1
|
Neuenschwander S, Rosso G, Branco N, Freitag F, Tehovnik EJ, Schmidt KE, Baron J. On the Functional Role of Gamma Synchronization in the Retinogeniculate System of the Cat. J Neurosci 2023; 43:5204-5220. [PMID: 37328291 PMCID: PMC10342227 DOI: 10.1523/jneurosci.1550-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/06/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023] Open
Abstract
Fast gamma oscillations, generated within the retina, and transmitted to the cortex via the lateral geniculate nucleus (LGN), are thought to carry information about stimulus size and continuity. This hypothesis relies mainly on studies conducted under anesthesia and the extent to which it holds under more naturalistic conditions remains unclear. Using multielectrode recordings of spiking activity in the retina and the LGN of both male and female cats, we show that visually driven gamma oscillations are absent for awake states and are highly dependent on halothane (or isoflurane). Under ketamine, responses were nonoscillatory, as in the awake condition. Response entrainment to the monitor refresh was commonly observed up to 120 Hz and was superseded by the gamma oscillatory responses induced by halothane. Given that retinal gamma oscillations are contingent on halothane anesthesia and absent in the awake cat, such oscillations should be considered artifactual, thus playing no functional role in vision.SIGNIFICANCE STATEMENT Gamma rhythms have been proposed to be a robust encoding mechanism critical for visual processing. In the retinogeniculate system of the cat, many studies have shown gamma oscillations associated with responses to static stimuli. Here, we extend these observations to dynamic stimuli. An unexpected finding was that retinal gamma responses strongly depend on halothane concentration levels and are absent in the awake cat. These results weaken the notion that gamma in the retina is relevant for vision. Notably, retinal gamma shares many of the properties of cortical gamma. In this respect, oscillations induced by halothane in the retina may serve as a valuable preparation, although artificial, for studying oscillatory dynamics.
Collapse
Affiliation(s)
- Sergio Neuenschwander
- Brain Institute, Federal University of Rio Grande do Norte, 59076-550, Natal, Brazil
| | - Giovanne Rosso
- Brain Institute, Federal University of Rio Grande do Norte, 59076-550, Natal, Brazil
| | - Natalia Branco
- Brain Institute, Federal University of Rio Grande do Norte, 59076-550, Natal, Brazil
| | - Fabio Freitag
- Brain Institute, Federal University of Rio Grande do Norte, 59076-550, Natal, Brazil
| | - Edward J Tehovnik
- Brain Institute, Federal University of Rio Grande do Norte, 59076-550, Natal, Brazil
| | - Kerstin E Schmidt
- Brain Institute, Federal University of Rio Grande do Norte, 59076-550, Natal, Brazil
| | - Jerome Baron
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901, Belo Horizonte, Brazil
| |
Collapse
|
2
|
Schneider M, Tzanou A, Uran C, Vinck M. Cell-type-specific propagation of visual flicker. Cell Rep 2023; 42:112492. [PMID: 37195864 PMCID: PMC7617239 DOI: 10.1016/j.celrep.2023.112492] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Rhythmic flicker stimulation has gained interest as a treatment for neurodegenerative diseases and as a method for frequency tagging neural activity. Yet, little is known about the way in which flicker-induced synchronization propagates across cortical levels and impacts different cell types. Here, we use Neuropixels to record from the lateral geniculate nucleus (LGN), the primary visual cortex (V1), and CA1 in mice while presenting visual flicker stimuli. LGN neurons show strong phase locking up to 40 Hz, whereas phase locking is substantially weaker in V1 and is absent in CA1. Laminar analyses reveal an attenuation of phase locking at 40 Hz for each processing stage. Gamma-rhythmic flicker predominantly entrains fast-spiking interneurons. Optotagging experiments show that these neurons correspond to either parvalbumin (PV+) or narrow-waveform somatostatin (Sst+) neurons. A computational model can explain the observed differences based on the neurons' capacitative low-pass filtering properties. In summary, the propagation of synchronized activity and its effect on distinct cell types strongly depend on its frequency.
