1
|
Zhang W, Xu D, Cui J, Jing X, Xu N, Liu J, Bai W. Anterograde and retrograde tracing with high molecular weight biotinylated dextran amine through thalamocortical and corticothalamic pathways. Microsc Res Tech 2016; 80:260-266. [PMID: 27862607 DOI: 10.1002/jemt.22797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/07/2016] [Indexed: 11/09/2022]
Abstract
Biotinylated dextran amine (BDA) has been used for neural pathway tracing in the central nervous system for many decades, in which high molecular weight BDA appeared to be transported predominantly in the anterograde direction and less in the retrograde direction. In the current study, we reexamined the properties of neural labeling with high molecular weight BDA through a reciprocal neural pathway between thalamus and somatosensory cortex. After injection of BDA into the ventral posteromedial nucleus of thalamus (VPM) in the rat, the BDA labeling was sequentially examined on somatosensory cortex at 3, 5, 7, 10, and 14 survival days. Both of anterogradely labeled axonal terminals and retrogradely labeled neuronal cell bodies were observed simultaneously on the somatosensory cortex. With the increasing of survival times after injection, morphological changes occurred on the labeled axonal arbors and neuronal dendrites, in which the high quality of BDA labeling appeared on the tenth survival day. These results indicate that high molecular weight BDA is not only a sensitive anterograde tracer but also an excellent retrograde marker to be used for tracing through thalamocortical and corticothalamic pathways. And the detailed structure of neural labeling with BDA similar to Golgi-like resolution can be obtained at optimal survival times of animals after the injection of high molecular weight BDA.
Collapse
Affiliation(s)
- Wenjie Zhang
- Key Laboratory of Acupuncture of Guangdong Procince, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.,Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dongsheng Xu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingjing Cui
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xianghong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Nenggui Xu
- Key Laboratory of Acupuncture of Guangdong Procince, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jianhua Liu
- Key Laboratory of Acupuncture of Guangdong Procince, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wanzhu Bai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
2
|
Distler C, Hoffmann KP. Direct projections from the dorsal premotor cortex to the superior colliculus in the macaque (macaca mulatta). J Comp Neurol 2015; 523:2390-408. [DOI: 10.1002/cne.23794] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/31/2015] [Accepted: 04/15/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Claudia Distler
- Department of Zoology and Neurobiology; Ruhr-University Bochum; 44780 Bochum Germany
| | - Klaus-Peter Hoffmann
- Department of Zoology and Neurobiology; Ruhr-University Bochum; 44780 Bochum Germany
- Department of Animal Physiology; Ruhr-University Bochum; 44780 Bochum Germany
- Department of Neuroscience; Ruhr-University Bochum; 44780 Bochum Germany
| |
Collapse
|
3
|
Ling C, Hendrickson ML, Kalil RE. Resolving the detailed structure of cortical and thalamic neurons in the adult rat brain with refined biotinylated dextran amine labeling. PLoS One 2012; 7:e45886. [PMID: 23144777 PMCID: PMC3489877 DOI: 10.1371/journal.pone.0045886] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/23/2012] [Indexed: 02/07/2023] Open
Abstract
Biotinylated dextran amine (BDA) has been used frequently for both anterograde and retrograde pathway tracing in the central nervous system. Typically, BDA labels axons and cell somas in sufficient detail to identify their topographical location accurately. However, BDA labeling often has proved to be inadequate to resolve the fine structural details of axon arbors or the dendrites of neurons at a distance from the site of BDA injection. To overcome this limitation, we varied several experimental parameters associated with the BDA labeling of neurons in the adult rat brain in order to improve the sensitivity of the method. Specifically, we compared the effect on labeling sensitivity of: (a) using 3,000 or 10,000 MW BDA; (b) injecting different volumes of BDA; (c) co-injecting BDA with NMDA; and (d) employing various post-injection survival times. Following the extracellular injection of BDA into the visual cortex, labeled cells and axons were observed in both cortical and thalamic areas of all animals studied. However, the detailed morphology of axon arbors and distal dendrites was evident only under optimal conditions for BDA labeling that take into account the: molecular weight of the BDA used, concentration and volume of BDA injected, post-injection survival time, and toning of the resolved BDA with gold and silver. In these instances, anterogradely labeled axons and retrogradely labeled dendrites were resolved in fine detail, approximating that which can be achieved with intracellularly injected compounds such as biocytin or fluorescent dyes.
