1
|
Gold MS, Loeza-Alcocer E. Experimental colitis-induced visceral hypersensitivity is attenuated by GABA treatment in mice. Am J Physiol Gastrointest Liver Physiol 2024; 326:G252-G263. [PMID: 38193198 PMCID: PMC11211035 DOI: 10.1152/ajpgi.00012.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
Ulcerative colitis (UC) is linked with inflammation of the large intestine due to an overactive response of the colon-immune system. UC is associated with weight loss, rectal bleeding, diarrhea, and abdominal pain. Given that γ-amino butyric acid (GABA) suppresses immune cell activity and the excitability of colonic afferents, and that there is a decrease in colonic GABA during UC, we hypothesized that UC pain is due to a decrease in the inhibition of colonic afferents. Thus, restoring GABA in the colon will attenuate inflammatory hypersensitivity. We tested this hypothesis in a mouse model of colitis. Colon inflammation was induced with seven days of dextran sodium sulfate (DSS, 3%) in the drinking water. GABA (40 mg/kg) was administered orally for the same period as DSS, and body weight, colon length, colon permeability, clinical progression of colitis (disease activity index or DAI), and colon histological score (HS) were assessed to determine the effects of GABA on colitis. A day after the end of GABA treatment, visceral sensitivity was assessed with balloon distention (of the colon)-evoked visceromotor response and colon samples were collected for the measurement of GABA and cytokines. Treatment with GABA reduced the DSS-induced increase in the colon permeability, DAI, HS, and decrease in body weight and colon length. Furthermore, GABA inhibited the DSS-induced increase in the proinflammatory cytokines tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-12 (IL-12), and increased the expression of the anti-inflammatory cytokine IL-10 in the colon tissue. Importantly, GABA reduced DSS-induced visceral hypersensitivity. These data suggest that increasing gastrointestinal levels of GABA may be useful for the treatment of colitis.NEW & NOTEWORTHY GABA treatment reduces the severity of colitis and inflammation and produces inhibition of visceral hypersensitivity in colon-inflamed mice. These results raise the promising possibility that GABA treatment may be an effective therapeutic strategy for the management of symptoms associated with colitis. However, clinical studies are required to corroborate whether this mouse-model data translates to human colon.
Collapse
Affiliation(s)
- Michael S Gold
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Emanuel Loeza-Alcocer
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
2
|
Loeza-Alcocer E, McPherson TP, Gold MS. Peripheral GABA receptors regulate colonic afferent excitability and visceral nociception. J Physiol 2019; 597:3425-3439. [PMID: 31077379 DOI: 10.1113/jp278025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS While the presence of GABA receptors on primary afferents has been well described, most functional analyses have focused on the regulation of transmitter release from central terminals and/or signalling in the sensory neuron cell body. Evidence that GABA receptors are transported to peripheral terminals and that there are several sources of GABA in the colon raise the possibility that GABA signalling in the periphery may influence colonic afferent excitability. GABAA and GABAB are present and functional in the colon, where exogenous agonists decrease the excitability of colonic afferents and suppress visceral nociception. Endogenous GABA release within the colon is sufficient to establish the resting excitability of colonic afferents as well as the behavioural response to noxious stimulation of the colon, primarily via GABAA receptors. Peripheral GABA receptors may serve as a viable target for the treatment of visceral pain. ABSTRACT It is well established that GABA receptors at the central terminals of primary afferent fibres regulate afferent input to the superficial dorsal horn. However, the extent to which peripheral GABA signalling may also regulate afferent input remains to be determined. The colon was used to explore this issue because of the numerous endogenous sources of GABA that have been described in this tissue. The influence of GABA signalling on colonic afferent excitability was assessed in an ex vivo mouse colorectum pelvic nerve preparation where test compounds were applied to the receptive field. The visceromotor response (VMR) evoked by noxious colorectal distension was used to assess the impact of GABA signalling on visceral nociception, where test compounds were applied directly to the colon. Application of either GABAA or GABAB receptor agonists attenuated the colonic afferent response to colon stretch. Conversely, GABAA and GABAB receptor antagonists increased the stretch response. However, while the noxious distension-induced VMR was attenuated in the presence of GABAA and GABAB receptor agonists, the VMR was only consistently increased by GABAA receptor antagonists. These results suggest that GABA receptors are present and functional in the peripheral terminals of colonic afferents and activation of these receptors via endogenous GABA release contributes to the establishment of colonic afferent excitability and visceral nociception. These results suggest that increasing peripheral GABA receptor signalling could be used to treat visceral pain.
