies employed to generate retinal organoids and how organoids are revolutionizing the fields of developmental and cellular biology as they pertain to the retina. Furthermore, we explore retinal organoids from a clinical standpoint, offering a new platform with which to study retinal diseases and degeneration, test prospective drugs and therapeutic strategies, and promote personalized medicine. Finally, we discuss the range of possibilities that organoids may bring to future retinal research and consider their ethical implications.
Collapse
Affiliation(s)
- Claire M. Bell
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA;,
| | - Donald J. Zack
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA;,
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Cynthia A. Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
9
|
Bhat MY, Singh LR, Dar TA. Taurine Induces an Ordered but Functionally Inactive Conformation in Intrinsically Disordered Casein Proteins. Sci Rep 2020; 10:3503. [PMID: 32103094 PMCID: PMC7044306 DOI: 10.1038/s41598-020-60430-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 01/31/2020] [Indexed: 11/30/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are involved in various important biological processes, such as cell signalling, transcription, translation, cell division regulation etc. Many IDPs need to maintain their disordered conformation for proper function. Osmolytes, natural organic compounds responsible for maintaining osmoregulation, have been believed to regulate the functional activity of macromolecules including globular proteins and IDPs due to their ability of modulating the macromolecular structure, conformational stability, and functional integrity. In the present study, we have investigated the effect of all classes of osmolytes on two model IDPs, α- and β-casein. It was observed that osmolytes can serve either as folding inducers or folding evaders. Folding evaders, in general, do not induce IDP folding and therefore had no significant effect on structural and functional integrity of IDPs. On the other hand, osmolytes taurine and TMAO serve as folding inducers by promoting structural collapse of IDPs that eventually leads to altered structural and functional integrity of IDPs. This study sheds light on the osmolyte-induced regulation of IDPs and their possible role in various disease pathologies.
Collapse
Affiliation(s)
- Mohd Younus Bhat
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, J&K, 190006, India
| | | | - Tanveer Ali Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, J&K, 190006, India.
| |
Collapse
|
10
|
Fan Y, Lai J, Yuan Y, Wang L, Wang Q, Yuan F. Taurine Protects Retinal Cells and Improves Synaptic Connections in Early Diabetic Rats. Curr Eye Res 2020; 45:52-63. [PMID: 31404506 DOI: 10.1080/02713683.2019.1653927] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022]
Abstract
Purpose: Taurine has long been thought to be involved in retinal protection from retinal degenerative diseases, but the underlying molecular mechanisms remain unclear. Retinal neurodegeneration is an early event in the pathogenesis of diabetic retinopathy (DR) that precedes and participates in the microcirculatory abnormalities that occur in DR. Our objective was to investigate the role and mechanisms of taurine in early diabetic retinas.Methods: Eight-week-old STZ-induced diabetic rats and control animals were randomly assigned to receive taurine or vehicle by intraperitoneal injection or by intragastric administration. The retinal function and retinal cell counts were evaluated using an electroretinography (ERG) and immunofluorescence microscopy. Plasma amino acids were measured by ion-exchange chromatography (IEC). The expression levels of retinal taurine transporter (Tau-T), mitochondria-dependent apoptosis-associated genes and reactive gliosis markers were studied by western blotting and immunofluorescence. Pre- and post-synaptic markers (PSD95 and mGluR6) in outer plexiform layer (OPL), and the bipolar cell marker protein kinase C alpha (PKCα) were localized by immunofluorescence. Levels of PSD95 and mGluR6 were determined by quantitative western blot.Results: Taurine significantly prevented the reduction of photopic b-wave amplitude and retinal cone cells and ganglion cells loss and maintained the Bcl-2/Bax ratio balance in diabetic rats. Taurine also prevented the upregulation of glial fibrillary acidic protein (GFAP) and reduced retinal reactive gliosis. Taurine reduced plasma glutamate and tyrosine levels, which were elevated in diabetic rats. Moreover, mGluR6 levels reduction detected by western blot and immunofluorescence in diabetic retinas was inhibited and the displacement of mGluR6 in OPL into the inner nuclear layer (INL) detected by immunofluorescence was reduced by Taurine treatment.Conclusion: Taurine may protect retinal cells from diabetic attacks by activating Tau-T, reducing retinal reactive gliosis, improving retinal synaptic connections and decreasing retinal cell apoptosis. Thus, taurine treatment may be a novel approach for early DR.
Collapse
Affiliation(s)
- Yichao Fan
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jie Lai
- Department of Ophthalmology, First Affiliated Hospital of Nanchang University Nanchang, Jiangxi, China
| | - Yuanzhi Yuan
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Liyang Wang
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Qingping Wang
- Department of Ophthalmology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Fei Yuan
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
11
|
Roles of taurine in cognitive function of physiology, pathologies and toxication. Life Sci 2019; 231:116584. [DOI: 10.1016/j.lfs.2019.116584] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/09/2019] [Accepted: 06/17/2019] [Indexed: 11/23/2022]
|
12
|
Brill RW, Horodysky AZ, Place AR, Larkin MEM, Reimschuessel R. Effects of dietary taurine level on visual function in European sea bass (Dicentrarchus labrax). PLoS One 2019; 14:e0214347. [PMID: 31211780 PMCID: PMC6581246 DOI: 10.1371/journal.pone.0214347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/04/2019] [Indexed: 11/18/2022] Open
Abstract
Dietary insufficiencies have been well documented to decrease growth rates and survival (and therefore overall production) in fish aquaculture. By contrast, the effects of dietary insufficiencies on the sensory biology of cultured fish remains largely unstudied. Diets based solely on plant protein sources could have advantages over fish-based diets because of the cost and ecological effects of the latter, but plant proteins lack the amino acid taurine. Adequate levels of taurine are, however, necessary for the development of a fully functional visual system in mammals. As part of ongoing studies to determine the suitability of plant-based diets, we investigated the effects of normal and reduced taurine dietary levels on retinal anatomy and function in European sea bass (Dicentrarchus labrax). We could not demonstrate any effects of dietary taurine level on retinal anatomy, nor the functional properties of luminous sensitivity and temporal resolution (measured as flicker fusion frequency). We did, however, find an effect on spectral sensitivity. The peak of spectral sensitivity of individuals fed a 5% taurine diet was rightward shifted (i.e., towards longer wavelengths) relative to that of fish fed a 0% or 1.5% taurine diet. This difference in in spectral sensitivity was due to a relatively lower level of middle wavelength pigment (maximum absorbance .500 nm) in fish fed a 5% taurine diet. Changes in spectral sensitivity resulting from diets containing different taurine levels are unlikely to be detrimental to fish destined for market, but could be in fishes that are being reared for stock enhancement programs.
Collapse
Affiliation(s)
- Richard W. Brill
- Department of Fisheries Science, Virginia Institute of Marine Science, Gloucester Point, Virginia, United States of America
| | - Andrij Z. Horodysky
- Department of Marine and Environmental Science, Hampton University, Hampton, Virginia, United States of America
| | - Allen R. Place
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, United States of America
| | - Mary E. M. Larkin
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, United States of America
| | - Renate Reimschuessel
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, United States of America
| |
Collapse
|
13
|
Kolesnikov AV, Shchul’kin AV, Barenina OI, Yakusheva EN, Kudrin VS, Ostrovskaya RU, Uzbekov MG, Shishkin MM. The Effect of Noopept on Neurochemical Changes in the Retina during the Experimental Thrombosis of Its Vessels. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
The Effect of Drug Pre-treatment on Taurine Transport at the Inner Blood-Retinal Barrier Under Variable Conditions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:959-975. [DOI: 10.1007/978-981-13-8023-5_80] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Bishnu A, Sakpal A, Ghosh N, Choudhury P, Chaudhury K, Ray P. Long term treatment of metformin impedes development of chemoresistance by regulating cancer stem cell differentiation through taurine generation in ovarian cancer cells. Int J Biochem Cell Biol 2018; 107:116-127. [PMID: 30593952 DOI: 10.1016/j.biocel.2018.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 12/16/2022]
Abstract
Development of resistance poses a significant challenge to effective first-line platinum based therapy for epithelial ovarian cancer patients. Cancer Stem Cells are envisaged as a critical underlying factor for therapy resistance. Thus, there is a critical need for developing approaches to diminish the enrichment of cancer stem cells and acquirement of resistance. Administration of metformin, a commonly prescribed drug against Type II diabetes exhibited promising effect in the management of ovarian cancer. However, the effect of long term administration of low dose of metformin as an adjuvant to cisplatin and paclitaxel during acquirement of chemoresistant phenotype has not been investigated so far. Using two isogenic cellular chemoresistant models (A2780 and OAW42) developed in the presence or absence of metformin, we demonstrated the ability of metformin to impede the development of resistance through increased drug sensitivity, increased proliferation, and reduced migratory abilities of the resistant cells. Metformin introduction also decreased the cancer stem cell population, expression of specific biomarkers and pluripotent genes. Further metabolic profiling of these cells using 1H-Nuclear Magnetic Resonance spectroscopy revealed significant modulation in taurine and histidine levels in resistant cells developed in the presence of metformin. Intriguingly, taurine treatment considerably reduced the cancer stem cell population and chemoresistance in resistant cells, indicating a novel role of taurine in differentiation of ovarian cancer stem cells. Altogether this is the first report on the potential role of metformin for targeting the cancer stem cell population via up regulation of taurine, leading to impediment in the acquirement of chemoresistance.