Collapse
Affiliation(s)
- Marius Schneider
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands.
| | - Athanasia Tzanou
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany
| | - Cem Uran
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands
| | - Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525 Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Hallum LE, Cloherty SL. Liquid-Crystal Display (LCD) of achromatic, mean-modulated flicker in clinical assessment and experimental studies of visual systems. PLoS One 2021; 16:e0248180. [PMID: 33760857 PMCID: PMC7990305 DOI: 10.1371/journal.pone.0248180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/19/2021] [Indexed: 01/23/2023] Open
Abstract
Achromatic, mean-modulated flicker—wherein luminance increments and decrements of equal magnitude are applied, over time, to a test field—is commonly used in both clinical assessment of vision and experimental studies of visual systems. However, presenting flicker on computer-controlled displays is problematic; displays typically introduce luminance artifacts at high flicker frequency or contrast, potentially interfering with the validity of findings. Here, we present a battery of tests used to weigh the relative merits of two displays for presenting achromatic, mean-modulated flicker. These tests revealed marked differences between a new high-performance liquid-crystal display (LCD; EIZO ColorEdge CG247X) and a new consumer-grade LCD (Dell U2415b), despite displays’ vendor-supplied specifications being almost identical. We measured displayed luminance using a spot meter and a linearized photodiode. We derived several measures, including spatial uniformity, the effect of viewing angle, response times, Fourier amplitude spectra, and cycle-averaged luminance. We presented paired luminance pulses to quantify the displays’ nonlinear dynamics. The CG247X showed relatively good spatial uniformity (e.g., at moderate luminance, standard deviation 2.8% versus U2415b’s 5.3%). Fourier transformation of nominally static test patches revealed spectra free of artifacts, with the exception of a frame response. The CG247X’s rise and fall times depended on both the luminance from which, and to which, it responded, as is to be generally expected from LCDs. Despite this nonlinear behaviour, we were able to define a contrast and frequency range wherein the CG247X appeared largely artifact-free; the relationship between nominal luminance and displayed luminance was accurately modelled using a causal, linear time-invariant system. This range included contrasts up to 80%, and flicker frequencies up to 30 Hz. This battery of tests should prove useful to others conducting clinical assessment of vision and experimental studies of visual systems.
Collapse
Affiliation(s)
- Luke E. Hallum
- Department of Mechanical Engineering, University of Auckland, Auckland, New Zealand
- * E-mail:
| | | |
Collapse
|
4
|
Entrainment within neuronal response in optic tectum of pigeon to video displays. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:845-855. [PMID: 32809044 DOI: 10.1007/s00359-020-01442-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
The cathode ray tube (CRT) is a common and important tool that has been in use for decades, with which behavioral and visual neuroscientists deliver specific visual images generated by computers. Considering the operating principle of the CRT, the image it presents can flick at a constant rate, which will introduce distractions to the visual experiments on subjects with higher temporal resolutions. While this entrainment has been proved common in recordings of the primary visual cortex of mammals, it is uncertain whether it also exists in the intermediate to deep layers of pigeon's optic tectum, which is relevant to the spatial attention. Here, we present continuous visual stimuli with different refresh rates and luminances couples shown on a CRT to pigeons. The recordings in the intermediate to deep layers of optic tectum were significantly phase locking to the refresh of the CRT, and lower refresh rates of the CRT with higher brightness more likely introduced artifacts in electrophysiological recordings of pigeons, which may seriously damage their visual information perception.
Collapse
|
5
|
Abstract
Because they were used for decades to present visual stimuli in psychophysical and psychophysiological studies, cathode ray tubes (CRTs) used to be the gold standard for stimulus presentation in vision research. Recently, as CRTs have become increasingly rare in the market, researchers have started using various types of liquid-crystal display (LCD) monitors as a replacement for CRTs. However, LCDs are typically not cost-effective when used in vision research and often cannot reach the full capacity of a high refresh rate. In this study we measured the temporal and spatial characteristics of a consumer-grade LCD, and the results suggested that a consumer-grade LCD can successfully meet all the technical demands in vision research. The tested LCD, working in a flash style like that of CRTs, demonstrated perfect consistency for initial latencies across locations, yet showed poor spatial uniformity and sluggishness in reaching the requested luminance within the first frame. After these drawbacks were addressed through software corrections, the candidate monitor showed performance comparable or superior to that of CRTs in terms of both spatial and temporal homogeneity. The proposed solution can be used as a replacement for CRTs in vision research.
