1
|
Chang CH, Mejia Natividad I, Malik HS. Expansion and loss of sperm nuclear basic protein genes in Drosophila correspond with genetic conflicts between sex chromosomes. eLife 2023; 12:85249. [PMID: 36763410 PMCID: PMC9917458 DOI: 10.7554/elife.85249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
Many animal species employ sperm nuclear basic proteins (SNBPs) or protamines to package sperm genomes tightly. SNBPs vary across animal lineages and evolve rapidly in mammals. We used a phylogenomic approach to investigate SNBP diversification in Drosophila species. We found that most SNBP genes in Drosophila melanogaster evolve under positive selection except for genes essential for male fertility. Unexpectedly, evolutionarily young SNBP genes are more likely to be critical for fertility than ancient, conserved SNBP genes. For example, CG30056 is dispensable for male fertility despite being one of three SNBP genes universally retained in Drosophila species. We found 19 independent SNBP gene amplification events that occurred preferentially on sex chromosomes. Conversely, the montium group of Drosophila species lost otherwise-conserved SNBP genes, coincident with an X-Y chromosomal fusion. Furthermore, SNBP genes that became linked to sex chromosomes via chromosomal fusions were more likely to degenerate or relocate back to autosomes. We hypothesize that autosomal SNBP genes suppress meiotic drive, whereas sex-chromosomal SNBP expansions lead to meiotic drive. X-Y fusions in the montium group render autosomal SNBPs dispensable by making X-versus-Y meiotic drive obsolete or costly. Thus, genetic conflicts between sex chromosomes may drive SNBP rapid evolution during spermatogenesis in Drosophila species.
Collapse
Affiliation(s)
- Ching-Ho Chang
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, United States
| | - Isabel Mejia Natividad
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, United States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, United States
| |
Collapse
|
2
|
Poly(I:C) exposure during in vitro fertilization disrupts first cleavage of mouse embryos and subsequent blastocyst development. J Reprod Immunol 2022; 151:103635. [DOI: 10.1016/j.jri.2022.103635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022]
|
3
|
Tarozzi N, Nadalini M, Coticchio G, Zacà C, Lagalla C, Borini A. The paternal toolbox for embryo development and health. Mol Hum Reprod 2021; 27:6311671. [PMID: 34191013 DOI: 10.1093/molehr/gaab042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/30/2021] [Indexed: 11/12/2022] Open
Abstract
The sperm is essential for reconstitution of embryonic diploidy and highly specialized developmental functions. Immediately after gamete fusion, the sperm-borne PLC-zeta triggers activation, generating intracellular free Ca2+ oscillations. Mutations in the PLC-zeta encoding gene are associated with the absence of this factor in mature sperm and inability to achieve fertilization. Sperm play also a role in the greater game of the choreography of fertilization. In the human, the sperm centrioles are introduced into the oocyte environment with gamete fusion. They interact with the oocyte cytoskeletal apparatus to form a functional pair of centrosomes and ultimately regulate pronuclear juxtaposition in preparation for the first cleavage. As a consequence, the fidelity of chromosome segregation during the first cell divisions depends on the function of sperm centrioles. Sperm DNA integrity is essential for embryo development and health. Damaged DNA does not impact on the sperm fertilization ability following ICSI. However, detrimental effects emerge at pre- and post-implantation stages. Sperm-specific epigenetic factors also play an active role in the regulation of embryonic development, as shown by correlations between reduced embryo morphological quality and incorrect chromatin packaging during spermiogenesis or abnormal methylation of sperm CpG islands. This functional landscape demonstrates that the contribution of the sperm to development goes far beyond its well-established role in fertilization. Clinical studies confirm this view and indicate sperm function as a crucial aspect of research to increase the efficacy of assisted reproduction treatments.
Collapse
|
4
|
Wang H, Li Y, Yang J, Duan X, Kalab P, Sun SX, Li R. Symmetry breaking in hydrodynamic forces drives meiotic spindle rotation in mammalian oocytes. SCIENCE ADVANCES 2020; 6:eaaz5004. [PMID: 32284983 PMCID: PMC7124937 DOI: 10.1126/sciadv.aaz5004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/14/2020] [Indexed: 06/11/2023]
Abstract
Patterned cell divisions require a precisely oriented spindle that segregates chromosomes and determines the cytokinetic plane. In this study, we investigated how the meiotic spindle orients through an obligatory rotation during meiotic division in mouse oocytes. We show that spindle rotation occurs at the completion of chromosome segregation, whereby the separated chromosome clusters each define a cortical actomyosin domain that produces cytoplasmic streaming, resulting in hydrodynamic forces on the spindle. These forces are initially balanced but become unbalanced to drive spindle rotation. This force imbalance is associated with spontaneous symmetry breaking in the distribution of the Arp2/3 complex and myosin-II on the cortex, brought about by feedback loops comprising Ran guanosine triphosphatase signaling, Arp2/3 complex activity, and myosin-II contractility. The torque produced by the unbalanced hydrodynamic forces, coupled with a pivot point at the spindle midzone cortical contract, constitutes a unique mechanical system for meiotic spindle rotation.
Collapse
Affiliation(s)
- HaiYang Wang
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Yizeng Li
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA 30060, USA
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jing Yang
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xing Duan
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sean X. Sun
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rong Li
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Schall PZ, Ruebel ML, Latham KE. A New Role for SMCHD1 in Life's Master Switch and Beyond. Trends Genet 2019; 35:948-955. [PMID: 31668908 DOI: 10.1016/j.tig.2019.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/13/2019] [Accepted: 10/01/2019] [Indexed: 12/29/2022]
Abstract
Structural maintenance of chromosomes flexible hinge-domain containing protein 1 (SMCHD1) has emerged as a key regulator of embryonic genome function. Its functions have now extended well beyond the initial findings of effects on X chromosome inactivation associated with lethality in female embryos homozygous for a null allele. Autosomal dominant effects impact stem cell properties as well as postnatal health. Recent studies have revealed that SMCHD1 plays an important role as a maternal effect gene that regulates the master switch of life, namely embryonic genome activation, as well as subsequent preimplantation development and term viability. These discoveries mark SMCHD1 as a major regulator linking developmental processes to adult disorders including a form of muscular dystrophy.
Collapse
Affiliation(s)
- Peter Z Schall
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA; Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| | - Meghan L Ruebel
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA; Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, USA
| | - Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA; Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI 48824, USA; Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
6
|
Endo-siRNAs repress expression of SINE1B during in vitro maturation of porcine oocyte. Theriogenology 2019; 135:19-24. [PMID: 31189122 DOI: 10.1016/j.theriogenology.2019.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/20/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022]
Abstract
Approximately 40% of mammalian genome is made of transposable elements (TEs), and during specific biological processes, such as gametogenesis, they may be activated by global demethylation, so strict silencing mechanism is indispensable for genomic stability. Here, we performed small RNA-seq on Dicer1 knockdown (KD) oocytes in pig, and observed short interspersed nuclear elements 1B (SINE1B) derived endogenous small interfering RNAs (endo-siRNAs), termed SINE1B-siRNAs, were significantly decreased and their biogenesis was dependent on Dicer1 and transcript of SINE1B. Furthermore, by injection of mimics and inhibitors of the SINE1B-siRNAs into germinal vesicle-stage (GV-stage) oocytes, we found the maturation rate was significantly decreased by SINE1B-siRNAs, indicating the SINE1B-siRNAs are indispensible for in vitro maturation (IVM) of porcine oocyte. To figure out the mechanism, we checked the expression pattern and DNA methylation status of SINE1B during IVM of porcine oocytes, and demonstrated the SINE1B-siRNAs could repress SINE1B expression induced by hypomethylation at a post-transcriptional level. Our results suggest that during gametogenesis when the erasure of DNA methylation occurs, endo-siRNAs act as a chronic response to limit retrotransposon activation.
Collapse
|
7
|
Abstract
A cell-free system using oocyte extracts is a valuable tool to study early events of animal fertilization and examine protein-protein interactions difficult to observe in whole cells. The process of postfertilization sperm mitophagy assures timely elimination of paternal, sperm-contributed mitochondria carrying potentially corrupted mitochondrial DNA (mtDNA). Cell-free systems would be especially advantageous for studying postfertilization sperm mitophagy as large amounts of oocyte extracts can be incubated with hundreds to thousands of spermatozoa in a single trial, while only one spermatozoon per zygote can be examined by whole-cell approaches. Since sperm mitophagy is species-specific, the abundantly available frog egg extracts commonly used for cell-free systems have to be replaced with isospecific mammalian oocyte extracts, which are difficult to obtain. Here we describe the protocol for a mammalian, porcine cell-free system consisting of permeabilized domestic boar spermatozoa co-incubated with cell extracts from porcine oocytes, suitable for studying the interactions of maternal, oocyte-derived mitophagy factors with paternal, sperm mitochondria.