Collapse
Affiliation(s)
- Aniketh Bishnu
- Imaging Cell Signaling and Therapeutics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Mumbai, Anushakti Nagar, India
| | - Asmita Sakpal
- Imaging Cell Signaling and Therapeutics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Mumbai, Anushakti Nagar, India
| | - Nilanjana Ghosh
- Clinical Biomarker Research Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Priyanka Choudhury
- Clinical Biomarker Research Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Koel Chaudhury
- Clinical Biomarker Research Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Pritha Ray
- Imaging Cell Signaling and Therapeutics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Mumbai, Anushakti Nagar, India.
| |
Collapse
|
16
|
Ochoa-de la Paz LD, González-Andrade M, Pasantes-Morales H, Franco R, Zamora-Alvarado R, Zenteno E, Quiroz-Mercado H, Gonzales-Salinas R, Gulias-Cañizo R. Differential modulation of human GABA C-ρ1 receptor by sulfur-containing compounds structurally related to taurine. BMC Neurosci 2018; 19:47. [PMID: 30075755 PMCID: PMC6076408 DOI: 10.1186/s12868-018-0448-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The amino acid taurine (2-Aminoethanesulfonic acid) modulates inhibitory neurotransmitter receptors. This study aimed to determine if the dual action of taurine on GABAC-ρ1R relates to its structure. To address this, we tested the ability of the structurally related compounds homotaurine, hypotaurine, and isethionic acid to modulate GABAC-ρ1R. RESULTS In Xenopus laevis oocytes, hypotaurine and homotaurine partially activate heterologously expressed GABAC-ρ1R, showing an increment in its deactivation time with no changes in channel permeability, whereas isethionic acid showed no effect. Competitive assays suggest that hypotaurine and homotaurine compete for the GABA-binding site. In addition, their effects were blocked by the ion-channel blockers picrotixin and Methyl(1,2,5,6-tetrahydropyridine-4-yl) phosphinic acid. In contrast to taurine, co-application of GABA with hypotaurine or homotaurine revealed that the dual effect is present separately for each compound: hypotaurine modulates positively the GABA current, while homotaurine shows a negative modulation, both in a dose-dependent manner. Interestingly, homotaurine diminished hypotaurine-induced currents. Thus, these results strongly suggest a competitive interaction between GABA and homotaurine or hypotaurine for the same binding site. "In silico" modeling confirms these observations, but it also shows a second binding site for homotaurine, which could explain the negative effect of this compound on the current generated by GABA or hypotaurine, during co-application protocols. CONCLUSIONS The sulfur-containing compounds structurally related to taurine are partial agonists of GABAC-ρ1R that occupy the agonist binding site. The dual effect is unique to taurine, whereas in the case of hypotaurine and homotaurine it presents separately; hypotaurine increases and homotaurine decreases the GABA current.
Collapse
Affiliation(s)
- Lenin David Ochoa-de la Paz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco Universidad, Cd. Universitaria, 04510, México City, México. .,Departamento de Investigación APEC, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes, Fernández Leal 60, Col. La Concepción Coyoacán, 04020, Mexico City, Mexico.
| | - Martin González-Andrade
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco Universidad, Cd. Universitaria, 04510, México City, México
| | - Herminia Pasantes-Morales
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Coyoacán, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Rodrigo Franco
- Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Rubén Zamora-Alvarado
- Departamento de Investigación APEC, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes, Fernández Leal 60, Col. La Concepción Coyoacán, 04020, Mexico City, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Copilco Universidad, Cd. Universitaria, 04510, México City, México
| | - Hugo Quiroz-Mercado
- Departamento de Investigación APEC, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes, Fernández Leal 60, Col. La Concepción Coyoacán, 04020, Mexico City, Mexico
| | - Roberto Gonzales-Salinas
- Departamento de Investigación APEC, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes, Fernández Leal 60, Col. La Concepción Coyoacán, 04020, Mexico City, Mexico
| | - Rosario Gulias-Cañizo
- Departamento de Investigación APEC, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes, Fernández Leal 60, Col. La Concepción Coyoacán, 04020, Mexico City, Mexico
| |
Collapse
|
17
|
Abel R. Age-Related Macular Degeneration. Integr Med (Encinitas) 2018. [DOI: 10.1016/b978-0-323-35868-2.00085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Jafri AJA, Arfuzir NNN, Lambuk L, Iezhitsa I, Agarwal R, Agarwal P, Razali N, Krasilnikova A, Kharitonova M, Demidov V, Serebryansky E, Skalny A, Spasov A, Yusof APM, Ismail NM. Protective effect of magnesium acetyltaurate against NMDA-induced retinal damage involves restoration of minerals and trace elements homeostasis. J Trace Elem Med Biol 2017; 39:147-154. [PMID: 27908408 DOI: 10.1016/j.jtemb.2016.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/05/2016] [Accepted: 09/14/2016] [Indexed: 02/08/2023]
Abstract
Glutamate-mediated excitotoxicity involving N-methyl-d-aspartate (NMDA) receptors has been recognized as a final common outcome in pathological conditions involving death of retinal ganglion cells (RGCs). Overstimulation of NMDA receptors results in influx of calcium (Ca) and sodium (Na) ions and efflux of potassium (K). NMDA receptors are blocked by magnesium (Mg). Such changes due to NMDA overstimulation are also associated with not only the altered levels of minerals but also that of trace elements and redox status. Both the decreased and elevated levels of trace elements such as iron (Fe), zinc (Zn), copper (Cu) affect NMDA receptor excitability and redox status. Manganese (Mn), and selenium (Se) are also part of antioxidant defense mechanisms in retina. Additionally endogenous substances such as taurine also affect NMDA receptor activity and retinal redox status. Therefore, the aim of this study was to evaluate the effect of Mg acetyltaurate (MgAT) on the retinal mineral and trace element concentration, oxidative stress, retinal morphology and retinal cell apoptosis in rats after-NMDA exposure. One group of Sprague Dawley rats received intravitreal injection of vehicle while 4 other groups similarly received NMDA (160nmolL-1). Among the NMDA injected groups, 3 groups also received MgAT (320nmolL-1) as pre-treatment, co-treatment or post-treatment. Seven days after intravitreal injection, rats were sacrificed, eyes were enucleated and retinae were isolated for estimation of mineral (Ca, Na, K, Mg) and trace element (Mn, Cu, Fe, Se, Zn) concentration using Inductively Coupled Plasma (DRC ICP-MS) techniques (NexION 300D), retinal oxidative stress using Elisa, retinal morphology using H&E staining and retinal cell apoptosis using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Intravitreal NMDA injection resulted in increased concentration of Ca (4.6 times, p<0.0001), Mg (1.5 times, p<0.01), Na (3 times, p<0.0001) and K (2.3 times, p<0.0001) compared to vehicle injected group. This was accompanied with significant increase of Ca/Mg and Na/K ratios, 3 and 1.27 times respectively, compared to control group. The trace elements such as Cu, Fe and Zn also showed a significant increase amounting to 3.3 (p<0.001), 2.3 (p<0.0001) and 3 (p<0.0001) times respectively compared to control group. Se was increased by 60% (p<0.005). Pre-treatment with MgAT abolished effect of NMDA on minerals and trace elements more effectively than co- and post-treatment. Similar observations were made for retinal oxidative stress, retinal morphology and retinal cell apoptosis. In conclusion, current study demonstrated the protective effect of MgAT against NMDA-induced oxidative stress and retinal cell apoptosis. This effect of MgAT was associated with restoration of retinal concentrations of minerals and trace elements. Further studies are warranted to explore the precise molecular targets of MgAT. Nevertheless, MgAT seems a potential candidate in the management of diseases involving NMDA-induced excitotoxicity.