Collapse
|
6
|
Foik AT, Ghazaryan A, Waleszczyk WJ. Oscillations in Spontaneous and Visually Evoked Neuronal Activity in the Superficial Layers of the Cat's Superior Colliculus. Front Syst Neurosci 2018; 12:60. [PMID: 30559653 PMCID: PMC6287086 DOI: 10.3389/fnsys.2018.00060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
Oscillations are ubiquitous features of neuronal activity in sensory systems and are considered as a substrate for the integration of sensory information. Several studies have described oscillatory activity in the geniculate visual pathway, but little is known about this phenomenon in the extrageniculate visual pathway. We describe oscillations in evoked and background activity in the cat's superficial layers of the superior colliculus, a retinorecipient structure in the extrageniculate visual pathway. Extracellular single-unit activity was recorded during periods with and without visual stimulation under isoflurane anesthesia in the mixture of N2O/O2. Autocorrelation, FFT and renewal density analyses were used to detect and characterize oscillations in the neuronal activity. Oscillations were common in the background and stimulus-evoked activity. Frequency range of background oscillations spanned between 5 and 90 Hz. Oscillations in evoked activity were observed in about half of the cells and could appear in two forms —stimulus-phase-locked (10–100 Hz), and stimulus-phase-independent (8–100 Hz) oscillations. Stimulus-phase-independent and background oscillatory frequencies were very similar within activity of particular neurons suggesting that stimulus-phase-independent oscillations may be a form of enhanced “spontaneous” oscillations. Stimulus-phase-locked oscillations were present in responses to moving and flashing stimuli. In contrast to stimulus-phase-independent oscillations, the strength of stimulus-phase-locked oscillations was positively correlated with stimulus velocity and neuronal firing rate. Our results suggest that in the superficial layers of the superior colliculus stimulus-phase-independent oscillations may be generated by the same mechanism(s) that lie in the base of “spontaneous” oscillations, while stimulus-phase-locked oscillations may result from interactions within the intra-collicular network and/or from a phase reset of oscillations present in the background activity.
Collapse
Affiliation(s)
- Andrzej T Foik
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anaida Ghazaryan
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Wioletta J Waleszczyk
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
7
|
Ultrahigh temporal resolution of visual presentation using gaming monitors and G-Sync. Behav Res Methods 2018; 50:26-38. [DOI: 10.3758/s13428-017-1003-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Ghodrati M, Morris AP, Price NSC. The (un)suitability of modern liquid crystal displays (LCDs) for vision research. Front Psychol 2015; 6:303. [PMID: 25852617 PMCID: PMC4369646 DOI: 10.3389/fpsyg.2015.00303] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/03/2015] [Indexed: 11/28/2022] Open
Abstract
Psychophysical and physiological studies of vision have traditionally used cathode ray tube (CRT) monitors to present stimuli. These monitors are no longer easily available, and liquid crystal display (LCD) technology is continually improving; therefore, we characterized a number of LCD monitors to determine if newer models are suitable replacements for CRTs in the laboratory. We compared the spatial and temporal characteristics of a CRT with five LCDs, including monitors designed with vision science in mind (ViewPixx and Display++), “prosumer” gaming monitors, and a consumer-grade LCD. All monitors had sufficient contrast, luminance range and reliability to support basic vision experiments with static images. However, the luminance of all LCDs depended strongly on viewing angle, which in combination with the poor spatial uniformity of all monitors except the VPixx, caused up to 80% drops in effective luminance in the periphery during central fixation. Further, all monitors showed significant spatial dependence, as the luminance of one area was modulated by the luminance of other areas. These spatial imperfections are most pronounced for experiments that use large or peripheral visual stimuli. In the temporal domain, the gaming LCDs were unable to generate reliable luminance patterns; one was unable to reach the requested luminance within a single frame whereas in the other the luminance of one frame affected the luminance of the next frame. The VPixx and Display++ were less affected by these problems, and had good temporal properties provided stimuli were presented for 2 or more frames. Of the consumer-grade and gaming displays tested, and if problems with spatial uniformity are taken into account, the Eizo FG2421 is the most suitable alternative to CRTs. The specialized ViewPixx performed best among all the tested LCDs, followed closely by the Display++; both are good replacements for a CRT, provided their spatial imperfections are considered.
Collapse
Affiliation(s)
- Masoud Ghodrati
- Department of Physiology, Monash University Melbourne, VIC, Australia
| | - Adam P Morris
- Department of Physiology, Monash University Melbourne, VIC, Australia
| | | |
Collapse
|
9
|
Natural movies evoke spike trains with low spike time variability in cat primary visual cortex. J Neurosci 2011; 31:15844-60. [PMID: 22049428 DOI: 10.1523/jneurosci.5153-10.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neuronal responses in primary visual cortex have been found to be highly variable. This has led to the widespread notion that neuronal responses have to be averaged over large numbers of neurons to obtain suitably invariant responses that can be used to reliably encode or represent external stimuli. However, it is possible that the high variability of neuronal responses may result from the use of simple, artificial stimuli and that the visual cortex may respond differently to dynamic, naturalistic images. To investigate this question, we recorded the responses of primary visual cortical neurons in the anesthetized cat under stimulation with time-varying natural movies. We found that cortical neurons on the whole exhibited a high degree of spike count variability, but a surprisingly low degree of spike time variability. The spike count variability was further reduced when all but the first spike in a burst were removed. We also found that responses exhibiting low spike time variability exhibited low spike count variability, suggesting that rate coding and temporal coding might be more compatible than previously thought. In addition, we found the spike time variability to be significantly lower when stimulated by natural movies as compared with stimulation using drifting gratings. Our results indicate that response variability in primary visual cortex is stimulus dependent and significantly lower than previous measurements have indicated.