Collapse
Affiliation(s)
- Won-Hee Song
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, South Korea
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
8
|
Betarelli RP, Rocco M, Yeste M, Fernández-Novell JM, Placci A, Azevedo Pereira B, Castillo-Martín M, Estrada E, Peña A, Zangeronimo MG, Rodríguez-Gil JE. The achievement of boar spermin vitrocapacitation is related to an increase of disrupted disulphide bonds and intracellular reactive oxygen species levels. Andrology 2018; 6:781-797. [DOI: 10.1111/andr.12514] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 11/27/2022]
Affiliation(s)
- R. P. Betarelli
- Department of Veterinary Medicine; Federal University of Lavras; Lavras Brazil
| | - M. Rocco
- Department of Animal Medicine and Surgery; Autonomous University of Barcelona; Bellaterra (Cerdanyola del Vallès) Spain
- Department of Agriculture, Environment and Food Science; University of Molise; Campobasso Italy
| | - M. Yeste
- Department of Biology; Biotechnology of Animal and Human Reproduction (TechnoSperm); Institute of Food and Agricultural Technology; University of Girona; Girona Spain
| | - J. M. Fernández-Novell
- Department of Biochemistry and Molecular Biology; University of Barcelona; Barcelona Spain
| | - A. Placci
- Department of Animal Medicine and Surgery; Autonomous University of Barcelona; Bellaterra (Cerdanyola del Vallès) Spain
| | - B. Azevedo Pereira
- Department of Veterinary Medicine; Federal University of Lavras; Lavras Brazil
| | - M. Castillo-Martín
- Department of Biology; Biotechnology of Animal and Human Reproduction (TechnoSperm); Institute of Food and Agricultural Technology; University of Girona; Girona Spain
| | - E. Estrada
- Department of Animal Medicine and Surgery; Autonomous University of Barcelona; Bellaterra (Cerdanyola del Vallès) Spain
| | - A. Peña
- Department of Animal Medicine and Surgery; Autonomous University of Barcelona; Bellaterra (Cerdanyola del Vallès) Spain
| | - M. G. Zangeronimo
- Department of Veterinary Medicine; Federal University of Lavras; Lavras Brazil
| | - J. E. Rodríguez-Gil
- Department of Animal Medicine and Surgery; Autonomous University of Barcelona; Bellaterra (Cerdanyola del Vallès) Spain
| |
Collapse
|
9
|
Gold HB, Jung YH, Corces VG. Not just heads and tails: The complexity of the sperm epigenome. J Biol Chem 2018; 293:13815-13820. [PMID: 29507096 DOI: 10.1074/jbc.r117.001561] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Transgenerational inheritance requires mechanisms by which epigenetic information is transferred via gametes. Canonical thought holds that mammalian sperm chromatin would be incapable of carrying epigenetic information as post-translational modifications of histones because of their replacement with protamine proteins. Furthermore, compaction of the sperm genome would hinder DNA accessibility of proteins involved in transcriptional regulation and genome architecture. In this Minireview, we delineate the paternal chromatin remodeling events during spermatogenesis and fertilization. Sperm chromatin is epigenetically modified at various time points throughout its development. This allows for the addition of environment-specific modifications that can be passed from parents to offspring.
Collapse
Affiliation(s)
- Hannah B Gold
- From the Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Yoon Hee Jung
- From the Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Victor G Corces
- From the Department of Biology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
10
|
Canel NG, Bevacqua RJ, Hiriart MI, Rabelo NC, de Almeida Camargo LS, Romanato M, de Calvo LP, Salamone DF. Sperm pretreatment with heparin and l-glutathione, sex-sorting, and double cryopreservation to improve intracytoplasmic sperm injection in bovine. Theriogenology 2017; 93:62-70. [DOI: 10.1016/j.theriogenology.2016.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 11/30/2022]
|
11
|
Aston KI, Uren PJ, Jenkins TG, Horsager A, Cairns BR, Smith AD, Carrell DT. Aberrant sperm DNA methylation predicts male fertility status and embryo quality. Fertil Steril 2015; 104:1388-97.e1-5. [PMID: 26361204 DOI: 10.1016/j.fertnstert.2015.08.019] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/29/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To evaluate whether male fertility status and/or embryo quality during in vitro fertilization (IVF) therapy can be predicted based on genomewide sperm deoxyribonucleic acid (DNA) methylation patterns. DESIGN Retrospective cohort study. SETTING University-based fertility center. PATIENT(S) Participants were 127 men undergoing IVF treatment (where any major female factor cause of infertility had been ruled out), and 54 normozoospermic, fertile men. The IVF patients were stratified into 2 groups: patients who had generally good embryogenesis and a positive pregnancy (n = 55), and patients with generally poor embryogenesis (n = 72; 42 positive and 30 negative pregnancies) after IVF. INTERVENTION(S) Genomewide sperm DNA methylation analysis was performed to measure methylation at >485,000 sites across the genome. MAIN OUTCOME MEASURE(S) A comparison was made of DNA methylation patterns of IVF patients vs. normozoospermic, fertile men. RESULT(S) Predictive models proved to be highly accurate in classifying male fertility status (fertile or infertile), with 82% sensitivity, and 99% positive predictive value. Hierarchic clustering identified clusters enriched for IVF patient samples and for poor-quality-embryo samples. Models built to identify samples within these groups, from neat samples, achieved positive predictive value ≥ 94% while identifying >one fifth of all IVF patient and poor-quality-embryo samples in each case. Using density gradient prepared samples, the same approach recovered 46% of poor-quality-embryo samples with no false positives. CONCLUSION(S) Sperm DNA methylation patterns differ significantly and consistently for infertile vs. fertile, normozoospermic men. In addition, DNA methylation patterns may be predictive of embryo quality during IVF.
Collapse
Affiliation(s)
- Kenneth I Aston
- Department of Surgery, University of Utah Andrology and IVF Laboratories, University of Utah School of Medicine, Salt Lake City, Utah
| | - Philip J Uren
- Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Timothy G Jenkins
- Department of Surgery, University of Utah Andrology and IVF Laboratories, University of Utah School of Medicine, Salt Lake City, Utah
| | | | - Bradley R Cairns
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah; Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Andrew D Smith
- Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Douglas T Carrell
- Department of Surgery, University of Utah Andrology and IVF Laboratories, University of Utah School of Medicine, Salt Lake City, Utah; Department of Obstetrics and Gynecology and Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah.
| |
Collapse
|
12
|
Gray SL, Lackey BR, Boone WR. Impact of kudzu and puerarin on sperm function. Reprod Toxicol 2015; 53:54-62. [PMID: 25828059 DOI: 10.1016/j.reprotox.2015.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/06/2015] [Accepted: 03/20/2015] [Indexed: 11/29/2022]
Abstract
The goal of this study was to investigate the impact of kudzu (Pueraria mirifica) and the isoflavone puerarin in functional toxicological tests on spermatozoa and to assess the affinity of extracts and pure isoflavones for estrogen receptor (ER)-alpha and -beta (ERα, ERβ) in receptor binding assays. Capacitation, acrosome reaction and chromatin decondensation in spermatozoa were analyzed using microscopic analysis. Kudzu, but not puerarin, reduced motility of sperm. Puerarin reduced the percent spontaneous acrosome reaction in spermatozoa. The pathways used by kudzu that affect sperm function are not fully mirrored by puerarin. Puerarin, kudzu and its other phytoestrogenic components displayed preferential affinity for ERβ, however the diverse effects of kudzu and puerarin on sperm function implicate the involvement of multiple signaling systems.
Collapse
Affiliation(s)
- Sandra L Gray
- Endocrine Physiology Laboratory, Animal & Veterinary Science Department, Clemson University, Clemson, SC 29634, United States.
| | - Brett R Lackey
- Endocrine Physiology Laboratory, Animal & Veterinary Science Department, Clemson University, Clemson, SC 29634, United States
| | - William R Boone
- ART Laboratories, Department of Obstetrics & Gynecology, Greenville Health System University Medical Group, Greenville, SC 29605, United States
| |
Collapse
|
13
|
Kojima Y, Tam OH, Tam PPL. Timing of developmental events in the early mouse embryo. Semin Cell Dev Biol 2014; 34:65-75. [PMID: 24954643 DOI: 10.1016/j.semcdb.2014.06.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 01/29/2023]
Abstract
The timing of developmental events during early mouse development has been investigated in embryos that have been subject to experimental manipulation of cell number and tissue mass. These phenomenological studies revealed that the timing of preimplantation events, such as compaction, formation of blastocyst cavity and lineage allocation is correlated with the rounds of cleavage division or DNA replication of the blastomeres. Timing of postimplantation processes, such as formation of proamniotic cavity and onset of gastrulation is sensitive to cell number and probably the tissue mass, which may be measured by a mechanosensory signaling mechanism. Developmental changes in these two physical attributes are correlated with the cell proliferative activity and the growth trajectory of the whole embryo prior to the transit to organogenesis. During organogenesis, timing of morphogenesis appears to be regulated by individual devices that could be uncoupled during compensatory growth. Insights of the timing mechanism may be gleaned from the analysis of genomic activity associated with the transition through developmental milestones.