Collapse
Affiliation(s)
- Azliana Jusnida Ahmad Jafri
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Natasha Najwa Nor Arfuzir
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Lidawani Lambuk
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Igor Iezhitsa
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia; Volgograd State Medical University, Research Institute of Pharmacology, Volgograd, Russia.
| | - Renu Agarwal
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Puneet Agarwal
- International Medical University, IMU Clinical School, Seremban, Malaysia
| | - Norhafiza Razali
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Anna Krasilnikova
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Maria Kharitonova
- Volgograd State Medical University, Research Institute of Pharmacology, Volgograd, Russia; Institute of Pharmacy, Department of Pharmacology and Toxicology, University of Innsbruck, Center for Chemistry and Biomedicine, Innrain 80 - 82/III, A-6020, Innsbruck, Austria
| | - Vasily Demidov
- Russian Society of Trace Elements in Medicine, 46 Zemlyanoy Val str., Moscow, 105064, Russia
| | - Evgeny Serebryansky
- Russian Society of Trace Elements in Medicine, 46 Zemlyanoy Val str., Moscow, 105064, Russia
| | - Anatoly Skalny
- Russian Society of Trace Elements in Medicine, 46 Zemlyanoy Val str., Moscow, 105064, Russia; Peoples' Friendship University of Russia, Moscow, Russia; All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| | - Alexander Spasov
- Volgograd State Medical University, Research Institute of Pharmacology, Volgograd, Russia
| | - Ahmad Pauzi Md Yusof
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Nafeeza Mohd Ismail
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| |
Collapse
|
19
|
Protective effect of magnesium acetyltaurate against endothelin-induced retinal and optic nerve injury. Neuroscience 2016; 325:153-64. [PMID: 27012609 DOI: 10.1016/j.neuroscience.2016.03.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/27/2022]
Abstract
Vascular dysregulation has long been recognized as an important pathophysiological factor underlying the development of glaucomatous neuropathy. Endothelin-1 (ET1) has been shown to be a key player due to its potent vasoconstrictive properties that result in retinal ischemia and oxidative stress leading to retinal ganglion cell (RGC) apoptosis and optic nerve (ON) damage. In this study we investigated the protective effects of magnesium acetyltaurate (MgAT) against retinal cell apoptosis and ON damage. MgAT was administered intravitreally prior to, along with or after administration of ET1. Seven days post-injection, animals were euthanized and retinae were subjected to morphometric analysis, TUNEL and caspase-3 staining. ON sections were stained with toluidine blue and were graded for neurodegenerative effects. Oxidative stress was also estimated in isolated retinae. Pre-treatment with MgAT significantly lowered ET1-induced retinal cell apoptosis as measured by retinal morphometry and TUNEL staining. This group of animals also showed significantly lesser caspase-3 activation and significantly reduced retinal oxidative stress compared to the animals that received intravitreal injection of only ET1. Additionally, the axonal degeneration in ON was markedly reduced in MgAT pretreated animals. The animals that received MgAT co- or post-treatment with ET1 also showed improvement in all parameters; however, the effects were not as significant as observed in MgAT pretreated animals. The current study showed that the intravitreal pre-treatment with MgAT reduces caspase-3 activation and prevents retinal cell apoptosis and axon loss in ON induced by ET1. This protective effect of ET1 was associated with reduced retinal oxidative stress.
Collapse
|
20
|
Rapid Determination of Free Amino Acids, Nucleosides, and Nucleobases in Commercial Clam Species Harvested at Different Seasons in Jiangsu, China, Using UFLC-MS/MS. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0331-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Schaffer SW, Ramila KC, Jong CJ, Shetewy A, Shimada K, Ito T, Azuma J, Cioffi E. Does taurine prolong lifespan by improving heart function? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:555-70. [PMID: 25833527 DOI: 10.1007/978-3-319-15126-7_45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Stephen W Schaffer
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA,
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Blindness represents an increasing global problem with significant social and economic impact upon affected patients and society as a whole. In Europe, approximately one in 30 individuals experience sight loss and 75% of those are unemployed, a social burden which is very likely to increase as the population of Europe ages. Diseases affecting the retina account for approximately 26% of blindness globally and 70% of blindness in the United Kingdom. To date, there are no treatments to restore lost retinal cells and improve visual function, highlighting an urgent need for new therapeutic approaches. A pioneering breakthrough has demonstrated the ability to generate synthetic retina from pluripotent stem cells under laboratory conditions, a finding with immense relevance for basic research, in vitro disease modeling, drug discovery, and cell replacement therapies. This review summarizes the current achievements in pluripotent stem cell differentiation toward retinal cells and highlights the steps that need to be completed in order to generate human synthetic retinae with high efficiency and reproducibly from patient-specific pluripotent stem cells.
Collapse
|
23
|
Froger N, Moutsimilli L, Cadetti L, Jammoul F, Wang QP, Fan Y, Gaucher D, Rosolen SG, Neveux N, Cynober L, Sahel JA, Picaud S. Taurine: the comeback of a neutraceutical in the prevention of retinal degenerations. Prog Retin Eye Res 2014; 41:44-63. [PMID: 24721186 DOI: 10.1016/j.preteyeres.2014.03.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 12/21/2022]
Abstract
Taurine is the most abundant amino acid in the retina. In the 1970s, it was thought to be involved in retinal diseases with photoreceptor degeneration, because cats on a taurine-free diet presented photoreceptor loss. However, with the exception of its introduction into baby milk and parenteral nutrition, taurine has not yet been incorporated into any commercial treatment with the aim of slowing photoreceptor degeneration. Our recent discovery that taurine depletion is involved in the retinal toxicity of the antiepileptic drug vigabatrin has returned taurine to the limelight in the field of neuroprotection. However, although the retinal toxicity of vigabatrin principally involves a deleterious effect on photoreceptors, retinal ganglion cells (RGCs) are also affected. These findings led us to investigate the possible role of taurine depletion in retinal diseases with RGC degeneration, such as glaucoma and diabetic retinopathy. The major antioxidant properties of taurine may influence disease processes. In addition, the efficacy of taurine is dependent on its uptake into retinal cells, microvascular endothelial cells and the retinal pigment epithelium. Disturbances of retinal vascular perfusion in these retinal diseases may therefore affect the retinal uptake of taurine, resulting in local depletion. The low plasma taurine concentrations observed in diabetic patients may further enhance such local decreases in taurine concentration. We here review the evidence for a role of taurine in retinal ganglion cell survival and studies suggesting that this compound may be involved in the pathophysiology of glaucoma or diabetic retinopathy. Along with other antioxidant molecules, taurine should therefore be seriously reconsidered as a potential treatment for such retinal diseases.