Collapse
Affiliation(s)
- Emanuel Loeza-Alcocer
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Thomas P McPherson
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael S Gold
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Stojanović M, Šćepanović L, Mitrović D, Šćepanović V, Šćepanović R, Djuric M, Ilić S, Šćepanović T, Djuric D. Different pathways involved in the stimulatory effects of homocysteine on rat duodenal smooth muscle. ACTA VET-BEOGRAD 2017. [DOI: 10.1515/acve-2017-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Recent studies have confirmed that hyperhomocysteinemia is associated with gastrointestinal diseases; however, the direct effect of homocysteine on gastrointestinal reactivity still remains unknown. The aim of this study was to demonstrate how homocysteine may affect nitric oxide mediated duodenal relaxation and whether cholinergic receptors and K+ channels take part in stimulating motility, as well as to explore whether oxidative stress is associated with homocysteine-mediated effects. Experiments were carried out on male rats, body mass 250-300 g. Two groups of animals were treated by i.p. application of saline and D,L-Hcy (0.6 μmol/g bm). After 2h of incubation, the duodenal segments were prepared for biochemical analysis and contractile response measurements in an organ bath with Tyrode’s solution. Effects of TEA (10 mmol/L) and L-NAME (30 μmol/L) on duodenal contractility in the presence of D,L-Hcy (0.6 μmol/g bm) were investigated. Elevated homocysteine levels seem to be of crucial importance for the deterioration of contractility through nitric oxide mediated relaxation, and, in part, by activation of K+ channels. Hcy showed direct promuscarinic effects, since 30 min pretreatment of rat duodenum significantly enhanced the contractile effect of increasing concentrations of ACh (10−9-10−2 mol/L). Catalase activity, superoxide dismutase, glutathione peroxidase and the total antioxidant system were reduced while the thiobarbituric acid-reactive substances level was elevated. Our data showed a consistent profile of gastrointestinal injury elicited by sulfur-containing amino acid-homocysteine. This could contribute to explain, at least in part, the mechanisms involved in human gastrointestinal diseases associated to hyperhomocysteinemia.
Collapse
Affiliation(s)
- Marija Stojanović
- Institute of Medical Physiology „Richard Burian“, Faculty of Medicine , University of Belgrade , 11000 Belgrade , Serbia
| | - Ljiljana Šćepanović
- Institute of Medical Physiology „Richard Burian“, Faculty of Medicine , University of Belgrade , 11000 Belgrade , Serbia
| | - Dušan Mitrović
- Institute of Medical Physiology „Richard Burian“, Faculty of Medicine , University of Belgrade , 11000 Belgrade , Serbia
| | - Vuk Šćepanović
- Institute for Neurosurgery, Clinical Center of Serbia , University of Belgrade , 11000 Belgrade , Serbia
| | - Radomir Šćepanović
- Belgrade University of Defense , Military Medical Academy , 11000 Belgrade , Serbia
| | - Marko Djuric
- Department of Anaesthesiology, Reanimatology and Intensive Care , University Clinical Hospital „Dr Dragisa Misovic“ , Belgrade , Serbia
| | - Slobodan Ilić
- University Children’s Hospital, University of Belgrade , 11000 Belgrade , Serbia
| | | | - Dragan Djuric
- Institute of Medical Physiology „Richard Burian“, Faculty of Medicine , University of Belgrade , 11000 Belgrade , Serbia
| |
Collapse
|
4
|
Lee M, Schwab C, McGeer PL. Astrocytes are GABAergic cells that modulate microglial activity. Glia 2011; 59:152-65. [PMID: 21046567 DOI: 10.1002/glia.21087] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
GABA is assumed to function in brain only as an inhibitory neurotransmitter. Here we report a much broader CNS role. We show that human astrocytes are GABAergic cells, and that human microglia are GABAceptive cells. We show that in adult human brain tissue, astrocytes immunostain for the GABA synthesizing enzyme GAD 67, the GABA metabolizing enzyme GABA-T and the GABA(A) and GABA(B) receptors. The intensity of staining is comparable or greater to that observed for known inhibitory neurons. We show that cultured human astrocytes strongly express the mRNA and protein for GAD 67, as well as GABA-T, and the GABA(A) and GABA(B) receptors. We further show that cultured human microglia express the mRNA and protein for GABA-T, in addition to the GABA(A) and GABA(B) receptors characterizing them as GABAceptive cells. We demonstrate that GABA suppresses the reactive response of both astrocytes and microglia to the inflammatory stimulants lipopolysaccharide (LPS) and interferon-γ by inhibiting induction of inflammatory pathways mediated by NFκB and P38 MAP kinase. This results in a reduced release of the inflammatory cytokines TNFα and IL-6 and an attenuation of conditioned medium neurotoxicity toward neuroblastoma SH-SY5Y cells. These inhibitory reactions are partially mimicked by the GABA(A) receptor agonist muscimol and the GABA(B) receptor agonist baclofen, indicating that GABA can stimulate both types of receptors in astrocytes as well as microglia. We conclude that the antiinflammatory actions of GABA offer new therapeutic opportunities since agonists should enhance the effectiveness of other antiinflammatory agents that operate through non-GABA pathways.