Collapse
Affiliation(s)
- Changying Ling
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael L. Hendrickson
- W.M. Keck Laboratory for Biological Imaging, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ronald E. Kalil
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
4
|
Cahalane DJ, Clancy B, Kingsbury MA, Graf E, Sporns O, Finlay BL. Network structure implied by initial axon outgrowth in rodent cortex: empirical measurement and models. PLoS One 2011; 6:e16113. [PMID: 21264302 PMCID: PMC3019165 DOI: 10.1371/journal.pone.0016113] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 12/13/2010] [Indexed: 01/21/2023] Open
Abstract
The developmental mechanisms by which the network organization of the adult cortex is established are incompletely understood. Here we report on empirical data on the development of connections in hamster isocortex and use these data to parameterize a network model of early cortical connectivity. Using anterograde tracers at a series of postnatal ages, we investigate the growth of connections in the early cortical sheet and systematically map initial axon extension from sites in anterior (motor), middle (somatosensory) and posterior (visual) cortex. As a general rule, developing axons extend from all sites to cover relatively large portions of the cortical field that include multiple cortical areas. From all sites, outgrowth is anisotropic, covering a greater distance along the medial/lateral axis than along the anterior/posterior axis. These observations are summarized as 2-dimensional probability distributions of axon terminal sites over the cortical sheet. Our network model consists of nodes, representing parcels of cortex, embedded in 2-dimensional space. Network nodes are connected via directed edges, representing axons, drawn according to the empirically derived anisotropic probability distribution. The networks generated are described by a number of graph theoretic measurements including graph efficiency, node betweenness centrality and average shortest path length. To determine if connectional anisotropy helps reduce the total volume occupied by axons, we define and measure a simple metric for the extra volume required by axons crossing. We investigate the impact of different levels of anisotropy on network structure and volume. The empirically observed level of anisotropy suggests a good trade-off between volume reduction and maintenance of both network efficiency and robustness. Future work will test the model's predictions for connectivity in larger cortices to gain insight into how the regulation of axonal outgrowth may have evolved to achieve efficient and economical connectivity in larger brains.
Collapse
Affiliation(s)
- Diarmuid J Cahalane
- Center for Applied Mathematics, Cornell University, Ithaca, New York, United States of America.
| | | | | | | | | | | |
Collapse
|
5
|
Lacruz ME, García Seoane JJ, Valentin A, Selway R, Alarcón G. Frontal and temporal functional connections of the living human brain. Eur J Neurosci 2007; 26:1357-70. [PMID: 17767512 DOI: 10.1111/j.1460-9568.2007.05730.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Connections between human temporal and frontal cortices were investigated by intracranial electroencephalographic responses to electrical stimulation with 1-ms single pulses in 51 patients assessed for surgery for treatment of epilepsy. The areas studied were medial temporal, entorhinal, lateral temporal, medial frontal, lateral frontal and orbital frontal cortices. Findings were assumed to be representative of human brain as no differences were found between epileptogenic and non-epileptogenic hemispheres. Connections between intralobar temporal and frontal regions were common (43-95%). Connections from temporal to ipsilateral frontal regions were relatively uncommon (seen in 0-25% of hemispheres). Connections from frontal to ipsilateral temporal cortices were more common, particularly from orbital to ipsilateral medial temporal regions (40%). Contralateral temporal connections were rare (< 9%) whereas contralateral frontal connections were frequent and faster, particularly from medial frontal to contralateral medial frontal (61%) and orbital frontal cortices (57%), and between both orbital cortices (67%). Orbital cortex receives profuse connections from the ipsilateral medial (78%) and lateral (88%) frontal cortices, and from the contralateral medial (57%) and orbital (67%) frontal cortices. The high incidence of intralobar temporal connections supports the presence of temporal reverberating circuits. Frontal cortex projects within the lobe and beyond, to ipsilateral and contralateral structures.