Collapse
Affiliation(s)
- Yoji Kojima
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan.
| | - Oliver H Tam
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute and Sydney Medical School, University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
14
|
Belloc S, Hazout A, Zini A, Merviel P, Cabry R, Chahine H, Copin H, Benkhalifa M. How to overcome male infertility after 40: Influence of paternal age on fertility. Maturitas 2014; 78:22-9. [DOI: 10.1016/j.maturitas.2014.02.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 12/13/2022]
|
15
|
Zini A, Albert O, Robaire B. Assessing sperm chromatin and DNA damage: clinical importance and development of standards. Andrology 2014; 2:322-5. [DOI: 10.1111/j.2047-2927.2014.00193.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 01/09/2023]
Affiliation(s)
- A. Zini
- Division of Urology, Department of Surgery; McGill University; Montreal QC Canada
| | - O. Albert
- Departments of Pharmacology & Therapeutics and of Obstetrics & Gynecology; McGill University; Montreal QC Canada
| | - B. Robaire
- Departments of Pharmacology & Therapeutics and of Obstetrics & Gynecology; McGill University; Montreal QC Canada
| |
Collapse
|
16
|
Iranpour FG. The effects of protamine deficiency on ultrastructure of human sperm nucleus. Adv Biomed Res 2014; 3:24. [PMID: 24592371 PMCID: PMC3929078 DOI: 10.4103/2277-9175.124666] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 08/25/2013] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Chromomycin A3 (CMA3) staining is one of the staining methods for detecting protamine deficiency in sperm nucleus. CMA3 is a fluorochrome that competes with protamines for binding to DNA double helix. It has been shown in our previous studies that percentage of CMA3 positive spermatozoa in semen has a close significant relationship with the fertilization rate in in vitro fertilization (IVF). The aim of this study was to examine the ultrastructural differences between sperms in patients who had high fluorescent percentages of yellow or red in CMA3 staining (protamine deficient) with patients with low fluorescent percentages. MATERIALS AND METHODS Semen samples are taken from five patients with high fluorescent percentages and five patients with low fluorescent percentages. Then the samples are passed for the different steps of preparing for electron microscopy. After the sectioning and mounting on grids, they are investigated under the transmission electron microscope. RESULTS Sperms in patients with low percentages of positive spermatozoa often have a normal appearance. Sperms in high fluorescent samples frequently have unpacked chromatin. Furthermore acrosomes of these sperms are thinner or disturbed. Also sometimes there are irregularities in sperm head membrane. CONCLUSION Protamine deficiency in sperm nucleus can cause ultrastructural anomalies in sperm chromatin such as unpacking of it. It also is concomitant with acrosome and sperm membrane disturbances.
Collapse
|
17
|
Chen H, Liao SB, Cheung MPL, Chow PH, Cheung ALM, O WS. Effects of sperm DNA damage on the levels of RAD51 and p53 proteins in zygotes and 2-cell embryos sired by golden hamsters without the major accessory sex glands. Free Radic Biol Med 2012; 53:885-92. [PMID: 22705368 DOI: 10.1016/j.freeradbiomed.2012.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/15/2012] [Accepted: 06/05/2012] [Indexed: 11/30/2022]
Abstract
We previously reported that the male accessory sex gland (ASG) secretion is the main source of antioxidants to safeguard sperm genomic integrity and functional competence. Removal of all ASGs in the golden hamster can reduce male fertility by increasing embryo wastage. This study aims to investigate whether the oxidative DNA-damaged sperm from hamsters without all ASGs (TX) could successfully fertilize oocytes and to qualify the status of DNA repair by the expression of RAD51 and p53 proteins. Here we demonstrated a significantly higher DNA-base adduct formation (8-hydroxy-2'-deoxyguanosine) in sperm from TX males than those from sham-operated males. Comet assays demonstrated that all female pronuclei in both zygotes were intact, but single- and double-strand DNA damage was found in decondensed sperm in TX males only. DNA damage could also be detected in both nuclei of the TX 2-cell embryos. RAD51, a DNA repair enzyme, was found to be evenly distributed in the cytoplasm and nuclei in oocytes/zygotes, while at the 2-cell stage, a strong expression of p53 protein and a larger clear perinuclear area without RAD51 expression were found in TX embryos. In conclusion, we demonstrated for the first time DNA damage in decondensed sperm of zygotes and blastomeres of 2-cell stage embryos sired by TX males, resulting in the activation of DNA repair. Sperm DNA damage could induce the increase in p53 expression and the reduction of RAD51 expression in the TX 2-cell stage embryos.
Collapse
Affiliation(s)
- Hong Chen
- Department of Anatomy, Histology & Embryology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
18
|
Jenkins TG, Carrell DT. Dynamic alterations in the paternal epigenetic landscape following fertilization. Front Genet 2012; 3:143. [PMID: 23024648 PMCID: PMC3442791 DOI: 10.3389/fgene.2012.00143] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 07/13/2012] [Indexed: 12/14/2022] Open
Abstract
Embryonic development is a complex and dynamic process with frequent changes in gene expression, ultimately leading to cellular differentiation and commitment of various cell lines. These changes are likely preceded by changes to signaling cascades and/or alterations to the epigenetic program in specific cells. The process of epigenetic remodeling begins early in development. In fact, soon after the union of sperm and egg massive epigenetic changes occur across the paternal and maternal epigenetic landscape. The epigenome of these cells includes modifications to the DNA itself, in the form of DNA methylation, as well as nuclear protein content and modification, such as modifications to histones. Sperm chromatin is predominantly packaged by protamines, but following fertilization the sperm pronucleus undergoes remodeling in which maternally derived histones replace protamines, resulting in the relaxation of chromatin and ultimately decondensation of the paternal pronucleus. In addition, active DNA demethylation occurs across the paternal genome prior to the first cell division, effectively erasing many spermatogenesis derived methylation marks. This complex interplay begins the dynamic process by which two haploid cells unite to form a diploid organism. The biology of these events is central to the understanding of sexual reproduction, yet our knowledge regarding the mechanisms involved is extremely limited. This review will explore what is known regarding the post-fertilization epigenetic alterations of the paternal chromatin and the implications suggested by the available literature.
Collapse
Affiliation(s)
- Timothy G Jenkins
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | |
Collapse
|
19
|
Lu YH, Gao HJ, Li BJ, Zheng YM, Ye YH, Qian YL, Xu CM, Huang HF, Jin F. Different sperm sources and parameters can influence intracytoplasmic sperm injection outcomes before embryo implantation. J Zhejiang Univ Sci B 2012; 13:1-10. [PMID: 22205614 DOI: 10.1631/jzus.b1100216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To evaluate the effects of sperm with different parameters and sources on the outcomes of intracytoplasmic sperm injection (ICSI), 1972 ICSI cycles were analyzed retrospectively. Groups 1 to 5 were composed of cycles using ejaculated sperm and were grouped according to sperm quantity, quality, and morphology into normal (288 cycles), or mild (329 cycles), moderate (522 cycles), severe (332 cycles), and extremely severe (171 cycles) oligozoospermia and/or asthenozoospermia and/or teratozoospermia (OAT) groups. Group 6 was composed of 250 cycles using testicular or epididymal sperm, and Group 7 consisted of 80 cycles using frozen-thawed sperm. We found that fertilization rates were gradually reduced from Groups 1 to 6, and reached statistical difference in Groups 5 and 6 (P<0.05). The high-quality embryo rate was higher in Group 1 than in Groups 2, 3, 5, 6, and 7 (P<0.05). No statistical differences were observed in the rates of embryo cleavage, clinical pregnancy, miscarriage, live-birth, premature birth, low birth weight, weeks of premature birth, average birth weight, or sex ratio for all seven groups (P>0.05). A total of nine cases of malformation were observed, with a malformation rate of 1.25% (9/719). In conclusion, different sperm sources and parameters can affect ICSI outcomes before embryo implantation. A full assessment of offspring malformation will require further study using a larger sample size.
Collapse
Affiliation(s)
- Yue-hong Lu
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Park KE, Johnson CM, Wang X, Cabot RA. Differential developmental requirements for individual histone H3K9 methyltransferases in cleavage-stage porcine embryos. Reprod Fertil Dev 2011; 23:551-60. [PMID: 21557922 DOI: 10.1071/rd10280] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 11/24/2010] [Indexed: 02/02/2023] Open
Abstract
Dimethylated H3K9 is a heritable epigenetic mark that is closely linked with transcriptional silencing and known to undergo global remodelling during cleavage development. Five mammalian histone methyltransferases (HMTases), namely Suv39H1, Suv39H2, SetDB1, EHMT1 and EHMT2, have been shown to mediate the methylation of H3K9. The aim of the present study was to determine the developmental requirements of these HMTases during cleavage development in porcine embryos. We hypothesised that knockdown of the abovementioned HMTases would differentially affect porcine cleavage development. To test this hypothesis, IVM and IVF porcine oocytes were divided into one of three treatment groups, including non-injected controls, oocytes injected with a double-stranded interfering RNA molecule specific for one of the HMTases and oocytes injected with a corresponding mutated (control) double-stranded RNA molecule. Nuclei were counted in all embryos 6 days after fertilisation. Although no significant difference in total cell number was detected in embryos injected with EHMT1 and EHMT2 interfering RNAs (compared with their respective control groups), embryos injected with interfering RNAs that targeted Suv39H1, Suv39H2 and SetDB1had significantly lower cell numbers than their respective control groups (P<0.05). This suggests that individual HMTases differentially affect in vitro developmental potential.