Collapse
Affiliation(s)
- Moonhee Lee
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
5
|
Brehmer A, Rupprecht H, Neuhuber W. Two submucosal nerve plexus in human intestines. Histochem Cell Biol 2009; 133:149-61. [DOI: 10.1007/s00418-009-0657-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2009] [Indexed: 11/30/2022]
|
6
|
Effects of hyperhomocysteinemia on non-adrenergic non-cholinergic relaxation in isolated rat duodenum. Dig Dis Sci 2008; 53:2106-12. [PMID: 18535907 DOI: 10.1007/s10620-008-0318-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 06/20/2007] [Indexed: 01/06/2023]
Abstract
The effect of hyperhomocysteinemia induced by pretreatment with methionine 12 weeks prior to the study on the responses induced by gamma-aminobutyric acid (GABA), electrical field stimulation (EFS), and ATP have been evaluated in isolated rat duodenum. In the presence of adrenergic and cholinergic blockade, EFS (60 V, 1 ms, 1-3 Hz) induced frequency-dependent relaxations of the preparation. GABA and ATP also caused submaximal relaxation of the rat duodenum. The relaxations induced by GABA, EFS, and ATP were not significantly changed in duodenal tissues from hyperhomocysteinemic rats compared with control rats. GABA- and EFS-induced relaxations were inhibited by N-nitro-L-arginine methyl ester (L-NAME; 3 x 10(-4) M) in both hyperhomocysteinemic and control rats. On the other hand, L-NAME incubation did not affect ATP-induced relaxation. These results suggest that hyperhomocysteinemia does not cause an important impairment on non-adrenergic non-cholinergic innervation of the rat duodenum.
Collapse
|
7
|
Jaafari N, Khomitch-Baud A, Gilhodes JC, Hua G, Julé Y. Qualitative and quantitative analysis of tachykinin NK2 receptors in chemically defined human colonic neuronal pathways. J Comp Neurol 2008; 507:1542-58. [DOI: 10.1002/cne.21628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Reis HJ, Vanden Berghe P, Romano-Silva MA, Smith TK. GABA-induced calcium signaling in cultured enteric neurons is reinforced by activation of cholinergic pathways. Neuroscience 2006; 139:485-94. [PMID: 16446040 DOI: 10.1016/j.neuroscience.2005.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 12/15/2005] [Accepted: 12/20/2005] [Indexed: 11/24/2022]
Abstract
UNLABELLED GABA is an important inhibitory transmitter in the CNS. In the enteric nervous system, however, both excitatory and inhibitory actions have been reported. Here, we investigated the effects of GABA on the intracellular Ca2+ concentration of guinea-pig myenteric neurons (at 35 degrees C) using Fura-2-AM. Neurons were identified by 75 mM K+ depolarization (5 s), which evoked a transient intracellular Ca2+ concentration increase. GABA (10 s) induced a dose dependent (5 nM-1 microM) transient intracellular Ca2+ concentration rise in the majority of neurons (500 nM GABA: 251+/-17 nM, n=232/289). Interestingly, the response to 5 microM GABA (n=18) lasted several minutes and did not fully recover. GABA response amplitudes were significantly (P<0.001) reduced by GABAA and GABAB receptor antagonists (10 microM) bicuculline and phaclofen. The GABAA agonist isoguvacine (10 microM) and GABAB agonist baclofen (10 microM) induced similar responses as 50 nM GABA, while the GABAC agonist cis-4-aminocrotonic acid (CACA) (10 microM) only elicited small responses in a minority