Collapse
Affiliation(s)
- Nicolas Froger
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France.
| | - Larissa Moutsimilli
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France
| | - Lucia Cadetti
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France
| | - Firas Jammoul
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France
| | - Qing-Ping Wang
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France
| | - Yichao Fan
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France
| | - David Gaucher
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France; Nouvel hôpital civil, hôpitaux universitaires de Strasbourg and Laboratoire de Bactériologie (EA-7290), Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, France
| | - Serge G Rosolen
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France
| | - Nathalie Neveux
- Department of Nutrition, Faculty of Pharmacy, Paris Descartes University, Paris, France; Clinical Chemistry, Hôtel-Dieu-Cochin Hospitals, AP-HP, Paris, France
| | - Luc Cynober
- Department of Nutrition, Faculty of Pharmacy, Paris Descartes University, Paris, France; Clinical Chemistry, Hôtel-Dieu-Cochin Hospitals, AP-HP, Paris, France
| | - José-Alain Sahel
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France; Institute of Ophthalmology, University College of London, UK; Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; French Academy of Sciences, Paris, France
| | - Serge Picaud
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France; Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.
| |
Collapse
|
24
|
Chiang STH, Yeh SM, Chen YC, Lin SL, Tseng JK. Investigation of the Protective Effects of Taurine against Alloxan-Induced Diabetic Retinal Changes via Electroretinogram and Retinal Histology with New Zealand White Rabbits. Int J Endocrinol 2014; 2014:631549. [PMID: 25298779 PMCID: PMC4178915 DOI: 10.1155/2014/631549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/31/2014] [Accepted: 09/04/2014] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to investigate the protective role of orally administered taurine against diabetic retinal changes via electroretinogram (ERG) and retinal histology on rabbits. Rabbits were randomly assigned into groups: Group I (vehicle administration only); Group II (diabetes: induced by 100 mg/kg alloxan injection); Group III (diabetes and fed with 200 mg/kg taurine); and Group IV (diabetes and fed with 400 mg/kg taurine). The body weight and blood glucose levels of the rabbits were monitored weekly. The ERG was measured on weeks 5 and 15. Retinal histology was analyzed in the end of the experiment. Results revealed that a taurine supplement significantly ameliorates the alloxan-induced hyperglycemia and protects the retina from electrophysiological changes. Group II showed a significant (P < 0.05) change in the mean scotopic b-wave amplitude when compared to that of Group I, whereas the diabetic rabbits treated with taurine (Group III and IV) were analogous to Group I. Histologically, the amount of Bipolar and Müller cells showed no difference (P > 0.05) between all groups and when compared with those of Group I. Our study provides solid evidences that taurine possesses an antidiabetic activity, reduced loss of body weight, and less electrophysiological changes of the diabetic retina.
Collapse
Affiliation(s)
- Samuel Tung-Hsing Chiang
- Department of Optometry and Vision Science, Faculty of Medical and Health Science, The University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Shang-Min Yeh
- School of Optometry, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Section 3, Keelung Road, Taipei 11054, Taiwan
| | - Shiun-Long Lin
- Department of Veterinary Medicine, National Chung Hsing University, No. 250, Kuo-Kuang Road, Taichung 40227, Taiwan
| | - Jung-Kai Tseng
- School of Optometry, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
- *Jung-Kai Tseng:
| |
Collapse
|
25
|
Nivison-Smith L, Chua J, Tan SS, Kalloniatis M. Amino acid signatures in the developing mouse retina. Int J Dev Neurosci 2013; 33:62-80. [PMID: 24368173 DOI: 10.1016/j.ijdevneu.2013.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/13/2013] [Indexed: 11/29/2022] Open
Abstract
This study characterizes the developmental patterns of seven key amino acids: glutamate, γ-amino-butyric acid (GABA), glycine, glutamine, aspartate, alanine and taurine in the mouse retina. We analyze amino acids in specific bipolar, amacrine and ganglion cell sub-populations (i.e. GABAergic vs. glycinergic amacrine cells) and anatomically distinct regions of photoreceptors and Müller cells (i.e. cell bodies vs. endfeet) by extracting data from previously described pattern recognition analysis. Pattern recognition statistically classifies all cells in the retina based on their neurochemical profile and surpasses the previous limitations of anatomical and morphological identification of cells in the immature retina. We found that the GABA and glycine cellular content reached adult-like levels in most neurons before glutamate. The metabolic amino acids glutamine, aspartate and alanine also reached maturity in most retinal cells before eye opening. When the overall amino acid profiles were considered for each cell group, ganglion cells and GABAergic amacrine cells matured first, followed by glycinergic amacrine cells and finally bipolar cells. Photoreceptor cell bodies reached adult-like amino acid profiles at P7 whilst Müller cells acquired typical amino acid profiles in their cell bodies at P7 and in their endfeet by P14. We further compared the amino acid profiles of the C57Bl/6J mouse with the transgenic X-inactivation mouse carrying the lacZ gene on the X chromosome and validated this animal model for the study of normal retinal development. This study provides valuable insight into normal retinal neurochemical maturation and metabolism and benchmark amino acid values for comparison with retinal disease, particularly those which occur during development.
Collapse
Affiliation(s)
- Lisa Nivison-Smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia
| | - Jacqueline Chua
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - Seong-Seng Tan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Michael Kalloniatis
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia; Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; Centre for Eye Health, Sydney, Australia.
| |
Collapse
|
26
|
Lombardini JB, Young RS, Props CL. Taurine depletion increases phosphorylation of a specific protein in the rat retina. Amino Acids 2013; 10:153-65. [PMID: 24178477 DOI: 10.1007/bf00806588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/1994] [Accepted: 08/22/1995] [Indexed: 10/26/2022]
Abstract
Partial depletion of the taurine content in the rat retina was accomplished for up to 22 weeks by introduction of 1.5% guanidinoethanesulfonate (GES) in the drinking water. Taurine levels decreased by 50% after 1 week of GES treatment and by 80% at 16 weeks. Replacement of GES by taurine to the GES-treated rats from week 16 to 22 returned their taurine content to the control value. Whereas addition of taurine (1.5%) to the drinking water of control rats from week 16 to 22 elevated the retinal taurine content to 118% of the control value, the administration of untreated water to GES-treated animals for the 16 to 22 week time period increased the retinal taurine content to only 76% of the control value.The amplitude of the electroretinogram (ERG) b-wave was decreased by 60% after GES-treatment for 16 weeks and maintained this reduced level for up to 22 weeks. Administration of taurine in the drinking water from week 16 to 22 returned the b-wave amplitude to a range not statistically different from the control values whereas the administration of untreated water produced less improvement.After 6 weeks of GES treatment when the retinal taurine content was reduced by 70% and the amplitude of the b-wave was reduced by 50% (extrapolated from Figure 1), phosphorylation of a specific protein with an approximate molecular weight of 20K was increased by 94%. The increased phosphorylation of the ~20K protein observed after GES treatment was reversed when the animals were treated with taurine (1 1/2%) in the drinking water for an additional 6 weeks. There was no change in the phosphorylation of the ~20K protein when animals were treated with taurine for 6 weeks. The data obtained support the theory that taurine may have a regulatory effect on retinal protein phosphorylation.
Collapse
Affiliation(s)
- J B Lombardini
- Departments of Pharmacology, Texas Tech University Health Sciences Center, 79430, Lubbock, TX, USA
| | | | | |
Collapse
|
27
|
Gonzalez-Cordero A, West EL, Pearson RA, Duran Y, Carvalho LS, Chu CJ, Naeem A, Blackford SJI, Georgiadis A, Lakowski J, Hubank M, Smith AJ, Bainbridge JWB, Sowden JC, Ali RR. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nat Biotechnol 2013; 31:741-7. [PMID: 23873086 PMCID: PMC3826328 DOI: 10.1038/nbt.2643] [Citation(s) in RCA: 281] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/22/2013] [Indexed: 11/09/2022]
Abstract
Irreversible blindness caused by loss of photoreceptors may be amenable to cell therapy. We previously demonstrated retinal repair and restoration of vision through transplantation of photoreceptor precursors obtained from postnatal retinas into visually impaired adult mice. Considerable progress has been made in differentiating embryonic stem cells (ESCs) in vitro toward photoreceptor lineages. However, the capability of ESC-derived photoreceptors to integrate after transplantation has not been demonstrated unequivocally. Here, to isolate photoreceptor precursors fit for transplantation, we adapted a recently reported three-dimensional (3D) differentiation protocol that generates neuroretina from mouse ESCs. We show that rod precursors derived by this protocol and selected via a GFP reporter under the control of a Rhodopsin promoter integrate within degenerate retinas of adult mice and mature into outer segment-bearing photoreceptors. Notably, ESC-derived precursors at a developmental stage similar to postnatal days 4-8 integrate more efficiently compared with cells at other stages. This study shows conclusively that ESCs can provide a source of photoreceptors for retinal cell transplantation.