Collapse
Affiliation(s)
- Ki-Eun Park
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
21
|
Kim KH, Kim EY, Kim Y, Kim E, Lee HS, Yoon SY, Lee KA. Gas6 downregulation impaired cytoplasmic maturation and pronuclear formation independent to the MPF activity. PLoS One 2011; 6:e23304. [PMID: 21850267 PMCID: PMC3151302 DOI: 10.1371/journal.pone.0023304] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 07/14/2011] [Indexed: 11/18/2022] Open
Abstract
Previously, we found that the growth arrest-specific gene 6 (Gas6) is more highly expressed in germinal vesicle (GV) oocytes than in metaphase II (MII) oocytes using annealing control primer (ACP)-PCR technology. The current study was undertaken to investigate the role of Gas6 in oocyte maturation and fertilization using RNA interference (RNAi). Interestingly, despite the specific and marked decrease in Gas6 mRNA and protein expression in GVs after Gas6 RNAi, nuclear maturation including spindle structures and chromosome segregation was not affected. The only discernible effect induced by Gas6 RNAi was a change in maturation promoting factor (MPF) activity. After parthenogenetic activation, Gas6 RNAi-treated oocytes at the MII stage had not developed further and arrested at MII (90.0%). After stimulation with Sr(2+), Gas6-silenced MII oocytes had markedly reduced Ca(2+) oscillation and exhibited no exocytosis of cortical granules. In these oocytes, sperm penetration occurred during fertilization but not pronucleus (PN) formation. By roscovitine and colcemid treatment, we found that the Gas6 knockdown affected cytoplasmic maturation directly, independent to the changed MPF activity. These results strongly suggest that 1) the Gas6 signaling itself is important to the cytoplasmic maturation, but not nuclear maturation, and 2) the decreased Gas6 expression and decreased MPF activity separately or mutually influence sperm head decondensation and PN formation.
Collapse
Affiliation(s)
- Kyeoung-Hwa Kim
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Eun-Young Kim
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Yuna Kim
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Eunju Kim
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Hyun-Seo Lee
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Sook-Young Yoon
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Kyung-Ah Lee
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
- * E-mail:
| |
Collapse
|
22
|
Jukic AMZ, Weinberg CR, Baird DD, Wilcox AJ. The association of maternal factors with delayed implantation and the initial rise of urinary human chorionic gonadotrophin. Hum Reprod 2011; 26:920-6. [PMID: 21292636 DOI: 10.1093/humrep/der009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Late implantation and the pattern of early rise in hCG have been associated with early pregnancy loss. We explored factors that might be predictive of these markers of poor embryonic health in spontaneously conceived pregnancies. METHODS Participants in the North Carolina Early Pregnancy Study collected daily first-morning urine specimens while attempting to conceive. Samples were assayed for estrogen and progesterone metabolites (to identify day of ovulation) and hCG (to detect conception). Data were available for 190 pregnancies, 48 of which ended in early loss (within 6 weeks of the last menstrual period). We used logistic regression to identify characteristics associated with late implantation (≥10 days post-ovulation). For pregnancies surviving at least 6 weeks (n= 142), we used linear mixed models to identify factors associated with variations in hCG rise in the first 7 days from detection. RESULTS Later implantation was associated with current maternal smoking [odds ratio (OR): 5.7; 95% confidence interval (CI): 1.1-30] and with oocytes that were likely to have been fertilized late in their post-ovulatory lifespan (OR: 5.1; CI: 1.9-16). Older women had a faster rise in hCG (P= 0.01), as did women who had relatively late menarche (P for trend = 0.02). Women exposed in utero to diethylstilbestrol showed an unusual pattern of slow initial hCG rise followed by a fast increase, a pattern significantly different from that of unexposed women (P= 0.002). CONCLUSIONS Although limited by small numbers and infrequent exposures, our analyses suggest that a woman's exposures both early in life and at the time of pregnancy may influence early development of the conceptus.
Collapse
Affiliation(s)
- A M Z Jukic
- Epidemiology Branch, National Institute of Environmental Health Sciences, PO Box 12233, MD A3-05, Durham, NC 27709, USA.
| | | | | | | |
Collapse
|
23
|
El Hajj N, Zechner U, Schneider E, Tresch A, Gromoll J, Hahn T, Schorsch M, Haaf T. Methylation Status of Imprinted Genes and Repetitive Elements in Sperm DNA from Infertile Males. Sex Dev 2011; 5:60-9. [DOI: 10.1159/000323806] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2010] [Indexed: 01/19/2023] Open
|
24
|
Park KE, Johnson CM, Magnani L, Wang X, Biancardi MN, Cabot RA. Global H3K9 dimethylation status is not affected by transcription, translation, or DNA replication in porcine zygotes. Mol Reprod Dev 2010; 77:420-9. [DOI: 10.1002/mrd.21156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Park KE, Magnani L, Cabot RA. Differential remodeling of mono- and trimethylated H3K27 during porcine embryo development. Mol Reprod Dev 2010; 76:1033-42. [PMID: 19536841 DOI: 10.1002/mrd.21061] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Histone methylation plays an important role in regulating chromatin structure and gene expression. Methylation of the lysine residue 27 of histone H3 (H3K27) is an epigenetic mark that is closely linked with transcriptional repression; global patterns of H3K27 methylation undergo dramatic changes during cleavage development in the mouse. The aim of this study was to characterize the H3K27 methylation pattern in cleavage stage porcine embryos obtained either by in vivo or in vitro fertilization or parthenogenetic activation and to determine the expression patterns of EED, EZH2, and SUZ12 (regulators of H3K27 methylation). We found that monomethylated H3K27 was detectable in the nuclei of oocytes and pronuclear, 2-cell, 4-cell, 8-cell, and blastocyst stage embryos. Trimethylated H3K27 was detectable in the nuclei of GV stage oocytes, the chromosome of MII stage oocytes and a single pronucleus of the pronuclear stage embryos produced by fertilization; the signals were faint or absent in nuclei of two-cell through blastocyst stage embryos. In addition, EED transcripts were increased from the four-cell stage (P < 0.05) in embryos obtained by in vitro fertilization, parthenogenetic activation and in vivo fertilization. EZH2 transcript levels were highest in the GV-stage oocyte (P < 0.05). SUZ12 transcripts were transiently increased at the four-cell stage (P < 0.05) in parthenogenetic and in vivo derived embryos. Our results suggest that H3K27 trimethylation is an epigenetic marker of maternally derived chromatin that is globally remodeled during porcine embryogenesis.
Collapse
Affiliation(s)
- Ki-Eun Park
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
26
|
Enhancement of histone acetylation by trichostatin A during in vitro fertilization of bovine oocytes affects cell number of the inner cell mass of the resulting blastocysts. ZYGOTE 2009; 17:209-15. [PMID: 19356267 DOI: 10.1017/s0967199409005279] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Histone acetylation is one of the major mechanisms of epigenetic reprogramming of gamete genomes after fertilization to establish a totipotent state for normal development. In the present study, the effects of trichostatin A (TSA), an inhibitor of histone deacetylase, during in vitro fertilization (IVF) of bovine oocytes on subsequent embryonic development were investigated. Cumulus-enclosed oocytes obtained from slaughterhouse bovine ovaries were matured in vitro and subjected to IVF in a defined medium supplemented with 0 (control), 5, 50, and 500 nM TSA for 18 h. After IVF, presumptive zygotes were cultured in modified synthetic oviductal fluid (mSOF) medium until 168 h postinsemination (hpi). Some oocytes were immunostained using antibody specific for histone H4-acetylated lysine 5 at 10 hpi. Cleavage, blastocyst development and cell number of inner cell mass (ICM) and trophectoderm (TE) of blastocysts were assessed. TSA treatment enhanced histone acetylation that was prominent in decondensed sperm nuclei. TSA did not affect the postfertilization cleavage, blastocyst rates, and TE cell number. However, it significantly enhanced ICM cell number (p < 0.05). These results indicate that TSA treatment during IVF of bovine oocytes does not affect blastocyst development but alters the cell number of ICM, suggesting that overriding epigenetic modification of the genome during fertilization has a carryover effect on cell proliferation and differentiation in preimplantation embryos. Thus, further environmental quality controls in assisted reproductive technologies are needed in terms of factors which affect chromatin remodelling.
Collapse
|
27
|
May A, Reifenberg K, Zechner U, Haaf T. Asynchronous replication dynamics of imprinted and non-imprinted chromosome regions in early mouse embryos. Exp Cell Res 2008; 314:2788-95. [PMID: 18675801 DOI: 10.1016/j.yexcr.2008.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 07/13/2008] [Accepted: 07/14/2008] [Indexed: 12/19/2022]
Abstract
We have used interphase FISH to analyze the replication behavior of four imprinted chromosome regions (Snrpn, Zim1-Peg3, Dlk1-Gtl2, and Igf2r) and five non-imprinted regions in mouse one-cell to morula-stage embryos and embryonic fibroblasts. In general, imprinted chromosome regions showed the expected asynchronous pattern of replication throughout all analyzed stages of preimplantation development and in differentiated cells. The Dlk1-Gtl2 locus which is not expressed and Igf2r which is biallelically expressed in early embryos showed a relaxation of replication asynchrony at the morula stage. Asynchronous replication in zygotes and two-cell embryos was not specific to imprinted regions. Three non-imprinted loci (Emp1-Pbp2-Dyntl1, Hbb-b1-Hbb-b2-Hbb-y, and Opa1) as well as one gene-free region on chromosome 7A1 switched from asynchronous replication in one- and two-cell embryos to synchronous replication in 4-cell embryos and later stages. Another gene-free region on chromosome 16C2 showed a more gradual transition from asynchronous to synchronous replication from two-cell to morula-stage embryos. We propose that replication asynchrony contributes to the striking asymmetry between the two parental genomes, which are epigenetically reprogrammed after fertilization into a diploid somatic genome. The switching of non-imprinted genes from asynchronous to synchronous replication may be associated with embryonic genome activation and restoration of transcriptional potential for somatic development.