Collapse
|
10
|
Wang P, Nikolić D. An LCD Monitor with Sufficiently Precise Timing for Research in Vision. Front Hum Neurosci 2011; 5:85. [PMID: 21887142 PMCID: PMC3157744 DOI: 10.3389/fnhum.2011.00085] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 08/01/2011] [Indexed: 11/29/2022] Open
Abstract
Until now, liquid crystal display (LCD) monitors have not been used widely for research in vision. Despite their main advantages of continuous illumination and low electromagnetic emission, these monitors had problems with timing and reliability. Here we report that there is at least one new inexpensive 120 Hz model, whose timing and stability is on a par with a benchmark cathode-ray tube monitor, or even better. The onset time was stable across repetitions, 95% confidence interval (the error) of which was <0.01 ms. Brightness was also delivered reliably across repeated presentations (<0.04% error) and across blocks with different durations (<3% error). The LCD monitor seems suitable for many applications in vision research, including the studies that require combined accuracy of timing and intensity of visual stimulation.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurophysiology, Max-Planck Institute for Brain Research Frankfurt am Main, Germany
| | | |
Collapse
|
11
|
Veit J, Bhattacharyya A, Kretz R, Rainer G. Neural response dynamics of spiking and local field potential activity depend on CRT monitor refresh rate in the tree shrew primary visual cortex. J Neurophysiol 2011; 106:2303-13. [PMID: 21849615 DOI: 10.1152/jn.00388.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Entrainment of neural activity to luminance impulses during the refresh of cathode ray tube monitor displays has been observed in the primary visual cortex (V1) of humans and macaque monkeys. This entrainment is of interest because it tends to temporally align and thus synchronize neural responses at the millisecond timescale. Here we show that, in tree shrew V1, both spiking and local field potential activity are also entrained at cathode ray tube refresh rates of 120, 90, and 60 Hz, with weakest but still significant entrainment even at 120 Hz, and strongest entrainment occurring in cortical input layer IV. For both luminance increments ("white" stimuli) and decrements ("black" stimuli), refresh rate had a strong impact on the temporal dynamics of the neural response for subsequent luminance impulses. Whereas there was rapid, strong attenuation of spikes and local field potential to prolonged visual stimuli composed of luminance impulses presented at 120 Hz, attenuation was nearly absent at 60-Hz refresh rate. In addition, neural onset latencies were shortest at 120 Hz and substantially increased, by ∼15 ms, at 60 Hz. In terms of neural response amplitude, black responses dominated white responses at all three refresh rates. However, black/white differences were much larger at 60 Hz than at higher refresh rates, suggesting a mechanism that is sensitive to stimulus timing. Taken together, our findings reveal many similarities between V1 of macaque and tree shrew, while underscoring a greater temporal sensitivity of the tree shrew visual system.
Collapse
Affiliation(s)
- Julia Veit
- Visual Cognition Laboratory, Dept. of Medicine, Univ. of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | | | | | | |
Collapse
|
12
|
|
13
|
Pinto MADS, de Souza JKS, Baron J, Tierra-Criollo CJ. A low-cost, portable, micro-controlled device for multi-channel LED visual stimulation. J Neurosci Methods 2011; 197:82-91. [PMID: 21320530 DOI: 10.1016/j.jneumeth.2011.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
Light emitting diodes (LEDs) are extensively used as light sources to investigate visual and visually related function and dysfunction. Here, we describe the design of a compact, low-cost, stand-alone LED-based system that enables the configuration, storage and presentation of elaborate visual stimulation paradigms. The core functionality of this system is provided by a microcontroller whose ultra-low power consumption makes it well suited for long lasting battery applications. The effective use of hardware resources is managed by multi-layered architecture software that provides an intuitive and user-friendly interface. In the configuration mode, different stimulation sequences can be created and memorized for ten channels, independently. LED-driving current output can be set either as continuous or pulse modulated, up to 500 Hz, by duty cycle adjustments. In run mode, multiple-channel stimulus sequences are automatically applied according to the pre-programmed protocol. Steady state visual evoked potentials were successfully recorded in five subjects with no visible electromagnetic interferences from the stimulator, demonstrating the efficacy of combining our prototyped equipment with electrophysiological techniques. Finally, we discuss a number of possible improvements for future development of our project.