Collapse
Affiliation(s)
- M E Lacruz
- Department of Clinical Neuroscience, Institute of Psychiatry, 16 De Crespigny Park, London SES 8AF, UK
| | | | | | | | | |
Collapse
|
6
|
Lori NF, Akbudak E, Shimony JS, Cull TS, Snyder AZ, Guillory RK, Conturo TE. Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results. NMR IN BIOMEDICINE 2002; 15:494-515. [PMID: 12489098 DOI: 10.1002/nbm.779] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present a description, biological results and a reliability analysis for the method of diffusion tensor tracking (DTT) of white matter fiber pathways. In DTT, diffusion-tensor MRI (DT-MRI) data are collected and processed to visualize the line trajectories of fiber bundles within white matter (WM) pathways of living humans. A detailed description of the data acquisition is given. Technical aspects and experimental results are illustrated for the geniculo-calcarine tract with broad projections to visual cortex, occipital and parietal U-fibers, and the temporo-calcarine ventral pathway. To better understand sources of error and to optimize the method, accuracy and precision were analyzed by computer simulations. In the simulations, noisy DT-MRI data were computed that would be obtained for a WM pathway having a helical trajectory passing through gray matter. The error vector between the real and ideal track was computed, and random errors accumulated with the square root of track length consistent with a random-walk process. Random error was most dependent on signal-to-noise ratio, followed by number of averages, pathway anisotropy and voxel size, in decreasing order. Systematic error only occurred for a few conditions, and was most dependent on the stepping algorithm, anisotropy of the surrounding tissue, and non-equal voxel dimensions. Both random and systematic errors were typically below the voxel dimension. Other effects such as track rebound and track recovery also depended on experimental conditions. The methods, biological results and error analysis herein may improve the understanding and optimization of DTT for use in various applications in neuroscience and medicine.
Collapse
Affiliation(s)
- N F Lori
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Shaw BK, Kennedy GG. Evidence for species differences in the pattern of androgen receptor distribution in relation to species differences in an androgen-dependent behavior. JOURNAL OF NEUROBIOLOGY 2002; 52:203-20. [PMID: 12210104 DOI: 10.1002/neu.10079] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chickens (Gallus gallus domesticus) and Japanese quail (Coturnix japonica), two closely related gallinaceous bird species, exhibit a form of vocalization-crowing-which differs between the species in two components: its temporal acoustic pattern and its accompanying postural motor pattern. Previous work utilizing the quail-chick chimera technique demonstrated that the species-specific characteristics of the two crow components are determined by distinct brain structures: the midbrain confers the acoustic pattern, and the caudal hindbrain confers the postural pattern. Crowing is induced by androgens, acting directly on androgen receptors. As a strategy for identifying candidate neurons in the midbrain and caudal hindbrain that could be involved in crow production, we performed immunocytochemistry for androgen receptors in these brain regions in both species. We also investigated midbrain-to-hindbrain vocal-motor projections. In the midbrain, both species showed prominent androgen receptor immunoreactivity in the nucleus intercollicularis, as had been reported in previous studies. In the caudal hindbrain, we discovered characteristic species differences in the pattern of androgen receptor distribution. Chickens, but not quail, showed strong immunoreactivity in the tracheosyringeal division of the hypoglossal nucleus, whereas quail, but not chickens, possessed strong immunoreactivity in a region of the ventrolateral medulla. Some of these differences in hindbrain androgen receptor distribution may be related to the species differences in the postural component of crowing behavior. The results of the present study imply that the spatial distribution of receptor proteins can vary even between closely related species. Such variation in receptor distribution could underlie the evolution of species differences in behavior.