Collapse
Affiliation(s)
- Anai Gonzalez-Cordero
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Emma L. West
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Rachael A. Pearson
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Yanai Duran
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Livia S. Carvalho
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Colin J. Chu
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Arifa Naeem
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Samuel J. I. Blackford
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Anastasios Georgiadis
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Jorn Lakowski
- Developmental Biology Unit, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Mike Hubank
- UCL Genomics, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Alexander J. Smith
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - James W. B. Bainbridge
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Jane C. Sowden
- Developmental Biology Unit, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Robin R. Ali
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
- Molecular Immunology Unit, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH UK
| |
Collapse
|
28
|
Gonzalez-Cordero A, West EL, Pearson RA, Duran Y, Carvalho LS, Chu CJ, Naeem A, Blackford SJI, Georgiadis A, Lakowski J, Hubank M, Smith AJ, Bainbridge JWB, Sowden JC, Ali RR. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nat Biotechnol 2013. [PMID: 23873086 DOI: 10.1038/nbt.2643]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Irreversible blindness caused by loss of photoreceptors may be amenable to cell therapy. We previously demonstrated retinal repair and restoration of vision through transplantation of photoreceptor precursors obtained from postnatal retinas into visually impaired adult mice. Considerable progress has been made in differentiating embryonic stem cells (ESCs) in vitro toward photoreceptor lineages. However, the capability of ESC-derived photoreceptors to integrate after transplantation has not been demonstrated unequivocally. Here, to isolate photoreceptor precursors fit for transplantation, we adapted a recently reported three-dimensional (3D) differentiation protocol that generates neuroretina from mouse ESCs. We show that rod precursors derived by this protocol and selected via a GFP reporter under the control of a Rhodopsin promoter integrate within degenerate retinas of adult mice and mature into outer segment-bearing photoreceptors. Notably, ESC-derived precursors at a developmental stage similar to postnatal days 4-8 integrate more efficiently compared with cells at other stages. This study shows conclusively that ESCs can provide a source of photoreceptors for retinal cell transplantation.
Collapse
Affiliation(s)
- Anai Gonzalez-Cordero
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Emma L West
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Rachael A Pearson
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Yanai Duran
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Livia S Carvalho
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Colin J Chu
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Arifa Naeem
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Samuel J I Blackford
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Anastasios Georgiadis
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Jorn Lakowski
- Developmental Biology Unit, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Mike Hubank
- UCL Genomics, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Alexander J Smith
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - James W B Bainbridge
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Jane C Sowden
- Developmental Biology Unit, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Robin R Ali
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK.,Molecular Immunology Unit, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH UK
| |
Collapse
|
29
|
Gonzalez-Cordero A, West EL, Pearson RA, Duran Y, Carvalho LS, Chu CJ, Naeem A, Blackford SJI, Georgiadis A, Lakowski J, Hubank M, Smith AJ, Bainbridge JWB, Sowden JC, Ali RR. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nat Biotechnol 2013. [PMID: 23873086 DOI: 10.1038/nbt.2643].] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Irreversible blindness caused by loss of photoreceptors may be amenable to cell therapy. We previously demonstrated retinal repair and restoration of vision through transplantation of photoreceptor precursors obtained from postnatal retinas into visually impaired adult mice. Considerable progress has been made in differentiating embryonic stem cells (ESCs) in vitro toward photoreceptor lineages. However, the capability of ESC-derived photoreceptors to integrate after transplantation has not been demonstrated unequivocally. Here, to isolate photoreceptor precursors fit for transplantation, we adapted a recently reported three-dimensional (3D) differentiation protocol that generates neuroretina from mouse ESCs. We show that rod precursors derived by this protocol and selected via a GFP reporter under the control of a Rhodopsin promoter integrate within degenerate retinas of adult mice and mature into outer segment-bearing photoreceptors. Notably, ESC-derived precursors at a developmental stage similar to postnatal days 4-8 integrate more efficiently compared with cells at other stages. This study shows conclusively that ESCs can provide a source of photoreceptors for retinal cell transplantation.
Collapse
Affiliation(s)
- Anai Gonzalez-Cordero
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Emma L West
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Rachael A Pearson
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Yanai Duran
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Livia S Carvalho
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Colin J Chu
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Arifa Naeem
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Samuel J I Blackford
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Anastasios Georgiadis
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Jorn Lakowski
- Developmental Biology Unit, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Mike Hubank
- UCL Genomics, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Alexander J Smith
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - James W B Bainbridge
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Jane C Sowden
- Developmental Biology Unit, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Robin R Ali
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK.,Molecular Immunology Unit, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH UK
| |
Collapse
|
30
|
The modulatory role of taurine in retinal ganglion cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 775:53-68. [PMID: 23392924 DOI: 10.1007/978-1-4614-6130-2_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Taurine (2-aminoethylsuphonic acid) is present in nearly all animal tissues, and is the most abundant free amino acid in muscle, heart, CNS, and retina. Although it is known to be a major cytoprotectant and essential for normal retinal development, its role in retinal neurotransmission and modulation is not well understood. We investigated the response of taurine in retinal ganglion cells, and its effect on synaptic transmission between ganglion cells and their presynaptic neurons. We find that taurine-elicited currents in ganglion cells could be fully blocked by both strychnine and SR95531, glycine and GABA(A) receptor antagonists, respectively. This suggests that taurine-activated receptors might share the antagonists with GABA and glycine receptors. The effect of taurine at micromolar concentrations can effectively suppress spontaneous vesicle release from the presynaptic neurons, but had limited effects on light-evoked synaptic signals in ganglion cells. We also describe a metabotropic effect of taurine in the suppression of light-evoked response in ganglion cells. Clearly, taurine acts in multiple ways to modulate synaptic signals in retinal output neurons, ganglion cells.
Collapse
|
31
|
Nivison-Smith L, Collin SP, Zhu Y, Ready S, Acosta ML, Hunt DM, Potter IC, Kalloniatis M. Retinal amino acid neurochemistry of the southern hemisphere lamprey, Geotria australis. PLoS One 2013; 8:e58406. [PMID: 23516473 PMCID: PMC3596384 DOI: 10.1371/journal.pone.0058406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 02/04/2013] [Indexed: 01/01/2023] Open
Abstract
Lampreys are one of the two surviving groups of the agnathan (jawless) stages in vertebrate evolution and are thus ideal candidates for elucidating the evolution of visual systems. This study investigated the retinal amino acid neurochemistry of the southern hemisphere lamprey Geotria australis during the downstream migration of the young, recently-metamorphosed juveniles to the sea and during the upstream migration of the fully-grown and sexually-maturing adults to their spawning areas. Glutamate and taurine were distributed throughout the retina, whilst GABA and glycine were confined to neurons of the inner retina matching patterns seen in most other vertebrates. Glutamine and aspartate immunoreactivity was closely matched to Müller cell morphology. Between the migratory phases, few differences were observed in the distribution of major neurotransmitters i.e. glutamate, GABA and glycine, but changes in amino acids associated with retinal metabolism i.e. glutamine and aspartate, were evident. Taurine immunoreactivity was mostly conserved between migrant stages, consistent with its role in primary cell functions such as osmoregulation. Further investigation of glutamate signalling using the probe agmatine (AGB) to map cation channel permeability revealed entry of AGB into photoreceptors and horizontal cells followed by accumulation in inner retinal neurons. Similarities in AGB profiles between upstream and downstream migrant of G. australis confirmed the conservation of glutamate neurotransmission. Finally, calcium binding proteins, calbindin and calretinin were localized to the inner retina whilst recoverin was localized to photoreceptors. Overall, conservation of major amino acid neurotransmitters and calcium-associated proteins in the lamprey retina confirms these elements as essential features of the vertebrate visual system. On the other hand, metabolic elements of the retina such as neurotransmitter precursor amino acids and Müller cells are more sensitive to environmental changes associated with migration.