of neurons. Removal of extracellular Ca2+ abolished all responses while depletion of intracellular Ca2+ stores by thapsigargin (5 microM) did not alter the responses to 500 nM GABA (n=13), but reduction of Ca2+ influx through voltage-dependent Ca2+ channels did. The nicotinic antagonist hexamethonium (100 microM) also reduced GABA responses by almost 70% suggesting that GABA stimulates cholinergic pathways, while the purinergic receptor blocker pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) and the 5-HT3 receptor blocker ondansetron only had minor effects. CONCLUSION GABA elicits transient intracellular Ca2+ concentration responses in the majority of myenteric neurons through activation of GABAA and GABAB receptors and much of the response can be attributed to facilitation of ACh release. Thus GABA may act mainly as a modulator that sets the state of excitability of the enteric nerve network. A concentration of 5 microM GABA, although frequently used in pharmacological experiments, seems to cause a detrimental response reminiscent of the neurotoxic effects glutamate has in the CNS.
Collapse
Affiliation(s)
- H J Reis
- Department of Physiology and Cell Biology/352, University of Nevada, School of Medicine, 1660 North Virginia Street, Reno, NV 89557-0046, USA
| | | | | | | |
Collapse
|
9
|
Toda N, Herman AG. Gastrointestinal Function Regulation by Nitrergic Efferent Nerves. Pharmacol Rev 2005; 57:315-38. [PMID: 16109838 DOI: 10.1124/pr.57.3.4] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) smooth muscle responses to stimulation of the nonadrenergic noncholinergic inhibitory nerves have been suggested to be mediated by polypeptides, ATP, or another unidentified neurotransmitter. The discovery of nitric-oxide (NO) synthase inhibitors greatly contributed to our understanding of mechanisms involved in these responses, leading to the novel hypothesis that NO, an inorganic, gaseous molecule, acts as an inhibitory neurotransmitter. The nerves whose transmitter function depends on the NO release are called "nitrergic", and such nerves are recognized to play major roles in the control of smooth muscle tone and motility and of fluid secretion in the GI tract. Endothelium-derived relaxing factor, discovered by Furchgott and Zawadzki, has been identified to be NO that is biosynthesized from l-arginine by the constitutive NO synthase in endothelial cells and neurons. NO as a mediator or transmitter activates soluble guanylyl cyclase and produces cyclic GMP in smooth muscle cells, resulting in relaxation of the vasculature. On the other hand, NO-induced GI smooth muscle relaxation is mediated, not only by cyclic GMP directly or indirectly via hyperpolarization, but also by cyclic GMP-independent mechanisms. Numerous cotransmitters and cross talk of autonomic efferent nerves make the neural control of GI functions complicated. However, the findingsrelated to the nitrergic innervation may provide us a new way of understanding GI tract physiology and pathophysiology and might result in the development of new therapies of GI diseases. This review article covers the discovery of nitrergic nerves, their functional roles, and pathological implications in the GI tract.
Collapse
Affiliation(s)
- Noboru Toda
- Toyama Institute for Cardiovascular Pharmacology Research, Azuchi-machi, Chuo-ku, Osaka, Japan.