Collapse
Affiliation(s)
- Marcos Antonio da Silva Pinto
- Department of Electrical Engineering, School of Engineering, Laboratory of Biomedical Engineering, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-010 Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
14
|
Koepsell K, Wang X, Vaingankar V, Wei Y, Wang Q, Rathbun DL, Usrey WM, Hirsch JA, Sommer FT. Retinal oscillations carry visual information to cortex. Front Syst Neurosci 2009; 3:4. [PMID: 19404487 PMCID: PMC2674373 DOI: 10.3389/neuro.06.004.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 03/18/2009] [Indexed: 11/30/2022] Open
Abstract
Thalamic relay cells fire action potentials that transmit information from retina to cortex. The amount of information that spike trains encode is usually estimated from the precision of spike timing with respect to the stimulus. Sensory input, however, is only one factor that influences neural activity. For example, intrinsic dynamics, such as oscillations of networks of neurons, also modulate firing pattern. Here, we asked if retinal oscillations might help to convey information to neurons downstream. Specifically, we made whole-cell recordings from relay cells to reveal retinal inputs (EPSPs) and thalamic outputs (spikes) and then analyzed these events with information theory. Our results show that thalamic spike trains operate as two multiplexed channels. One channel, which occupies a low frequency band (<30 Hz), is encoded by average firing rate with respect to the stimulus and carries information about local changes in the visual field over time. The other operates in the gamma frequency band (40–80 Hz) and is encoded by spike timing relative to retinal oscillations. At times, the second channel conveyed even more information than the first. Because retinal oscillations involve extensive networks of ganglion cells, it is likely that the second channel transmits information about global features of the visual scene.
Collapse
Affiliation(s)
- Kilian Koepsell
- Redwood Center for Theoretical Neuroscience, University of California Berkeley CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Spacek M, Blanche T, Swindale N. Python for large-scale electrophysiology. Front Neuroinform 2009; 2:9. [PMID: 19198646 PMCID: PMC2634532 DOI: 10.3389/neuro.11.009.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 12/19/2008] [Indexed: 11/23/2022] Open
Abstract
Electrophysiology is increasingly moving towards highly parallel recording techniques which generate large data sets. We record extracellularly in vivo in cat and rat visual cortex with 54-channel silicon polytrodes, under time-locked visual stimulation, from localized neuronal populations within a cortical column. To help deal with the complexity of generating and analysing these data, we used the Python programming language to develop three software projects: one for temporally precise visual stimulus generation (“dimstim”); one for electrophysiological waveform visualization and spike sorting (“spyke”); and one for spike train and stimulus analysis (“neuropy”). All three are open source and available for download (http://swindale.ecc.ubc.ca/code). The requirements and solutions for these projects differed greatly, yet we found Python to be well suited for all three. Here we present our software as a showcase of the extensive capabilities of Python in neuroscience.
Collapse
Affiliation(s)
- Martin Spacek
- Ophthalmology and Visual Sciences, University of British Columbia Vancouver, BC, Canada
| | | | | |
Collapse
|
16
|
Stasheff SF. Emergence of sustained spontaneous hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration (rd1) mouse. J Neurophysiol 2008; 99:1408-21. [PMID: 18216234 DOI: 10.1152/jn.00144.2007] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Complex alterations in the anatomy of outer retinal pathways accompany photoreceptor degeneration in the rd1 mouse model of retinitis pigmentosa, whereas inner retinal neurons appear relatively preserved. However, the progressive loss of photoreceptor input likely alters the neural circuitry of the inner retina. This study investigated resulting changes in the activity of surviving ganglion cells. Multielectrode recording monitored spontaneous and light-evoked extracellular action potentials simultaneously from 30 to 90 retinal ganglion cells of wild-type (wt) or rd1 mice. In rd1 mice, this activity evolves through three phases. First, normal spontaneous "waves" of correlated firing are seen at postnatal day 7 (P7) and last until shortly after eye opening. Second, at P14, full-field light flashes evoke reliable responses in many cells, with preferential preservation of off responses. These diminish as photoreceptor degeneration progresses. Third, once light-evoked responses have disappeared in early adulthood, surviving rd1 ganglion cells fire at a much higher spontaneous frequency than normal, sometimes in rhythmic bursts that are distinct from the developmental "waves." This hyperactivity is sustained well into adulthood, for weeks after photoreceptors have disappeared. Thus striking alterations occur in inner retinal physiology as retinal degeneration progresses in the rd1 mouse. Blindness occurs in the face of sustained hyperactivity among ganglion cells, which remain viable for months despite this activity. On and off responses are differentially affected in early stages of degeneration. While the source of these changes remains to be learned, such features should be considered in designing more effective treatments for these disorders.
