Ariza RR, Dorado G, Barbancho M, Pueyo C. Study of the causes of direct-acting mutagenicity in coffee and tea using the Ara test in Salmonella typhimurium.
Mutat Res 1988;
201:89-96. [PMID:
3047575 DOI:
10.1016/0027-5107(88)90114-5]
[Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mutagenic activities of 6 of the chemicals identified in coffee solutions were assayed with the Salmonella Ara test, under experimental conditions optimized for coffee mutagenicity. Caffeine was the only non-mutagenic compound. Among the other 5 chemicals, hydrogen peroxide was the strongest mutagen and chlorogenic acid the weakest; methylglyoxal, glyoxal and caffeic acid exhibited intermediate mutagenicities. The minimal mutagenic doses of these components correlated negatively with their relative concentrations in coffee. It was concluded that chlorogenic acid, caffeic acid, glyoxal and methylglyoxal cannot contribute alone to the mutagenicity of coffee in the Ara test, since their minimal mutagenic concentrations were much higher than their respective levels in the coffee samples assayed. By contrast, 40-60% of the mutagenic activity in coffee and also in tea could be attributed to their H2O2 contents. Catalase abolished more than 95% of the mutagenic activity of coffee, as detected by the Ara test. A similar sensitivity to catalase has been reported by other authors in relation to the coffee mutagenicity identified by the Salmonella His test. Nevertheless, the results presented in this paper suggest that the Ara forward and the His reverse mutation tests are sensitive to the mutagenicity of different constituents in coffee solutions. We propose that the His test, sensitive at high coffee doses, mainly recognizes the mutagenicity of methylglyoxal, whilst the Ara test, sensitive at low coffee doses, mainly detects the mutagenic activity of hydrogen peroxide. The data reported also suggest that the direct-acting mutagenicity(ies) detected by the Ara test in tea solutions is (are) based on similar, if not identical, mechanisms.
Collapse