Collapse
Affiliation(s)
- Brian K Shaw
- The Neurosciences Institute, 10640 John Jay Hopkins Drive, San Diego, California 92121, USA
| | | |
Collapse
|
8
|
Kingsbury MA, Graf ER, Finlay BL. Altered development of visual subcortical projections following neonatal thalamic ablation in the hamster. J Comp Neurol 2000; 424:165-78. [PMID: 10888746 DOI: 10.1002/1096-9861(20000814)424:1<165::aid-cne12>3.0.co;2-u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Previous research has demonstrated that precise patterns of axonal connectivity often develop during a series of stages characterized by pathfinding, target recognition, and address selection. This last stage involves the focusing of projections to a precisely defined region within the target. Because thalamic projections begin to innervate cortex before the latter stages are reached, these projections may be important in the establishment of adult-like patterns of cortical connectivity. To address this issue, we examined the mature corticopontine and corticospinal projections of visual cortex deprived of early thalamic input by visual thalamic ablation. Although ablations on the day of birth in hamsters did not disrupt the targeting of appropriate subcortical structures by visual cortical axons, they did alter the organization of projections within the basilar pons and spinal cord. The density and spread of visual corticopontine connections in lesioned animals was greatly increased relative to unlesioned animals, suggesting that thalamic afferents are required during address selection, when the topographic specificity of projections is established. To determine whether early visual thalamic ablation increases connectivity by stabilizing an exuberant developmental projection, we examined the normal development of visual corticopontine connections in hamsters ages postnatal days 1-17 (P1-P17). From the earliest ages, visual cortical axons innervate the pontine nucleus in regions specific to their adult projection zones and show progressive growth within these zones. At no time during development do projections exist that are equivalent to the projections found after thalamic ablation, suggesting that removal of thalamic input does not simply stabilize a developmental projection.
Collapse
Affiliation(s)
- M A Kingsbury
- Department of Psychology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
9
|
Vercelli A, Repici M, Garbossa D, Grimaldi A. Recent techniques for tracing pathways in the central nervous system of developing and adult mammals. Brain Res Bull 2000; 51:11-28. [PMID: 10654576 DOI: 10.1016/s0361-9230(99)00229-4] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Over the last 20 years, the choice of neural tracers has increased manyfold, and includes newly introduced anterograde tracers that allow quantitation of single-axon morphologies, and retrograde tracers that can be combined with intracellular fills for the study of dendritic arbors of neurons which have a specific projection pattern. The combination of several different tracers now permits the comparison of multiple connections in the same animal, both quantitatively and qualitatively. Moreover, the finding of new virus strains, which infect neural cells without killing them, provides a tool for studying multisynaptic connections that participate in a circuit. In this paper, the labeling characteristics, mechanism of transport and advantages/disadvantages of use are discussed for the following recently introduced neural tracers: carbocyanine dyes, fluorescent latex microspheres, fluorescent dextrans, biocytin, dextran amines, Phaseolus vulgaris leucoagglutinin, cholera toxin and viruses. We also suggest the choice of specific tracers, depending on the experimental animal, age and type of connection to be studied, and discuss quantitative methodologies.
Collapse
Affiliation(s)
- A Vercelli
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Torino, Italy.
| | | | | | | |
Collapse
|
10
|
Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS, McKinstry RC, Burton H, Raichle ME. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 1999; 96:10422-7. [PMID: 10468624 PMCID: PMC17904 DOI: 10.1073/pnas.96.18.10422] [Citation(s) in RCA: 1163] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Functional imaging with positron emission tomography and functional MRI has revolutionized studies of the human brain. Understanding the organization of brain systems, especially those used for cognition, remains limited, however, because no methods currently exist for noninvasive tracking of neuronal connections between functional regions [Crick, F. & Jones, E. (1993) Nature (London) 361, 109-110]. Detailed connectivities have been studied in animals through invasive tracer techniques, but these invasive studies cannot be done in humans, and animal results cannot always be extrapolated to human systems. We have developed noninvasive neuronal fiber tracking for use in living humans, utilizing the unique ability of MRI to characterize water diffusion. We reconstructed fiber trajectories throughout the brain by tracking the direction of fastest diffusion (the fiber direction) from a grid of seed points, and then selected tracks that join anatomically or functionally (functional MRI) defined regions. We demonstrate diffusion tracking of fiber bundles in a variety of white matter classes with examples in the corpus callosum, geniculo-calcarine, and subcortical association pathways. Tracks covered long distances, navigated through divergences and tight curves, and manifested topological separations in the geniculo-calcarine tract consistent with tracer studies in animals and retinotopy studies in humans. Additionally, previously undescribed topologies were revealed in the other pathways. This approach enhances the power of modern imaging by enabling study of fiber connections among anatomically and functionally defined brain regions in individual human subjects.