Collapse
|
17
|
Zhang JX, Rosenberg A, Mallik AK, Husson TR, Issa NP. The representation of complex images in spatial frequency domains of primary visual cortex. J Neurosci 2007; 27:9310-8. [PMID: 17728445 PMCID: PMC6673115 DOI: 10.1523/jneurosci.0500-07.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The organization of cat primary visual cortex has been well mapped using simple stimuli such as sinusoidal gratings, revealing superimposed maps of orientation and spatial frequency preferences. However, it is not yet understood how complex images are represented across these maps. In this study, we ask whether a linear filter model can explain how cortical spatial frequency domains are activated by complex images. The model assumes that the response to a stimulus at any point on the cortical surface can be predicted by its individual orientation, spatial frequency, and temporal frequency tuning curves. To test this model, we imaged the pattern of activity within cat area 17 in response to stimuli composed of multiple spatial frequencies. Consistent with the predictions of the model, the stimuli activated low and high spatial frequency domains differently: at low stimulus drift speeds, both domains were strongly activated, but activity fell off in high spatial frequency domains as drift speed increased. To determine whether the filter model quantitatively predicted the activity patterns, we measured the spatiotemporal tuning properties of the functional domains in vivo and calculated expected response amplitudes from the model. The model accurately predicted cortical response patterns for two types of complex stimuli drifting at a variety of speeds. These results suggest that the distributed activity of primary visual cortex can be predicted from cortical maps like those of orientation and SF preference generated using simple, sinusoidal stimuli, and that dynamic visual acuity is degraded at or before the level of area 17.
Collapse
Affiliation(s)
- Jing X. Zhang
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, and
| | | | | | | | - Naoum P. Issa
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
18
|
Williams PE, Mechler F, Gordon J, Shapley R, Hawken MJ. Entrainment to video displays in primary visual cortex of macaque and humans. J Neurosci 2005; 24:8278-88. [PMID: 15385611 PMCID: PMC6729686 DOI: 10.1523/jneurosci.2716-04.2004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cathode ray tubes (CRTs) display images refreshed at high frequency, and the temporal waveform of each pixel is a luminance impulse only a few milliseconds long. Although humans are perceptually oblivious to this flicker, we show in V1 in macaque monkeys and in humans that extracellularly recorded action potentials (spikes) and visual-evoked potentials (VEPs) align with the video impulses, particularly when high-contrast stimuli are viewed. Of 91 single units analyzed in macaque with a 60 Hz video refresh, 29 cells (32%) significantly locked their firing to a uniform luminance display, but their number increased to 75 (82%) when high-contrast stimuli were shown. Of 92 cells exposed to a 100 Hz refresh, 21 (23%) significantly phase locked to high-contrast stimuli. Phase locking occurred in both input and output layers of V1 for simple and complex cells, regardless of preferred temporal frequency. VEPs recorded in humans showed significant phase locking to the video refresh in all seven observers. Like the monkey neurons, human VEPs more typically phase locked to stimuli containing spatial contrast than to spatially uniform stimuli. Phase locking decreased when the refresh rate was increased. Thus in humans and macaques phase locking to the high strobe frequency of a CRT is enhanced by a salient spatial pattern, although the perceptual impact is uncertain. We note that a billion people worldwide manage to watch TV without obvious distortion of their visual perception despite extraordinary phase locking of their V1s to a 50 or 60 Hz signal.
Collapse
Affiliation(s)
- Patrick E Williams
- New York University Center for Neural Science, New York, New York 10003, USA.
| | | | | | | | | |
Collapse
|
19
|
Shieh KK, Chen MH. Effects of Display Medium and Luminance Contrast on Concept Formation and EEG Response. Percept Mot Skills 2005; 100:943-54. [PMID: 16158681 DOI: 10.2466/pms.100.3c.943-954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Reading from a visual display terminal (VDT) has increased enormously with widespread computer use. Whether such reading affects higher cognitive processes requires study so the effect of display medium (LCD screen vs paper) and luminance contrast (1:3, 1:7, 1:11) on concept-formation performance and EEG responses was investigated. 96 men and 24 women participated in two concept-formation tasks (rule learning vs attribute and rule learning). Concept-formation performance and EEG responses were similar for stimuli displayed on paper or LCD screen. The concern that the screen may be detrimental to conception-formation performance was not confirmed; however, luminance contrast significantly affected time to complete a concept-formation task and EEG response. The middle contrast (1:7) had the smallest mean EEG power, so this contrast might be appropriate for cognitive performance. Participants' performance was significantly faster and EEG power lower for the rule-learning task than for an attribute and rule-learning task.