Collapse
Affiliation(s)
- Andreas May
- Institute for Human Genetics, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | | | | | | |
Collapse
|
28
|
Elucidating nuclear reprogramming mechanisms: taking a synergistic approach. Reprod Biomed Online 2008; 16:41-50. [PMID: 18252046 DOI: 10.1016/s1472-6483(10)60555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nuclear reprogramming is the process by which a differentiated somatic nucleus has developmental potential restored to it. It involves heritable changes in gene expression as well as structural and functional changes to chromatin structure. This process is naturally induced immediately after fertilization, but can also be artificially induced by nuclear transfer, cell fusion and also now by viral transduction with four stem cell genes. However, the frequency of successful reprogramming is low in each system. The highest success rates, those using nuclear transfer, are only of the order of 2-5%. This article briefly reviews these three methods and proposes a synergistic approach where conditions that facilitate reprogramming in one system are transposed to the others. This might increase the incidence of successful reprogramming and identify common steps necessary for the reacquisition of developmental potential.
Collapse
|
29
|
Adler ID, Carere A, Eichenlaub-Ritter U, Pacchierotti F. Gender differences in the induction of chromosomal aberrations and gene mutations in rodent germ cells. ENVIRONMENTAL RESEARCH 2007; 104:37-45. [PMID: 17052706 DOI: 10.1016/j.envres.2006.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 08/24/2006] [Accepted: 08/26/2006] [Indexed: 05/12/2023]
Abstract
Germ cell mutagenicity testing provides experimental data to quantify genetic risk for exposed human populations. The majority of tests are performed with exposure of males, and female data are relatively rare. The reason for this paucity lies in the differences between male and female germ cell biology. Male germ cells are produced throughout reproductive life and all developmental stages can be ascertained by appropriate breeding schemes. In contrast, the female germ cell pool is limited, meiosis begins during embryogenesis and oocytes are arrested over long periods of time until maturation processes start for small numbers of oocytes during the oestrus cycle in mature females. The literature data are reviewed to point out possible gender differences of germ cells to exogenous agents such as chemicals or ionizing radiation. From the limited information, it can be concluded that male germ cells are more sensitive than female germ cells to the induction of chromosomal aberrations and gene mutations. However, exceptions are described which shed doubt on the extrapolation of experimental data from male rodents to the genetic risk of the human population. Furthermore, the female genome may be more sensitive to mutation induction during peri-conceptional stages compared to the male genome of the zygote. With few exceptions, germ cell experiments have been carried out under high acute exposure to optimize the effects and to compensate for the limited sample size in animal experiments. Human exposure to environmental agents, on the other hand, is usually chronic and involves low doses. Under these conditions, gender differences may become apparent that have not been studied so far. Additionally, data are reviewed that suggest a false impression of safety when responses are negative under high acute exposure of male rodents while a mutational response is induced by low chronic exposure. The classical (morphological) germ cell mutation tests are not performed anymore because they are animal and time consuming. Nevertheless, information is needed to place genetic risk extrapolations on more solid grounds and thereby to prevent an increased genetic burden to future generations. It is pointed out that modern molecular methodologies are available now to experimentally address the open questions.
Collapse
Affiliation(s)
- Ilse-Dore Adler
- GSF-Institute of Experimental Genetics, Neuherberg D-85758, Germany
| | | | | | | |
Collapse
|
30
|
Yang J, Yang S, Beaujean N, Niu Y, He X, Xie Y, Tang X, Wang L, Zhou Q, Ji W. Epigenetic Marks in Cloned Rhesus Monkey Embryos: Comparison with Counterparts Produced In Vitro1. Biol Reprod 2007; 76:36-42. [PMID: 17021347 DOI: 10.1095/biolreprod.106.051383] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Until now, no primate animals have been successfully cloned to birth with somatic cell nuclear transfer (SCNT) procedures, and little is known about the molecular events that occurred in the reconstructed embryos during preimplantation development. In many SCNT cases, epigenetic reprogramming of the donor nuclei after transfer into enucleated oocytes was hypothesized to be crucial to the reestablishment of embryonic totipotency. In the present study, we focused on two major epigenetic marks, DNA methylation and histone H3 lysine 9 (H3K9) acetylation, which we examined by indirect immunofluorescence and confocal laser scanning microscopy. During preimplantation development, 67% of two-cell- and 50% of eight-cell-cloned embryos showed higher DNA methylation levels than their in vitro fertilization (IVF) counterparts, which undergo gradual demethylation until the early morula stage. Moreover, whereas an asymmetric distribution of DNA methylation was established in an IVF blastocysts with a lower methylation level in the inner cell mass (ICM) than in the trophectoderm, in most cloned blastocysts, ICM cells maintained a high degree of methylation. Finally, two donor cell lines (S11 and S1-04) that showed a higher level of H3K9 acetylation supported more blastocyst formation after nuclear transfer than the other cell line (S1-03), with a relatively low level of acetylation staining. In conclusion, we propose that abnormal DNA methylation patterns contribute to the poor quality of cloned preimplantation embryos and may be one of the obstacles to successful cloning in primates.
Collapse
Affiliation(s)
- Jifeng Yang
- Department of Reproduction and Development, Kunming Institute of Zoology & Kunming Primate Research Center, the Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Singleton S, Zalensky A, Doncel GF, Morshedi M, Zalenskaya IA. Testis/sperm-specific histone 2B in the sperm of donors and subfertile patients: variability and relation to chromatin packaging. Hum Reprod 2006; 22:743-50. [PMID: 17110399 DOI: 10.1093/humrep/del439] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The compaction of human sperm chromatin is the result of replacement of approximately 85% of histones with protamines. Germ-line testis/sperm-specific histone 2B (TSH2B) has been detected in only approximately 30% of mature spermatozoa. Its level in the semen of subfertile patients varies; its function is unknown. We evaluated TSH2B in the sperm samples of 23 donors and 49 subfertile patients and assessed its association with chromatin compaction status. METHODS TSH2B level was measured using immunoblotting. Chromatin packaging quality was evaluated by staining with chromomycin A3 (CMA3) which marked spermatozoa with defective packaging. To assess both TSH2B and chromatin status in the same spermatozoon, CMA3 staining and TSH2B immunolocalization were performed sequentially. RESULTS A significant correlation (r = 0.55, P = 0.0027) was found between TSH2B level and percentage of CMA3-positive sperm in patient and donor semen samples. When individual spermatozoa were assessed for these parameters, 92% of TSH2B-containing cells were also CMA3 positive. Variation in the total sperm TSH2B level was less in donors than in patients. CONCLUSIONS CMA3 positive staining of TSH2B-containing individual spermatozoa and a significant correlation between the total TSH2B level and CMA3 percentage in semen samples suggest a structural role for TSH2B in sperm chromatin organization. Low variability of TSH2B level in donors implies a mechanism (however unknown) regulating this parameter.
Collapse
Affiliation(s)
- S Singleton
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | | | | | | | | |
Collapse
|
32
|
Ajduk A, Yamauchi Y, Ward MA. Sperm chromatin remodeling after intracytoplasmic sperm injection differs from that of in vitro fertilization. Biol Reprod 2006; 75:442-51. [PMID: 16775225 DOI: 10.1095/biolreprod.106.053223] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Intracytoplasmic sperm injection (ICSI) is a popular method used in assisted conception, and live offspring have been born from a variety of species, including humans. In ICSI, sperm chromatin is introduced into the oocyte together with the acrosome, a structure that does not enter the oocyte during normal fertilization. We compared sperm chromatin remodeling, the potential of embryos to develop in vitro, and DNA synthesis in mouse embryos obtained from in vitro fertilization (IVF) and ICSI. We also tested whether sperm pretreatment prior to ICSI (i.e., capacitation, acrosome reaction, membrane removal, and reduction of disulfide bonds in protamines) facilitates chromatin remodeling and affects embryo development. Sperm chromatin was examined on air-dried, Giemsa-stained preparations at 30-min intervals for up to 4.5 h postfertilization. In all experimental groups, the oocytes underwent activation and formed pronuclei with similar rates. However, the dynamics of sperm chromatin remodeling in ICSI and IVF embryos varied. In ICSI, chromatin remodeling was more asynchronous than in IVF. Sperm capacitation prior to injection enhanced remodeling asynchrony and resulted in delayed pronuclei formation and DNA synthesis. The removal of the acrosome prior to injection with calcium ionophore A23187 but not with detergent Triton X-100 allowed more synchronous chromatin remodeling, timely DNA synthesis, and good embryo development. Our data have significance for the refinement of the molecular and biologic mechanisms associated with ICSI for current and future applications.