Collapse
Affiliation(s)
- Lisa Nivison-Smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Shaun P. Collin
- School of Animal Biology and the University of Western Australia Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Yuan Zhu
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Sarah Ready
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - Monica L. Acosta
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - David M. Hunt
- School of Animal Biology and the University of Western Australia Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia
| | - Ian C. Potter
- School of Biological Sciences and Biotechnology, Murdoch University, Murdoch, Western Australia, Australia
| | - Michael Kalloniatis
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
32
|
Heim MK, Gidal BE. Vigabatrin-associated retinal damage: potential biochemical mechanisms. Acta Neurol Scand 2012; 126:219-28. [PMID: 22632110 DOI: 10.1111/j.1600-0404.2012.01684.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2012] [Indexed: 12/13/2022]
Abstract
Vigabatrin (VGB), an irreversible inhibitor of gamma-aminobutyric acid (GABA) transaminase, is approved as adjunct treatment of refractory partial seizures as well as infantile spasms. Although VGB has been proven to be effective, its use is limited by the risk of retinopathy and associated peripheral visual field defects. This review describes and analyzes current literature related to potential pathophysiologic mechanisms underlying VGB-mediated cellular toxicity. Animal data suggest that GABA mediates neural excitotoxicity. The amino acid taurine is concentrated in retinal cells, and deficiency of this amino acid may be involved in VGB-mediated retinal degeneration and possible phototoxicity.
Collapse
Affiliation(s)
- M. K. Heim
- School of Pharmacy; University of Wisconsin - Madison; Madison; WI; USA
| | - B. E. Gidal
- School of Pharmacy & Department of Neurology; University of Wisconsin - Madison; Madison; WI; USA
| |
Collapse
|
33
|
Abel R. Age-Related Macular Degeneration. Integr Med (Encinitas) 2012. [DOI: 10.1016/b978-1-4377-1793-8.00067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Zhang N, Zhang HS, Wang H. Separation of free amino acids and catecholamines in human plasma and rabbit vitreous samples using a new fluorogenic reagent 3-(4-bromobenzoyl)-2-quinolinecarboxaldehyde with CE-LIF detection. Electrophoresis 2009; 30:2258-65. [DOI: 10.1002/elps.200800667] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Altered amino acid homeostasis in subjects affected by fibromyalgia. Clin Biochem 2009; 42:1064-70. [DOI: 10.1016/j.clinbiochem.2009.02.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/27/2009] [Accepted: 02/28/2009] [Indexed: 11/21/2022]
|
36
|
Jones SM, Palmer MJ. Activation of the tonic GABAC receptor current in retinal bipolar cell terminals by nonvesicular GABA release. J Neurophysiol 2009; 102:691-9. [PMID: 19494193 DOI: 10.1152/jn.00285.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Within the second synaptic layer of the retina, bipolar cell (BC) output to ganglion cells is regulated by inhibitory input to BC axon terminals. GABA(A) receptors (GABA(A)Rs) mediate rapid synaptic currents in BC terminals, whereas GABA(C) receptors (GABA(C)Rs) mediate slow evoked currents and a tonic current, which is strongly regulated by GAT-1 GABA transporters. We have used voltage-clamp recordings from BC terminals in goldfish retinal slices to determine the source of GABA for activation of these currents. Inhibition of vesicular release with concanamycin A or tetanus toxin significantly inhibited GABA(A)R inhibitory postsynaptic currents and glutamate-evoked GABA(A)R and GABA(C)R currents but did not reduce the tonic GABA(C)R current, which was also not dependent on extracellular Ca(2+). The tonic current was strongly potentiated by inhibition of GABA transaminase, under both normal and Ca(2+)-free conditions, and was activated by exogenous taurine; however inhibition of taurine transport had little effect. The tonic current was unaffected by GAT-2/3 inhibition and was potentiated by GAT-1 inhibition even in the absence of vesicular release, indicating that it is unlikely to be evoked by reversal of GABA transporters or by ambient GABA. In addition, GABA release does not appear to occur via hemichannels or P2X(7) receptors. BC terminals therefore exhibit two forms of GABA(C)R-mediated inhibition, activated by vesicular and by nonvesicular GABA release, which are likely to have distinct functions in visual signal processing. The tonic GABA(C)R current in BC terminals exhibits similar properties to tonic GABA(A)R and glutamate receptor currents in the brain.
Collapse
Affiliation(s)
- S M Jones
- Neuroscience Group, Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | | |
Collapse
|
37
|
Localization of Taurine Transporter, Taurine, and Zinc in Goldfish Retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 643:233-42. [DOI: 10.1007/978-0-387-75681-3_24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
|
38
|
Pupure J, Isajevs S, Gordjushina V, Taivans I, Rumaks J, Svirskis S, Kratovska A, Dzirkale Z, Pilipenko J, Duburs G, Klusa V. Distinct Influence of Atypical 1,4-Dihydropyridine Compounds in Azidothymidine-Induced Neuro- and Cardiotoxicity in MiceEx Vivo. Basic Clin Pharmacol Toxicol 2008; 103:401-6. [DOI: 10.1111/j.1742-7843.2008.00221.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
39
|
Modulation of human GABAρ1 receptors by taurine. Neurosci Res 2008; 61:302-8. [DOI: 10.1016/j.neures.2008.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 03/25/2008] [Accepted: 03/26/2008] [Indexed: 11/21/2022]
|
40
|
Martins RAP, Pearson RA. Control of cell proliferation by neurotransmitters in the developing vertebrate retina. Brain Res 2007; 1192:37-60. [PMID: 17597590 DOI: 10.1016/j.brainres.2007.04.076] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/04/2007] [Accepted: 04/20/2007] [Indexed: 01/24/2023]
Abstract
In the developing vertebrate retina, precise coordination of retinal progenitor cell proliferation and cell-cycle exit is essential for the formation of a functionally mature retina. Unregulated or disrupted cell proliferation may lead to dysplasia, retinal degeneration or retinoblastoma. Both cell-intrinsic and -extrinsic factors regulate the proliferation of progenitor cells during CNS development. There is now growing evidence that in the developing vertebrate retina, both slow and fast neurotransmitter systems modulate the proliferation of retinal progenitor cells. Classic neurotransmitters, such as GABA (gamma-amino butyric acid), glycine, glutamate, ACh (acetylcholine) and ATP (adenosine triphosphate) are released, via vesicular or non-vesicular mechanisms, into the immature retinal environment. Furthermore, these neurotransmitters signal through functional receptors even before synapses are formed. Recent evidence indicates that the activation of purinergic and muscarinic receptors may regulate the cell-cycle machinery and consequently the expansion of the retinal progenitor pool. Interestingly, GABA and glutamate appear to have opposing roles, inducing retinal progenitor cell-cycle exit. In this review, we present recent findings that begin to elucidate the roles of neurotransmitters as regulators of progenitor cell proliferation at early stages of retinal development. These studies also raise several new questions, including how these neurotransmitters regulate specific cell-cycle pathways and the mechanisms by which retinal progenitor cells integrate the signals from neurotransmitters and other exogenous factors during vertebrate retina development.
Collapse
Affiliation(s)
- Rodrigo A P Martins
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, MS323, Memphis, TN 38105, USA.
| | | |
Collapse
|
41
|
Warskulat U, Borsch E, Reinehr R, Heller-Stilb B, Roth C, Witt M, Häussinger D. Taurine deficiency and apoptosis: findings from the taurine transporter knockout mouse. Arch Biochem Biophys 2007; 462:202-9. [PMID: 17459327 DOI: 10.1016/j.abb.2007.03.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 03/15/2007] [Accepted: 03/21/2007] [Indexed: 01/09/2023]
Abstract
Apoptosis is characterized by cell shrinkage, nuclear condensation, DNA-fragmentation and apoptotic body formation. Compatible organic osmolytes, e.g. taurine, modulate the cellular response to anisotonicity and may protect from apoptosis. Taurine transporter knockout mice (taut-/- mice) show strongly decreased taurine levels in a variety of tissues. They develop clinically important age-dependent diseases and some of them are characterized by apoptosis. Increased photoreceptor apoptosis leads to blindness of taut-/- mice at an early age. The taurine transporter may not be essential for the differentiation of photoreceptor cells, but many mature cells do not survive without an intact taurine transporter. The olfactory epithelium of taut-/- mice also exhibits structural and functional abnormalities. When compared with wild-types, taut-/- mice have a significantly higher proliferative activity of immature olfactory receptor neurons and an increased number of apoptotic cells. This is accompanied by electrophysiological findings indicating a reduced olfactory sensitivity. Furthermore, taut-/- and taut+/- mice develop moderate unspecific hepatitis and liver fibrosis beyond 1 year of age where hepatocyte apoptosis and activation of the CD95 system are pronounced.