Collapse
Affiliation(s)
- Kong-King Shieh
- Department of Industrial Management, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan.
| | | |
Collapse
|
20
|
SHIEH KONGKING. EFFECTS OF DISPLAY MEDIUM AND LUMINANCE CONTRAST ON CONCEPT FORMATION AND EEC RESPONSE. Percept Mot Skills 2005. [DOI: 10.2466/pms.100.3.943-954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Abstract
The middle temporal (MT) visual area is widely accepted to play important roles in motion processing. It is unclear, however, whether MT contributes to visual perception during the viewing of static scenes, when there is little retinal image motion during the interval between saccades. Some previous studies suggest that MT neurons give little or no response to stationary stimuli that are flashed onto the receptive field, but no previous study has directly examined the fidelity with which MT neurons code visual information in moving versus stationary stimuli. In this study, we compare the ability of MT neurons to signal binocular disparity in moving versus stationary random-dot stereograms. Although responses to moving stimuli are typically stronger, many MT neurons give robust responses to stationary stereograms, and some MT neurons actually prefer stationary patterns to those moving at any tested speed. These responses to stationary stimuli are not caused by monitor refresh or microsaccades. Disparity tuning curves for moving and stationary stimuli are nearly identical in shape for most neurons. Although the disparity discriminability of MT neurons is generally higher for moving stereograms when responses are averaged over the entire 1.5 sec trial epoch, discriminability is comparable for moving and stationary stimuli during the first 200-300 msec of the response. Thus, in a normal time interval between saccades, MT neurons signal the binocular disparity of stationary stimuli with high fidelity. These findings show that MT can be a reliable source of visual information during the viewing of static scenes.
Collapse
|
22
|
Krolak-Salmon P, Hénaff MA, Tallon-Baudry C, Yvert B, Guénot M, Vighetto A, Mauguière F, Bertrand O. Human lateral geniculate nucleus and visual cortex respond to screen flicker. Ann Neurol 2003; 53:73-80. [PMID: 12509850 DOI: 10.1002/ana.10403] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The first electrophysiological study of the human lateral geniculate nucleus (LGN), optic radiation, striate, and extrastriate visual areas is presented in the context of presurgical evaluation of three epileptic patients (Patients 1, 2, and 3). Visual-evoked potentials to pattern reversal and face presentation were recorded with depth intracranial electrodes implanted stereotactically. For Patient 1, electrode anatomical registration, structural magnetic resonance imaging, and electrophysiological responses confirmed the location of two contacts in the geniculate body and one in the optic radiation. The first responses peaked approximately 40 milliseconds in the LGN in Patient 1 and 60 milliseconds in the V1/V2 complex in Patients 2 and 3. Moreover, steady state visual-evoked potentials evoked by the unperceived but commonly experienced video-screen flicker were recorded in the LGN, optic radiation, and V1/V2 visual areas. This study provides topographic and temporal propagation characteristics of steady state visual-evoked potentials along human visual pathways. We discuss the possible relationship between the oscillating signal recorded in subcortical and cortical areas and the electroencephalogram abnormalities observed in patients suffering from photosensitive epilepsy, particularly video-game epilepsy. The consequences of high temporal frequency visual stimuli delivered by ubiquitous video screens on epilepsy, headaches, and eyestrain must be considered.
Collapse
|
23
|
Precise burst synchrony in the superior colliculus of the awake cat during moving stimulus presentation. J Neurosci 2001. [PMID: 11160441 DOI: 10.1523/jneurosci.21-02-00615.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study aimed to characterize the synchrony that occurs between cell discharges in the superior colliculus of the awake cat. We trained cats to perform a visual fixation in the presence of a visual moving stimulus and then recorded 686 pairs of neighboring cells in the superior colliculus during task performance. A new method to assess the significance of precise discharge synchronization is described, which permits analysis of nonstationary data. Of 181 pairs with sufficient data for quantitative analysis, 125 showed a cross-correlation histogram (CCH) with features assessed as significant using this approach. CCHs frequently showed an isolated central peak (41 of 125) or a peak flanked by one or two troughs (68 of 125), and in a few cases an oscillatory pattern of approximately 65 Hz (16 of 125). This is in contrast to the oscillation frequency reported for the visual cortex and shows that oscillations in the superior colliculus probably arise from a cortex-independent mechanism. Our method also permits direct quantification of the correlation shift predictors, assessing precise time locking of spikes to the stimulus. Only 1 of 125 cross-correlation shift predictors had a significant central peak, meaning that most of the CCH features were not related to cell discharges time-locked to the stimulus presentation. Further investigation using a burst-jittering method showed that synchrony in the superior colliculus is attributable to precise synchronization of short bursts of spikes. Such synchrony could be related to the network dynamics and the common inhibitory feedback from local interneurons, which would act as temporal selectors of the cells with greatest or fastest response.