Collapse
Affiliation(s)
- T E Conturo
- Department of Radiology and Neuroimaging Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Telencephalic organization in birds is so unusual that many homologies between avian and mammalian telencephalic areas remain controversial. Particularly contested is the avian "neostriatum," which has historically been homologized to either mammalian striatum, lateral neocortex, or endopiriform claustrum. Because homologies between these adult structures have been so difficult to resolve, we have begun to examine how telencephalic development diverges between birds and other vertebrates. To this end, biotinylated dextran was injected into the lateral telencephalon of chick embryos at 3 d of incubation, and the distribution of labeled cells was examined up to 14 d later. The data show that a definite boundary to cellular migration develops just ventral to the neostriatum between 5 and 8 d of incubation. Labeled polyclones within the neostriatum stretch from the ventricular zone to the brain surface and exhibit an increasingly rostrocaudal orientation as development proceeds. Individual polyclones contribute cells to several of the distinct auditory, visual, somatosensory, and olfactory regions within the neostriatum. A comparative analysis suggests that the avian neostriatum develops from a precursor region that in other vertebrates gives rise to olfactory cortex and, when present, to other components of the piriform lobe, such as the endopiriform claustrum and basolateral amygdala. Conclusions about lateral pallial homologies between birds and mammals remain uncertain, however, primarily because so little is known about the development of the lateral pallium in mammals. This lacuna might be filled by applying to mammals the novel fate-mapping method described in the present paper.
Collapse
|
12
|
Négyessy L, Hámori J, Bentivoglio M. Contralateral cortical projection to the mediodorsal thalamic nucleus: origin and synaptic organization in the rat. Neuroscience 1998; 84:741-53. [PMID: 9579780 DOI: 10.1016/s0306-4522(97)00559-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The origin of the corticothalamic projections to the contralateral mediodorsal nucleus, the collateralization of cortical fibers and their synaptic organization in the ipsi- and contralateral mediodorsal nuclei were investigated in adult rats with double retrograde fluorescent and anterograde tracing. After tracer injections in the mediodorsal nuclei on either side, neurons were retrogradely labeled in all the areas of the contralateral prefrontal cortex in which ipsilateral labeling was also observed. Contralateral corticothalamic cells accounted for 15% of the labeled neurons in the orbital and agranular insular areas, while their proportion was lower (3%) in the anterior cingulate cortex. Up to 70% of the contralateral cortical neurons were double labeled by bilateral injections in the mediodorsal nuclei. At the electron microscopic level, unilateral injections of biotinylated dextran-amine in the orbitofrontal cortex resulted in anterograde labeling of small terminals and a few large boutons in the ipsilateral mediodorsal nucleus, while only small boutons were identified contralaterally. The diameter of postsynaptic dendritic profiles contacted by labeled small cortical endings was significantly larger in the ipsilateral mediodorsal nucleus than contralaterally. These findings demonstrate that dense contralateral cortical projections to the mediodorsal nucleus derive from the orbital and agranular insular areas, and that crossed corticothalamic afferents are mostly formed by collaterals of the ipsilateral connections. Our observations also point out the heterogeneity of corticothalamic boutons in the rat mediodorsal nucleus and morphological differences in the synaptic organization of prefrontal fibers innervating the two sides, indicating that ipsilateral cortical afferents may be more proximally distributed than crossed cortical fibers on dendrites of mediodorsal neurons.
Collapse
Affiliation(s)
- L Négyessy
- Department of Anatomy, Semmelweis University Medical School, Budapest, Hungary
| | | | | |
Collapse
|