Collapse
Affiliation(s)
- Ulrich Warskulat
- Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University Düsseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abel R. Age-Related Macular Degeneration. Integr Med (Encinitas) 2007. [DOI: 10.1016/b978-1-4160-2954-0.50088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Warskulat U, Heller-Stilb B, Oermann E, Zilles K, Haas H, Lang F, Häussinger D. Phenotype of the Taurine Transporter Knockout Mouse. Methods Enzymol 2007; 428:439-58. [PMID: 17875433 DOI: 10.1016/s0076-6879(07)28025-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter reports present knowledge on the properties of mice with disrupted gene coding for the taurine transporter (taut-/- mice). Study of those mice unraveled some of the roles of taurine and its membrane transport for the development and maintenance of normal organ functions and morphology. When compared with wild-type controls, taut-/- mice have decreased taurine levels in skeletal and heart muscle by about 98%, in brain, kidney, plasma, and retina by 80 to 90%, and in liver by about 70%. taut-/- mice exhibit a lower body mass as well as a strongly reduced exercise capacity compared with taut+/- and wild-type mice. Furthermore, taut-/- mice show a variety of pathological features, for example, subtle derangement of renal osmoregulation, changes in neuroreceptor expression, and loss of long-term potentiation in the striatum, and they develop clinically relevant age-dependent disorders, for example, visual, auditory, and olfactory dysfunctions, unspecific hepatitis, and liver fibrosis. Taurine-deficient animal models such as acutely dietary-manipulated foxes and cats, pharmacologically induced taurine-deficient rats, and taurine transporter knockout mouse are powerful tools allowing identification of the mechanisms and complexities of diseases mediated by impaired taurine transport and taurine depletion (Chapman et al., 1993; Heller-Stilb et al., 2002; Huxtable, 1992; Lake, 1993; Moise et al., 1991; Novotny et al., 1991; Pion et al., 1987; Timbrell et al., 1995; Warskulat et al., 2004, 2006b). Taurine, which is the most abundant amino acid in many tissues, is normally found in intracellular concentrations of 10 to 70 mmol/kg in mammalian heart, brain, skeletal muscle, liver, and retina (Chapman et al., 1993; Green et al., 1991; Huxable, 1992; Timbrell et al., 1995). These high taurine levels are maintained by an ubiquitous expression of Na(+)-dependent taurine transporter (TAUT) in the plasma membrane (Burg, 1995; Kwon and Handler, 1995; Lang et al., 1998; Liu et al., 1992; Ramamoorthy et al., 1994; Schloss et al., 1994; Smith et al., 1992; Uchida et al., 1992; Vinnakota et al., 1997; Yancey et al., 1975). Taurine is not incorporated into proteins. It is involved in cell volume regulation, neuromodulation, antioxidant defense, protein stabilization, stress responses, and via formation of taurine-chloramine in immunomodulation (Chapman et al., 1993; Green et al., 1991; Huxtable, 1992; Timbrell et al., 1995). On the basis of its functions, taurine may protect cells against various types of injury (Chapman et al., 1993; Green et al., 1991; Huxtable, 1992; Kurz et al., 1998; Park et al., 1995; Stapleton et al., 1998; Timbrell et al., 1995; Welch and Brown, 1996; Wettstein and Häussinger, 1997). In order to examine the multiple taurine functions, murine models have several intrinsic advantages for in vivo research compared to other animal models, including lower cost, maintenance, and rapid reproduction rate. Further, experimental reagents for cellular and molecular studies are widely available for the mouse. In particular, mice can be easily genetically manipulated by making transgene and knockout mice. This chapter focuses on the phenotype of the TAUT-deficient murine model (taut-/-; Heller-Stilb et al., 2002), which may help researchers elucidate the diverse roles of taurine in development and maintenance of normal organ functions and morphology.
Collapse
Affiliation(s)
- Ulrich Warskulat
- Clinic for Gastroenterology, Hepatology and Infectiology, University of Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Petrosian AM, Poghosyan LA, Haroutounian JE. Study of taurine and tauret content in the compound eye of locust with light and dark adaptation. Amino Acids 2006; 30:273-8. [PMID: 16601926 DOI: 10.1007/s00726-006-0296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 02/09/2006] [Indexed: 10/24/2022]
Abstract
Taurine as well as tauret (retinyliden taurine) levels were measured in locust Locusta migratoria compound eyes. HPLC measurements revealed relatively low taurine levels (1.9 +/- 0.16 mM) in dark-adapted eyes. Glutamate, aspartate and glycine levels were 2.0 +/- 0.2, 2.7 +/- 0.4 and 3.0 +/- 0.37 mM, respectively, while GABA was present only in trace amounts. After about 4 h of light adaptation at 1500-2000 lx, amino acid levels in the compound eye were as follows: taurine, 1.8 +/- 0.17 mM; glutamate, no change at 2.1 +/- 0.2 mM; aspartate sharply increased to 4.7 +/- 0.7 mM; glycine slightly decreased to 2.8 +/- 0.3 mM; and GABA trace levels. In the compound eye of locust Locusta migratoria, the existence of endogenous tauret in micro-molar range was established. In the dark, levels were several times higher compared with compound eye after light adaptation 1500 lx for 3 h, as estimated by TLC in combination with spectral measurements. Existence of tauret in compound eye is of special interest because in the compound eye, rhodopsin regeneration is based on photoregeneration.
Collapse
Affiliation(s)
- A M Petrosian
- BuniatianInstitute of Biochemistry of the National Academy of Sciences of Armenia, Yerevan, Armenia.
| | | | | |
Collapse
|
45
|
Balse E, Tessier LH, Forster V, Roux MJ, Sahel JA, Picaud S. Glycine receptors in a population of adult mammalian cones. J Physiol 2006; 571:391-401. [PMID: 16396929 PMCID: PMC1796802 DOI: 10.1113/jphysiol.2005.100891] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glycinergic interplexiform cells provide a feedback signal from the inner retina to the outer retina. To determine if cones receive such a signal, glycine was applied on cultured porcine cone photoreceptors recorded with the patch clamp technique. A minor population of cone photoreceptors was found to generate large currents in response to puff application of glycine. These currents reversed close to the calculated equilibrium potential for chloride ions. These glycine-elicited currents were sensitive to strychnine but not to picrotoxin consistent with the expression of alpha-beta-heteromeric glycine receptors. Glycine receptors were also activated by taurine and beta-alanine. The glycine receptor antibody mAb4a labelled a minority of the cone photoreceptors identified by an antibody specific for cone arrestin. Finally, expression of the beta subunit of the glycine receptor was demonstrated by single cell RT-PCR in a similar proportion (approximately 13%) of cone photoreceptors freshly isolated by lectin-panning. The identity of cone photoreceptors was assessed by their specific expression of the cone arrestin mRNA. The population of cone photoreceptors expressing the glycine receptor was not correlated to a specific colour-sensitive subtype as demonstrated by single cell RT-PCR experiments using primers for S opsin, cone arrestin and glycine receptor beta subunit. This glycine receptor expression in a minority of cones defines a new cone population suggesting an unexpected role for glycine in the visual information processing in the outer retina.