Collapse
Affiliation(s)
- Anna Ajduk
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96822, USA
| | | | | |
Collapse
|
33
|
Abstract
Protamines are the major nuclear sperm proteins. The human sperm nucleus contains two types of protamine: protamine 1 (P1) encoded by a single-copy gene and the family of protamine 2 (P2) proteins (P2, P3 and P4), all also encoded by a single gene that is transcribed and translated into a precursor protein. The protamines were discovered more than a century ago, but their function is not yet fully understood. In fact, different hypotheses have been proposed: condensation of the sperm nucleus into a compact hydrodynamic shape, protection of the genetic message delivered by the spermatozoa, involvement in the processes maintaining the integrity and repair of DNA during or after the nucleohistone-nucleoprotamine transition and involvement in the epigenetic imprinting of the spermatozoa. Protamines are also one of the most variable proteins found in nature, with data supporting a positive Darwinian selection. Changes in the expression of P1 and P2 protamines have been found to be associated with infertility in man. Mutations in the protamine genes have also been found in some infertile patients. Transgenic mice defective in the expression of protamines also present several structural defects in the sperm nucleus and have variable degrees of infertility. There is also evidence that altered levels of protamines may result in an increased susceptibility to injury in the spermatozoan DNA causing infertility or poor outcomes in assisted reproduction. The present work reviews the articles published to date on the relationship between protamines and infertility.
Collapse
Affiliation(s)
- Rafael Oliva
- Human Genetics Laboratory, Genetics Unit, Department of Ciències Fisiològiques I, Faculty of Medicine, University of Barcelona and Hospital Clínic, IDIBAPS, Casanova 143, 08036 Barcelona, Spain.
| |
Collapse
|
34
|
Bettegowda A, Patel OV, Ireland JJ, Smith GW. Quantitative analysis of messenger RNA abundance for ribosomal protein L-15, cyclophilin-A, phosphoglycerokinase, β-glucuronidase, glyceraldehyde 3-phosphate dehydrogenase, β-actin, and histone H2A during bovine oocyte maturation and early embryogenesis in vitro. Mol Reprod Dev 2006; 73:267-78. [PMID: 16261607 DOI: 10.1002/mrd.20333] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Real-time reverse transcription PCR has greatly improved the ease and sensitivity of quantitative gene expression studies. However, measurement of gene expression generally requires selection of a valid reference (housekeeping gene) for data normalization to compensate for inherent variations. Given the dynamic nature of early embryonic development, application of this technology to studies of oocyte and early embryonic development is further complicated due to limited amounts of starting material and a paucity of information on constitutively expressed genes for data normalization. We have validated quantitative procedures for real-time reverse transcription polymerase chain reaction (RT-PCR) analysis of mRNA abundance during bovine meiotic maturation and early embryogenesis and utilized this technology to determine temporal changes in mRNA abundance for ribosomal protein L-15, cyclophilin-A, phosphoglycerokinase, beta-glucuronidase, glyceraldehyde-3-phosphate dehydrogenase, beta-actin, and histone H2A. Quantification of amounts of specific exogenous RNAs added to samples revealed acceptable rates of RNA recovery and efficiency of reverse transcription with minimal variation. Progression of bovine oocytes to metaphase II resulted in reduced abundance of polyadenylated, but not total transcripts for majority of above genes; however phosphoglycerokinase exhibited a significant decline in both RNA populations. Abundance of mRNAs for above genes in early embryos generally remained low until the blastocyst stage, but abundance of ribosomal protein L-15 mRNA was increased at the morula stage and histone H2A mRNA showed dynamic changes prior to embryonic genome activation. Results demonstrate a valid approach for quantitative analysis of mRNA abundance in oocytes and embryos, but do not support constitutive expression of above genes during early embryonic development.
Collapse
Affiliation(s)
- Anilkumar Bettegowda
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
35
|
Dean W, Lucifero D, Santos F. DNA methylation in mammalian development and disease. ACTA ACUST UNITED AC 2005; 75:98-111. [PMID: 16035040 DOI: 10.1002/bdrc.20037] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetic modification of the cytosine base of DNA by its methylation introduced the possibility that beyond the inherent information contained within the nucleotide sequence there was an additional layer of information added to the underlying genetic code. DNA methylation has been implicated in a wide range of biological functions, including an essential developmental role in the reprogramming of germ cells and early embryos, the repression of endogenous retrotransposons, and a generalized role in gene expression. Special functions of DNA methylation include the marking of one of the parental alleles of many imprinted genes, a group of genes essential for growth and development in mammals with a unique parent-of-origin expression pattern, a role in stabilizing X-chromosome inactivation, and centromere function. In this regard, it is not surprising that errors in establishing or maintaining patterns of methylation are associated with a diverse group of human diseases and syndromes.
Collapse
Affiliation(s)
- Wendy Dean
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Babraham Research Campus, Cambridge CB2 4AT, UK.
| | | | | |
Collapse
|
36
|
Marchetti F, Wyrobek AJ. Mechanisms and consequences of paternally-transmitted chromosomal abnormalities. ACTA ACUST UNITED AC 2005; 75:112-29. [PMID: 16035041 DOI: 10.1002/bdrc.20040] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Paternally-transmitted chromosomal damage has been associated with pregnancy loss, developmental and morphological defects, infant mortality, infertility, and genetic diseases in the offspring, including cancer. There is epidemiological evidence linking paternal exposure to occupational or environmental agents with an increased risk of abnormal reproductive outcomes. There is also a large body of literature on germ cell mutagenesis in rodents showing that treatment of male germ cells with mutagens has dramatic consequences on reproduction, producing effects such as those observed in human epidemiological studies. However, we know very little about the etiology, transmission, and early embryonic consequences of paternally-derived chromosomal abnormalities. The available evidence suggests that: 1) there are distinct patterns of germ cell-stage differences in the sensitivity of induction of transmissible genetic damage, with male postmeiotic cells being the most sensitive; 2) cytogenetic abnormalities at first metaphase after fertilization are critical intermediates between paternal exposure and abnormal reproductive outcomes; and 3) there are maternal susceptibility factors that may have profound effects on the amount of sperm DNA damage that is converted into chromosomal aberrations in the zygote and that directly affect the risk for abnormal reproductive outcomes.
Collapse
Affiliation(s)
- Francesco Marchetti
- Biosciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | | |
Collapse
|
37
|
Córdova-Izquierdo A, Oliva JH, Lleó B, García-Artiga C, Corcuera BD, Pérez-Gutiérrez JF. Effect of different thawing temperatures on the viability, in vitro fertilizing capacity and chromatin condensation of frozen boar semen packaged in 5 ml straws. Anim Reprod Sci 2005; 92:145-54. [PMID: 15975744 DOI: 10.1016/j.anireprosci.2005.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 05/10/2005] [Accepted: 05/23/2005] [Indexed: 10/25/2022]
Abstract
The effect of two different thawing temperatures on frozen boar semen viability, in vitro fertilizing capacity and chromatin condensation and stability was studied. Freeze-thaw motility, normal apical ridge (NAR), in vitro fertilizing (IVF) capacity and chromatin condensation and stability were evaluated after thawing at 42 degrees C, 40s and 50 degrees C, 40s. Chromatin condensation degree was determined by flow cytometry, using propidium iodide as fluorochrome intercalating agent, and chromatin stability was evaluated by the same procedure after inducing sperm chromatin decondensation with ethylene diamine tetraacetic acid (EDTA) and sodium dodecyl sulfate (SDS). The results showed that thawing straws at 42 degrees C, 40s significantly reduced motility compared to straws thawed at 50 degrees C, 40s. NAR, penetration, monospermy and polyspermy were not different between the two groups of samples thawed at different temperatures. Chromatin was significantly more compact when thawing was performed at 50 degrees C, but its stability did not show any difference relative to thawing at 42 degrees C. It is suggested that the interactions involved in chromatin overcondensation had a non-covalent nature.
Collapse
Affiliation(s)
- A Córdova-Izquierdo
- Dto. de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Xochimilco, México
| | | | | | | | | | | |
Collapse
|
38
|
Tateno H, Kamiguchi Y. Chromosome analysis of mouse one-cell androgenones derived from a sperm nucleus exposed to topoisomerase II inhibitors at pre- and post-fertilization stages. Mutat Res 2005; 556:117-26. [PMID: 15491639 DOI: 10.1016/j.mrfmmm.2004.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 07/07/2004] [Accepted: 07/14/2004] [Indexed: 11/29/2022]
Abstract
Mouse spermatozoa and androgenetic one-cell embryos (androgenones) at various developmental stages were exposed to etoposide (1 microM), a topoisomerase II (topo II) poison, or to either of two catalytic inhibitors: ICRF-193 (10 microM) or merbarone (50 microM), for 2 h in order to study the clastogenic effects of these drugs on remodeled sperm chromatin. None of the drugs induced structural chromosome aberrations in condensed chromatin of spermatozoa. However, etoposide and merbarone exerted strong clastogenic actions on remodeled chromatin of androgenones. Expanding chromatin was most sensitive to both of these drugs at the time of pronuclear formation, as nearly 100% of androgenones exposed at this stage displayed structural chromosome aberrations. ICRF-193 did not affect sperm chromatin at all remodeling stages. A majority of the aberrations induced by etoposide and merbarone were of the chromosome-type. Chromosome exchanges, including translocation, dicentric, and ring chromosomes, preferentially appeared following exposure at the early stages of chromatin remodeling. Thus, despite their different modes of topo II inhibition, etoposide and merbarone showed similar clastogenic actions on remodeled sperm chromatin. These results suggest that the formation of transient DNA cleavage, mediated by ooplasmic topo II, accompanies the remodeling. The present findings provide insight into the mechanisms by which structural aberrations are generated in paternal chromosomes.
