Abstract
OBJECTIVE
Betel leaf combined with areca nut is known as betel quid pan masala (PM), and tobacco with areca nut, catechu and lime is pan masala (PMT) blended with gulkhand. These narcotics are popular among young and old individuals. A prima facia chemical analysis and a toxicity assessment of PM in mice were conducted to study the relationship between longtime consumption of PM and health hazards.
MATERIALS AND METHODS
Chemical analysis of different types of PM was done employing HPLC, GLC, AAS, ES, TLC, GCMS and sequential extraction for PAH, pesticides, metals and minerals, electrolytes, drugs and xenobiotics. Ethanolic PM extracts were tested by IP and PO routes in inbred Swiss mice.
RESULTS
PAH, which are known xenobiotics for pre-cancerous lesions, were significantly high (p<0.01) in Rajaniganda and Pan Parag Zarda. Isomers of DDT and BHC, which principally act on nerves and muscles, were also high (p<0.01) in PM. The enhanced metal and mineral content of PM results in massive oral fibrosis. There is a high level of narcotics in PM, especially nicotine, a potentially cancerous agent in the gastrointestinal tract.
CONCLUSION
Experimental studies with different extracts of plain and blended PM in mice fed for 16 and 90 days revealed no effect on blood and organ weights (kidney, heart, spleen and liver), but we did observe attenuated testis. However, in the bone marrow of the mice, chromosomes were most affected in the mice fed PM-Zarda blend for 3 months. The chromosomal abnormalities included ploidy, loss, breaks, gaps, deletions and exchanges in ring chromosomes. The PM caused sperm head anomalies (narrow, blunt, triangular and banana shapes), and the sperm were irregular, amorphous, tailless and rudimentary, with the maximum effect among the groups fed PM for 3 months. Significantly higher levels (p<0.01) of testis glycogen, cholesterol and protein were found. The group fed for 16 days showed no change in red blood corpuscles (RBC), white blood corpuscles (WBC), hemoglobin and erythrocyte sedimentation counts.
Collapse