Collapse
Affiliation(s)
- E Balse
- Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, INSERM U592, Hôpital Saint-Antoine, Bâtiment Kourilsky, 184, rue du Faubourg Saint-Antoine, 75 571 Paris cedex 12, France
| | | | | | | | | | | |
Collapse
|
46
|
Wu H, Jin Y, Wei J, Jin H, Sha D, Wu JY. Mode of action of taurine as a neuroprotector. Brain Res 2005; 1038:123-31. [PMID: 15757628 DOI: 10.1016/j.brainres.2005.01.058] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 12/23/2004] [Accepted: 01/01/2005] [Indexed: 10/25/2022]
Abstract
Previously, it has been shown that taurine exerts its protective function against glutamate-induced neuronal excitotoxicity through its action in reducing glutamate-induced elevation of intracellular free calcium, [Ca2+]i. Here, we report the mechanism underlying the effect of taurine in reducing [Ca2+]i. We found that taurine inhibited glutamate-induced calcium influx through L-, P/Q-, N-type voltage-gated calcium channels (VGCCs) and NMDA receptor calcium channel. Surprisingly, taurine had no effect on calcium influx through NMDA receptor calcium channel when cultured neurons were treated with NMDA in Mg2+-free medium. Since taurine was found to prevent glutamate-induced membrane depolarization, we propose that taurine protects neurons against glutamate excitotoxicity by preventing glutamate-induced membrane depolarization, probably through its effect in opening of chloride channels and, therefore, preventing the glutamate-induced increase in calcium influx and other downstream events.
Collapse
Affiliation(s)
- Heng Wu
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | | | | | | | | |
Collapse
|
47
|
Bui BV, Vingrys AJ, Wellard JW, Kalloniatis M. Monocarboxylate transport inhibition alters retinal function and cellular amino acid levels. Eur J Neurosci 2004; 20:1525-37. [PMID: 15355319 DOI: 10.1111/j.1460-9568.2004.03601.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We assessed the effect of the in vivo application of monocarboxylate transport inhibitors on retinal function and amino acid immunocytochemistry. We wanted to determine the impact that altered aerobic metabolite availability has on retinal function and the characteristics of amino acid shunting into metabolic pools. Electroretinograms were collected from anaesthetized rats at various times after intravitreal injection of the monocarboxylate transport inhibitors alpha-cyano-4-hydroxycinnamate (4-CIN; 2 micro L, 0.1-10 mm) or p-(dipropylsulphamoyl)benzoic acid (probenecid; 1-10 mm). Changes in retinal function were compared with quantitative amino acid immunocytochemical changes in retinas harvested 20 and 40 min after either 4-CIN or vehicle treatment. The injection of 4-CIN resulted in a dose-dependent reduction of the ON-bipolar cell P2 wave amplitude (20-80%) and delay in its implicit time. The phototransduction sensitivity was mildly reduced whereas the ON-bipolar cell P2 sensitivity was unaffected. Probenecid induced functional changes similar to those observed with 4-CIN. We also mapped the amino acid alterations within specific cell classes induced by 4-CIN application. All neurones displayed a reduced glutamate content averaging 48%; reduced GABA (31%) and glycine (28%) were found within amacrine cells and glutamine was reduced in all cell classes except photoreceptor and Müller cells. All cell classes in the retina demonstrated increases in aspartate (57%), whereas leucine (24%) and ornithine (21%) were only significantly increased in photoreceptor and bipolar cells. The reduction in glutamate immunolabelling in specific retinal cell classes was mirrored by an increase in aspartate levels at these locations. In addition, attenuated glutamine immunolabelling also closely matched the spatial pattern observed for glutamate. Our immunocytochemical analysis provides evidence that monocarboxylate transport inhibition induces a shift in the equilibrium of glutamate transamination reactions involving aspartate throughout the retina whereas photoreceptor and bipolar cells also use glutamate transamination reactions involving ornithine and leucine. The distribution pattern of glutamine secondary to monocarboxylate inhibition suggests that this amino acid is a major precursor for glutamate throughout the retina.
Collapse
Affiliation(s)
- Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
48
|
Abstract
Change in the intracellular concentration of osmolytes or the extracellular tonicity results in a rapid transmembrane water flow in mammalian cells until intracellular and extracellular tonicities are equilibrated. Most cells respond to the osmotic cell swelling by activation of volume-sensitive flux pathways for ions and organic osmolytes to restore their original cell volume. Taurine is an important organic osmolyte in mammalian cells, and taurine release via a volume-sensitive taurine efflux pathway is increased and the active taurine uptake via the taurine specific taurine transporter TauT decreased following osmotic cell swelling. The cellular signaling cascades, the second messengers profile, the activation of specific transporters, and the subsequent time course for the readjustment of the cellular content of osmolytes and volume vary from cell type to cell type. Using Ehrlich ascites tumor cells, NIH3T3 mouse fibroblasts and HeLa cells as biological systems, it is revealed that phospholipase A2-mediated mobilization of arachidonic acid from phospholipids and subsequent oxidation of the fatty acid via lipoxygenase systems to potent eicosanoids are essential elements in the signaling cascade that is activated by cell swelling and leads to release of osmolytes. The cellular signaling cascade and the activity of the volume-sensitive taurine efflux pathway are modulated by elements of the cytoskeleton, protein tyrosine kinases/phosphatases, GTP-binding proteins, Ca2+/calmodulin, and reactive oxygen species and nucleotides. Serine/threonine phosphorylation of the active taurine uptake system TauT or a putative regulator, as well as change in the membrane potential, are important elements in the regulation of TauT activity. A model describing the cellular sequence, which is activated by cell swelling and leads to activation of the volume-sensitive efflux pathway, is presented at the end of the review.
Collapse
Affiliation(s)
- Ian Henry Lambert
- The August Krogh Institute, Biochemical Department, Universitetsparken 13, DK-2100, Copenhagen O, Denmark.
| |
Collapse
|
49
|
Rascher K, Servos G, Berthold G, Hartwig HG, Warskulat U, Heller-Stilb B, Häussinger D. Light deprivation slows but does not prevent the loss of photoreceptors in taurine transporter knockout mice. Vision Res 2004; 44:2091-100. [PMID: 15149840 DOI: 10.1016/j.visres.2004.03.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Revised: 03/24/2004] [Indexed: 11/25/2022]
Abstract
UNLABELLED Taurine transporter knockout mice show severe retinal degeneration at an early age. The study was designed to determine whether degeneration also takes place in the absence of light. Mice were maintained up to 6 weeks of age in cyclic lighting or in total darkness. Degeneration took place in both groups, but was more rapid in animals exposed to standard cyclic illumination. At the ultrastructural level the retinas showed features characteristic of apoptosis but not of necrosis. CONCLUSIONS Cell differentiation is not seriously affected by the lack of a functional taurine transporter but mature photoreceptor cells do not survive without an intact transporter, even in the dark.
Collapse
Affiliation(s)
- K Rascher
- Department of Anatomy II, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
50
|
Young TL, Cepko CL. A Role for Ligand-Gated Ion Channels in Rod Photoreceptor Development. Neuron 2004; 41:867-79. [PMID: 15046720 DOI: 10.1016/s0896-6273(04)00141-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 12/04/2003] [Accepted: 01/29/2004] [Indexed: 11/30/2022]
Abstract
Neurotransmitter receptors are central to communication at synapses. Many components of the machinery for neurotransmission are present prior to synapse formation, suggesting a developmental role. Here, evidence is presented that signaling through glycine receptor alpha2 (GlyRalpha2) and GABA(A) receptors plays a role in photoreceptor development in the vertebrate retina. The signaling is likely mediated by taurine, which is present at high levels throughout the developing central nervous system (CNS). Taurine potentiates the production of rod photoreceptors, and this induction is inhibited by strychnine, an antagonist of glycine receptors, and bicuculline, an antagonist of GABA receptors. Gain-of-function experiments showed that signaling through GlyRalpha2 induced exit from mitosis and an increase in rod photoreceptors. Furthermore, targeted knockdown of GlyRalpha2 decreased the number of photoreceptors while increasing the number of other retinal cell types. These data support a previously undescribed role for these ligand-gated ion channels during the early stages of CNS development.
Collapse
Affiliation(s)
- Tracy L Young
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|