Collapse
Affiliation(s)
- Hiroyuki Tateno
- Department of Biological Sciences, Asahikawa Medical College, 2-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan.
| | | |
Collapse
|
39
|
Lin YC, Chang SY, Lan KC, Huang HW, Chang CY, Tsai MY, Kung FT, Huang FJ. Human oocyte maturity in vivo determines the outcome of blastocyst development in vitro. J Assist Reprod Genet 2004; 20:506-12. [PMID: 15035550 PMCID: PMC3455306 DOI: 10.1023/b:jarg.0000013651.37866.0c] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To date, the impact of oocyte maturity at aspiration on the blastocyst formation in vitro has not been fully evaluated. This study was undertaken to assess the influence of oocyte maturity in patients undergoing in vitro fertilization and blastocyst transfer program. METHODS A total of 1278 oocytes derived from 147-IVF cycles were retrospectivly analyzed. Oocyte maturity was graded on a scale from 1 to 5 based on the morphology of the ooplasm, cumulus mass, corona radiata, and membrana granulosa cells. RESULTS Mature oocytes yielded the highest fertilization rates. Although the cleavage rates were similar in both groups, the percentage of poor morphology, day-3 embryos from the nonmature-oocyte group was significantly higher than from the mature-oocyte group (54.7% vs. 15.5%, P < 0.001). Although good morphology, day-3 embryos were collected from nonmature oocytes, the incidence of these embryos developing to the blastocyst stage was significantly less than from mature oocytes (33.3% vs. 71.2%, P < 0.001). Although blastocyst stage embryos were collected from nonmature oocytes, the incidence of these embryos developing to the top-scoring blastocysts was significantly less than from mature oocytes (58.3% vs. 89.5%, P < 0.001). CONCLUSIONS These phenomena suggest that oocyte maturity produced in vivo determine the fertilization potential and subsequent blastocyst quality in vitro.
Collapse
Affiliation(s)
- Yi-Chi Lin
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shiuh-Young Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Medicine, Chang Gung University School of Medicine, Tao-Yuan, Taiwan
| | - Kuo-Chung Lan
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Hsuan-Wei Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chih-Yang Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Meng-Yin Tsai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Fu-Tsai Kung
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Medicine, Chang Gung University School of Medicine, Tao-Yuan, Taiwan
| | - Fu-Jen Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Medicine, Chang Gung University School of Medicine, Tao-Yuan, Taiwan
| |
Collapse
|
40
|
Abstract
Epigenetic modifications serve as an extension of the information content by which the underlying genetic code may be interpreted. These modifications mark genomic regions and act as heritable and stable instructions for the specification of chromatin organisation and structure that dictate transcriptional states. In mammals, DNA methylation and the modification of histones account for the major epigenetic alterations. Two cycles of DNA methylation reprogramming have been characterised. During germ cell development, epigenetic reprogramming of DNA methylation resets parent-of-origin based genomic imprints and restores totipotency to gametes. On fertilisation, the second cycle is triggered resulting in an asymmetric difference between parental genomes. Further epigenetic asymmetry is evident in the establishment of the first two lineages at the blastocyst stage. This differentiative event sets the epigenetic characteristics of the lineages as derivatives of the inner cell mass (somatic) and trophectoderm (extra-embryonic). It is the erasure and subsequent re-tracing of the epigenetic checkpoints that pose the most serious obstacles to somatic nuclear transfer. Elaboration of the mechanisms of these interactions will be invaluable in our fundamental understanding of biological processes and in achieving substantial therapeutic advances.
Collapse
Affiliation(s)
- Fátima Santos
- Laboratory of Developmental Genetics and Imprinting, Developmental Genetics Programme, The Babraham Institute, Cambridge CB2 4AT, UK
| | | |
Collapse
|
41
|
Marchetti F, Bishop JB, Cosentino L, Moore D, Wyrobek AJ. Paternally Transmitted Chromosomal Aberrations in Mouse Zygotes Determine Their Embryonic Fate1. Biol Reprod 2004; 70:616-24. [PMID: 14585809 DOI: 10.1095/biolreprod.103.023044] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The developmental consequences of chromosomal aberrations in embryos include spontaneous abortions, morphological defects, inborn abnormalities, and genetic/chromosomal diseases. Six germ-cell mutagens with different modes of action and spermatogenic stage sensitivities were used to investigate the relationship between the types of cytogenetic damage in zygotes with their subsequent risk of postimplantation death and of birth as a translocation carrier. Independent of the mutagen used, over 98% of paternally transmitted aberrations were chromosome type, rather than chromatid type, indicating that they were formed during the period between exposure of male germ cells and initiation of the first S phase after fertilization. There were consistent one-to-one agreements between the proportions of a) zygotes with unstable aberrations and the frequencies of dead embryos after implantation (slope = 0.87, confidence interval [CI]: 0.74, 1.16) and b) zygotes with reciprocal translocations and the frequency of translocation carriers at birth (slope = 0.74, CI: 0.48, 2.11). These findings suggest that chromosomal aberrations in zygotes are highly predictive of subsequent abnormal embryonic development and that development appears to proceed to implantation regardless of the presence of chromosomal abnormalities. Our findings support the hypothesis that, for paternally transmitted chromosomal aberrations, the fate of the embryo is already set by the end of G1 of the first cell cycle of development.
Collapse
Affiliation(s)
- Francesco Marchetti
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, California 94550, USA.
| | | | | | | | | |
Collapse
|
42
|
Marchetti F, Wyrobek AJ. PAINT/DAPI analysis of mouse zygotes to detect paternally transmitted chromosomal aberrations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 518:131-45. [PMID: 12817682 DOI: 10.1007/978-1-4419-9190-4_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Affiliation(s)
- Francesco Marchetti
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | | |
Collapse
|
43
|
Payne C, Schatten G. Golgi dynamics during meiosis are distinct from mitosis and are coupled to endoplasmic reticulum dynamics until fertilization. Dev Biol 2003; 264:50-63. [PMID: 14623231 DOI: 10.1016/j.ydbio.2003.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
One current theory of the Golgi apparatus views its organization as containing both a matrix fraction of structural proteins and a reservoir of cycling enzymes. During mitosis, the putative matrix protein GM130 is phosphorylated and relocalized to spindle poles. When the secretory pathway is inhibited during interphase, GM130 redistributes to regions adjacent to vesicle export sites on the endoplasmic reticulum (ER). Strikingly, meiotic maturation and fertilization in nonrodent mammalian eggs presents a unique experimental environment for the Golgi apparatus, because secretion is inhibited until after fertilization, and because the centrosome is absent until introduced by the sperm. Here, we test the hypothesis that phosphorylated GM130 associates not with meiotic spindle poles, but with ER clusters in the mature bovine oocyte. At the germinal vesicle stage, phosphorylated GM130 is observed as fragments dispersed throughout the cytoplasm. During meiotic maturation, GM130 reorganizes into punctate foci that associate near the ER-resident protein calreticulin and is notably absent from the meiotic spindle. GM130 colocalizes with Sec23, a marker for ER vesicle export sites, but not with Lens culinaris agglutinin, a marker for cortical granules. Because disruption of vesicle transport has been shown to block meiotic maturation and embryonic cleavage in some species, we also test the hypothesis that fertilization and cytokinesis are inhibited with membrane trafficking disruptor brefeldin A (BFA). Despite Golgi fragmentation after BFA treatment, pronuclei form and unite, and embryos cleave and develop through the eight-cell stage. We conclude that, while the meiotic phosphorylation cycle of GM130 mirrors that of mitosis, absence of a maternal centrosome precludes Golgi association with the meiotic spindle. Fertilization introduces the sperm centrosome that can reorganize Golgi proteins, but neither fertilization nor cytokinesis prior to compaction requires a functional Golgi apparatus.
Collapse
Affiliation(s)
- Christopher Payne
- Program in Molecular and Cellular Biosciences, Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR 97201, USA
| | | |
Collapse
|
44
|
Reik W, Santos F, Mitsuya K, Morgan H, Dean W. Epigenetic asymmetry in the mammalian zygote and early embryo: relationship to lineage commitment? Philos Trans R Soc Lond B Biol Sci 2003; 358:1403-9; discussion 1409. [PMID: 14511488 PMCID: PMC1693238 DOI: 10.1098/rstb.2003.1326] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Epigenetic asymmetry between parental genomes and embryonic lineages exists at the earliest stages of mammalian development. The maternal genome in the zygote is highly methylated in both its DNA and its histones and most imprinted genes have maternal germline methylation imprints. The paternal genome is rapidly remodelled with protamine removal, addition of acetylated histones, and rapid demethylation of DNA before replication. A minority of imprinted genes have paternal germline methylation imprints. Methylation and chromatin reprogramming continues during cleavage divisions, but at the blastocyst stage lineage commitment to inner cell mass (ICM) or trophectoderm (TE) fate is accompanied by a dramatic increase in DNA and histone methylation, predominantly in the ICM. This may set up major epigenetic differences between embryonic and extraembryonic tissues, including in X-chromosome inactivation and perhaps imprinting. Maintaining epigenetic asymmetry appears important for development as asymmetry is lost in cloned embryos, most of which have developmental defects, and in particular an imbalance between extraembryonic and embryonic tissue development.