Collapse
|
24
|
Lamme VA, Supèr H, Landman R, Roelfsema PR, Spekreijse H. The role of primary visual cortex (V1) in visual awareness. Vision Res 2000; 40:1507-21. [PMID: 10788655 DOI: 10.1016/s0042-6989(99)00243-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the search for the neural correlate of visual awareness, much controversy exists about the role of primary visual cortex. Here, the neurophysiological data from V1 recordings in awake monkeys are examined in light of two general classes of models of visual awareness. In the first model type, visual awareness is seen as being mediated either by a particular set of areas or pathways, or alternatively by a specific set of neurons. In these models, the role of V1 seems rather limited, as the mere activity of V1 cells seems insufficient to mediate awareness. In the second model type, awareness is hypothesized to be mediated by a global mechanism, i.e. a specific kind of activity not linked to a particular area or cell type. Two separate versions of global models are discussed, synchronous oscillations and spike rate modulations. It is shown that V1 synchrony does not reflect perception but rather the horizontal connections between neurons, indicating that V1 synchrony cannot be a direct neural correlate of conscious percepts. However, the rate of spike discharges of V1 neurons is strongly modulated by perceptual context, and these modulations correlate very well with aspects of perceptual organization, visual awareness, and attention. If these modulations serve as a neural correlate of visual awareness, then V1 contributes to that neural correlate. Whether V1 plays a role in the neural correlate of visual awareness thus strongly depends on the way visual awareness is hypothesized to be implemented in the brain.
Collapse
Affiliation(s)
- V A Lamme
- Department of Visual System Analysis, AMC, Graduate School of Neurosciences, University of Amsterdam, P.O. Box 12011, 1100 AA, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
25
|
Abstract
Synchronous activity among ensembles of neurons is a robust phenomenon observed in many regions of the brain. With the increased use of multielectrode recording techniques, synchronous firing of ensembles of neurons has been found at all levels in the mammalian visual pathway, from the retina to the extrastriate cortex. Here we distinguish three categories of synchrony in the visual system, (a) synchrony from anatomical divergence, (b) stimulus-dependent synchrony, and (c) emergent synchrony (oscillations). Although all three categories have been well documented, their functional significance remains uncertain. We discuss several lines of evidence both for and against a role for synchrony in visual processing: the perceptual consequences of synchronous activity, its ability to carry information, and the transmission of synchronous neural events to subsequent stages of processing.
Collapse
Affiliation(s)
- W M Usrey
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
26
|
Snider RK, Kabara JF, Roig BR, Bonds AB. Burst firing and modulation of functional connectivity in cat striate cortex. J Neurophysiol 1998; 80:730-44. [PMID: 9705464 DOI: 10.1152/jn.1998.80.2.730] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We studied the influences of the temporal firing patterns of presynaptic cat visual cortical cells on spike generation by postsynaptic cells. Multiunit recordings were dissected into the activity of individual neurons within the recorded group. Cross-correlation analysis was then used to identify directly coupled neuron pairs. The 22 multiunit groups recorded typically showed activity from two to six neurons, each containing between 1 and 15 neuron pairs. From a total of 241 neuron pairs, 91 (38%) had a shifted cross-correlation peak, which indicated a possible direct connection. Only two multiunit groups contained no shifted peaks. Burst activity, defined by groups of two or more spikes with intervals of </=8 ms from any single neuron, was analyzed in terms of its effectiveness in eliciting a spike from a second, driven neuron. We defined effectiveness as the percentage of spikes from the driving neuron that are time related to spikes of the driven neuron. The effectiveness of bursts (of any length) in eliciting a time-related response spike averaged 18.53% across all measurements as compared with the effectiveness of single spikes, which averaged 9.53%. Longer bursts were more effective than shorter ones. Effectiveness was reduced with spatially nonoptimal, as opposed to optimal, stimuli. The effectiveness of both bursts and single spikes decreased by the same amount across measurements with nonoptimal orientations, spatial frequencies and contrasts. At similar firing rates and burst lengths, the decrease was more pronounced for nonoptimal orientations than for lower contrasts, suggesting the existence of a mechanism that reduces effectiveness at nonoptimal orientations. These results support the hypothesis that neural information can be emphasized via instantaneous rate coding that is not preserved over long intervals or over trials. This is consistent with the integrate and fire model, where bursts participate in temporal integration.
Collapse
Affiliation(s)
- R K Snider
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville Tennessee 37235, USA
| | | | | | | |
Collapse
|
27
|
Abstract
The brain effortlessly recombines information about the shape, colour, motion and so on of objects in the visual scene, but how it does so is not known. Synchronous neuronal firing has seemed an attractive solution to this problem, but new results and theoretical insights cast doubt on its functional role.
Collapse
Affiliation(s)
- H D Golledge
- Neural Systems Group, Department of Psychology, Ridley Building, University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK
| | | | | |
Collapse
|