| | | |
Collapse
|
10
|
Sayegh AI, Ritter RC. Morphology and distribution of nitric oxide synthase-, neurokinin-1 receptor-, calretinin-, calbindin-, and neurofilament-M-immunoreactive neurons in the myenteric and submucosal plexuses of the rat small intestine. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 271:209-16. [PMID: 12552637 DOI: 10.1002/ar.a.10024] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Characterization of the enteric neurons is vital for understanding their physiological role. We have used single and dual label fluorescence and peroxidase-based immunohistochemistry in myenteric and submucosal whole mounts from the rat small intestine to evaluate the morphology and distribution of enteric neurons immunoreactive for the following phenotypic antigens: neuronal nitric oxide synthase (NOS), neurokinin-1 receptor (NK-1R), calretinin (Calr), calbindin (Cal), and neurofilament-M (NF-M). NOS-immunoreactive neurons had Dogiel type I morphology, were abundant in the myenteric plexus compared to the submucosal plexus, and never coexpressed NK-1R immunoreactivity. NK-1R- and Calr-immunoreactive neurons had Dogiel type II morphology and were distributed comparably in both plexuses. NK-1R and Calr-immunoreactivity were coexpressed in many of the same neurons. Calbindin-immunoreactive neurons exhibited four distinct morphologies: small and large Dogiel type II neurons, Dogiel type I neurons, and small elongated neurons. These neurons were significantly fewer in number in the myenteric plexus compared to the submucosal plexus. Neurofilament-M-immunoreactive neurons had three morphologies, Dogiel type II neurons, small Dogiel type II neurons, and a less common subpopulation of small, elongated, multipolar neurons. These neurons were also fewer in number in the myenteric plexus compared to the submucosal plexus. The distribution of these phenotypic markers may assist future work that elucidates the functional activities of these enteric neurons such as control of intestinal motility and adaptation to the entry of gastric contents.
Collapse
Affiliation(s)
- Ayman I Sayegh
- Gastroenterology and Imaging Laboratories, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, Alabama, USA.
| | | |
Collapse
|
11
|
Olsson C. Distribution and effects of PACAP, VIP, nitric oxide and GABA in the gut of the African clawed frog Xenopus laevis. J Exp Biol 2002; 205:1123-34. [PMID: 11919271 DOI: 10.1242/jeb.205.8.1123] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The distribution and possible effects on gastrointestinal motility of pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal polypeptide (VIP), nitric oxide and γ-amino-butyric acid(GABA) were investigated in the African clawed frog (Xenopus laevis)using immunohistochemistry and in vitro strip preparations. PACAP-and VIP-immunoreactive nerve fibres were common in the myenteric plexus as well as in the longitudinal and circular muscle layers all along the gastrointestinal tract. Double labelling demonstrated a close correlation between PACAP and VIP immunoreactivities, indicating that the two neurotransmitters are colocalised within the enteric nervous system. Occasionally, PACAP- and VIP-positive nerve cell bodies were seen in the myenteric or submucous plexa. In addition, VIP immunoreactivity coexisted with helospectin immunoreactivity. Nitric oxide synthase (NOS)-immunoreactive nerve cells were found in the myenteric plexus at an average density for the whole gastrointestinal tract of 4584±540 cells cm-2. The NOS-immunoreactive nerve cells were usually multipolar with an average size of 11.3±3.7 × 23.2±6.6 μm. Some NOS-immunoreactive nerve fibres were VIP-immunoreactive but not all VIP-positive fibres showed NOS immunoreactivity. GABA immunoreactivity was found in nerve fibres and nerve cells in the myenteric plexus of all regions of the gut. Few GABA-immunoreactive nerve fibres were VIP-immunoreactive. PACAP 27, VIP,sodium nitroprusside (a nitric oxide donor; NaNP) and GABA caused similar responses on spontaneously contracting circular preparations of the cardiac stomach of X. laevis. The mean force developed was decreased, mainly by a reduction in resting tension, while the amplitude of contractions was not necessarily affected. The NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) increased the mean force developed, indicating a nitrergic tone in the preparations. In contrast, PACAP 27, VIP, NaNP, GABA and L-NAME had no significant effect on longitudinal strip preparations from the duodenum. These results indicate that PACAP, VIP, nitric oxide and GABA, which are known to be important inhibitory neurotransmitters in other vertebrates, are widely spread in the enteric nervous system of Xenopus laevis and may be involved in the inhibitory control of gastric motility. Although no effect of PACAP,VIP, nitric oxide or GABA on the longitudinal strips of the duodenum was seen in this study, this does not rule out the possibility that they might play an important role in controlling intestinal motility as well.