Collapse
Affiliation(s)
- Wolf Reik
- Laboratory of Developmental Genetics and Imprinting, Developmental Genetics Programme, The Babraham Institute, Cambridge CB2 4AT, UK.
| | | | | | | | | |
Collapse
|
45
|
Abstract
At fertilization, the highly condensed and transcriptionally inert chromatin of the spermatozoa becomes remodelled into the decondensed and transcriptionally competent chromatin of the male pronucleus. The chromatin initially becomes dispersed and then transiently recondenses into a small mass upon entry into the ooplasm. This morphological change is coincident with and likely dependent on the replacement of the sperm-specific protamines by oocyte-supplied histones and the organization of the chromatin into nucleosomes. The chromatin then extensively decondenses within the male pronucleus and acquires many of the proteins that are associated with the maternal chromatin. Nonetheless, the paternal chromatin manifests distinct characteristics, including transient hyperacetylation of histone H4, increased transcription of endogenous and microinjected genes, and replication-independent demethylation of DNA. Sperm chromatin remodelling is controlled by an oocyte activity that appears during meiotic maturation and disappears approximately 3 h after activation (release from metaphase II arrest), and which requires factors associated with the germinal vesicle of the oocyte. The molecular components of this activity remain largely unknown. In frogs, nucleoplasmin is required to assemble histones H2A and H2B onto the paternal chromatin. Evidence is presented that related proteins may perform similar functions in mammals. Identifying the mechanisms that underlie sperm chromatin remodelling at fertilization may be relevant for understanding reprogramming of somatic cell nuclei after transfer into oocytes.
Collapse
|
46
|
Burns KH, Viveiros MM, Ren Y, Wang P, DeMayo FJ, Frail DE, Eppig JJ, Matzuk MM. Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos. Science 2003; 300:633-6. [PMID: 12714744 DOI: 10.1126/science.1081813] [Citation(s) in RCA: 270] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Upon fertilization, remodeling of condensed maternal and paternal gamete DNA occurs to form the diploid genome. In Xenopus laevis, nucleoplasmin 2 (NPM2) decondenses sperm DNA in vitro. To study chromatin remodeling in vivo, we isolated mammalian NPM2 orthologs. Mouse NPM2 accumulates in oocyte nuclei and persists in preimplantation embryos. Npm2 knockout females have fertility defects owing to failed preimplantation embryo development. Although sperm DNA decondensation proceeds without NPM2, abnormalities are evident in oocyte and early embryonic nuclei. These defects include an absence of coalesced nucleolar structures and loss of heterochromatin and deacetylated histone H3 that normally circumscribe nucleoli in oocytes and early embryos, respectively. Thus, Npm2 is a maternal effect gene critical for nuclear and nucleolar organization and embryonic development.
Collapse
Affiliation(s)
- Kathleen H Burns
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
With the exception of lymphocytes, the various cell types in a higher multicellular organism have basically an identical genotype but are functionally and morphologically different. This is due to tissue-specific, temporal, and spatial gene expression patterns which are controlled by genetic and epigenetic mechanisms. Successful cloning of mammals by transfer of nuclei from differentiated tissues into enucleated oocytes demonstrates that these genetic and epigenetic programs can be largely reversed and that cellular totipotency can be restored. Although these experiments indicate an enormous plasticity of nuclei from differentiated tissues, somatic cloning is a rather inefficient and unpredictable process, and a plethora of anomalies have been described in cloned embryos, fetuses, and offspring. Accumulating evidence indicates that incomplete or inappropriate epigenetic reprogramming of donor nuclei is likely to be the primary cause of failures in nuclear transfer. In this review, we discuss the roles of various epigenetic mechanisms, including DNA methylation, chromatin remodeling, imprinting, X chromosome inactivation, telomere maintenance, and epigenetic inheritance in normal embryonic development and in the observed abnormalities in clones from different species. Nuclear transfer represents an invaluable tool to experimentally address fundamental questions related to epigenetic reprogramming. Understanding the dynamics and mechanisms underlying epigenetic control will help us solve problems inherent in nuclear transfer technology and enable many applications, including the modulation of cellular plasticity for human cell therapies.
Collapse
Affiliation(s)
- Wei Shi
- Institute of Molecular Animal Breeding, Gene Center, University of Munich, Feodor-Lynen-Strasse 25, Germany
| | | | | |
Collapse
|
48
|
Huang FJ, Huang HW, Lan KC, Kung FT, Lin YC, Chang HW, Chang SY. The maturity of human cumulus-free oocytes is positively related to blastocyst development and viability. J Assist Reprod Genet 2002; 19:555-60. [PMID: 12503887 PMCID: PMC3455828 DOI: 10.1023/a:1021259031267] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE We investigated whether the human oocyte maturity at the removal of cumulus/corona cells affects the embryo outcome in vitro. METHODS A total of 620 oocytes, which subsequently underwent blastocyst culture, were included in this analysis. Oocytes that were in prophase or Metaphase I of meiosis at the removal of cumulus/corona cells were in Group II. Oocytes that were in Metaphase II at the removal of cumulus/corona cells were in Group I. RESULTS Group I oocytes yielded the highest fertilization rates (96.3% vs. 77.1%, P < 0.001). The incidence of Group II oocytes developing to the blastocyst stage was significantly less than from Group I oocytes (38.1% vs. 86.1%, P < 0.001). The percentage of top-scoring blastocysts from Group I oocytes was higher than that of Group II oocytes (95.4% vs. 76.2%, P < 0.001). CONCLUSIONS Oocyte maturity at the removal of cumulus/corona cells needs to be considered in selecting good quality blastocysts for embryo transfer.
Collapse
Affiliation(s)
- Fu-Jen Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
49
|
Shi W, Haaf T. Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol Reprod Dev 2002; 63:329-34. [PMID: 12237948 DOI: 10.1002/mrd.90016] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The fertilized mouse egg actively demethylates the paternal genome within a few hours after fertilization, whereas the maternal genome is only passively demethylated by a replication-dependent mechanism after the two-cell stage. This evolutionarily conserved assymetry in the early diploid mammalian embryo may have a role in methylation reprogramming of the two very different sets of sperm and egg chromatin for somatic development and formation of totipotent cells. Immunofluorescence staining with an antibody against 5-methylcytosine (MeC) showed that the incidence of abnormal methylation patterns differs between mouse two-cell embryos from superovulated females, nonsuperovulated matings, and in vitro fertilization (IVF). It also depends on embryo culture conditions and genetic background. In general, there was a good correlation with the number of embryos (from the same experiment) which did not develop in vitro up to the blastocyst stage. Thus, aberrant genome-wide DNA methylation in early embryos may be an important mechanism contributing to the high incidence of developmental failure in mammals. Similar to the situation in abnormally methylated embryos from nuclear transfer, it may cause a high incidence of pregnancy loss and abnormal phenotypes.
Collapse
Affiliation(s)
- W Shi
- Max Planck Institute of Molecular Genetics, Berlin, Germany
| | | |
Collapse
|
50
|
Iwamatsu T, Shibata Y, Hara O, Yamashita M, Ikegami S. Studies on fertilization in the teleost IV. Effects of aphidicolin and camptothecin on chromosome formation in fertilized medaka eggs. Dev Growth Differ 2002; 44:293-302. [PMID: 12175364 DOI: 10.1046/j.1440-169x.2002.00644.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To clarify the mechanisms of fish fertilization, the effects of inhibitors of DNA polymerase-alpha and DNA topoisomerases on nuclear behavior before and after fertilization were examined in eggs of the medaka, Oryzias latipes. Eggs underwent the fertilization process from sperm penetration to karyogamy of pronuclei, even when inseminated and incubated in the continuous presence of aphidicolin (DNA polymerase alpha inhibitor), camptothecin (DNA topoisomerase I inhibitor), etoposide, or beta-lapachone (DNA topoisomerase II inhibitor). However, continuous treatment with aphidicolin or camptothecin during fertilization inhibited the formation of sister chromosomes that were normally separated into blastomeres at the time of the subsequent cleavage. Sister chromosome formation appeared concomitantly with an increase in histone H1 kinase activity at the end of DNA synthesis, 30 min post insemination. However, non-activated eggs that were inseminated in saline containing anesthetic MS222 and aphidicolin had high levels of histone H1 kinase and MAP kinase activities, and transformation of the penetrated sperm nucleus to metaphase chromosomes occurred even in the presence of aphidicolin or camptothecin. The male chromosomes were normally separated into two anaphase chromosome masses upon egg activation. These results suggest that DNA polymerase alpha or DNA topoisomerase I, but not DNA topoisomerase II, may be required for the process by which the mitotic interphase nucleus transforms to separable metaphase chromosomes while the activity of MAP kinase is low, unlike the situation in meiotic division, during which MAP kinase activity is high and DNA replication is not required.
Collapse
Affiliation(s)
- Takashi Iwamatsu
- Department of Biology, Aichi University of Education, Kariya 448-8542, Japan.
| | | | | | | | | |
Collapse
|