Collapse
Affiliation(s)
- Catharina Olsson
- Department of Zoophysiology, Göteborg University, Box 463, S-405 30 Göteborg, Sweden.
| |
Collapse
|
12
|
Poulter MO, Singhal R, Brown LA, Krantis A. GABA(A) receptor subunit messenger RNA expression in the enteric nervous system of the rat: implications for functional diversity of enteric GABA(A) receptors. Neuroscience 1999; 93:1159-65. [PMID: 10473280 DOI: 10.1016/s0306-4522(99)00174-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
GABAergic neurons occur in the myenteric plexus and submucosa and their innervations of the gut, where GABA stimulates motor neurons, and non-neural cells via "central type" GABA(A) receptors. These receptors occur on half of the neurons in the rat intestine. The GABA(A) receptor is a ligand-gated chloride channel constructed from different subunit families (alpha, beta, gamma, delta, epsilon). In rat these exist as subtypes, alpha1-6, beta1-3, gamma1-3 and delta, defining the clinically relevant pharmacological features of GABA(A) receptors. However, the identity, distribution, and abundance of enteric GABA(A) receptor subunits are unknown. To identify and map the regional expression of GABA(A) receptor subunit messenger RNAs in the enteric nervous system, we assayed enteric RNA from the ileum of Sprague-Dawley rats by reverse transcription-polymerase chain reaction for alpha1-6, beta 1-3, gamma1-3, and delta subunit messenger RNAs. Subunit messenger RNA localization, was probed by in situ hybridization. Reverse transcription-polymerase chain reaction analysis of RNA from myenteric and submucosal nerve layers revealed the expression alpha1, alpha3, beta2, beta3, gamma1 and gamma3 subunit messenger RNAs. Little alpha4 and alpha6 and no alpha2, beta1, gamma2 or delta subunit messenger RNA were detected. In situ hybridization revealed that transcripts for alpha1, alpha3, alpha5 and beta2 subunits occur in both myenteric and submucous ganglia. However, beta3 messenger RNA was found only in myenteric plexus. The gamma1 subunit messenger RNA was also restricted to the cells in the myenteric plexus while gamma3 was found in cells of both nerve layers. In this study of the subunit messenger RNA expression profile of GABA(A) receptors within the enteric nerve layers we show an abundant, diverse and widespread distribution that is unique in comparison to the CNS. The distinctive and heterogeneous distribution of enteric GABA(A) subunits may be important in the integration of neural control of gut function.
Collapse
Affiliation(s)
- M O Poulter
- Laboratory of Molecular Neuropharmacology, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario
| | | | | | | |
Collapse
|
13
|
Donat ME, Wong K, Staines WA, Krantis A. Heme oxygenase immunoreactive neurons in the rat intestine and their relationship to nitrergic neurons. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1999; 77:4-12. [PMID: 10494744 DOI: 10.1016/s0165-1838(99)00023-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Carbon monoxide (CO), like nitric oxide (NO), is a putative gaseous neurotransmitter. CO is produced by the enzyme heme oxygenase (HO) acting on a family of heme-containing compounds. Two isomers of HO have been characterized (HO-1, HO-2). In the CNS and in peripheral ganglia HO-2 occurs in a majority of neurons. NO and CO function as transmitters of enteric neurons but the relative distribution of enteric neurons utilizing these gaseous transmitters is unknown in rodent. We have studied the distribution of HO-2 immunoreactivity and NO synthase (NOS) activity within the rat ileum. METHODS Tissue sections and primary neuronal cell cultures were incubated with a HO-2 specific antibody, and then assessed or reprocessed for NOS activity using NADPH-dependent diaphorase staining. RESULTS HO-2 immunoreactivity was expressed in subpopulations of myenteric and submucosal neurons. Approximately 45% of the ganglion cells in tissue section were HO-2 positive. This was similar in proportion to those found to stain for NOS activity, and 10% of HO-2 positive neurons also contained NOS. HO-2 immunoreactivity was also found in epithelial cells within the villi, and in interstitial cells around the myenteric plexus and within the smooth muscle. In culture, the distribution and colocalisation of HO-2 and NOS positive neurons was similar to that in tissue sections. We identified labelled neurons as either Dogiel Type I or II; only Type II cells colocalized NOS and HO-2. CONCLUSION Neurons, endocrine-like cells and interstitial cells with the capacity for CO production are distributed throughout the ileum and some neurons have the capacity to synthesize both NO and CO as gaseous messengers.
Collapse
Affiliation(s)
- M E Donat
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
14
|
Krantis A, Mattar K, Glasgow I. Rat gastroduodenal motility in vivo: interaction of GABA and VIP in control of spontaneous relaxations. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G897-903. [PMID: 9815017 DOI: 10.1152/ajpgi.1998.275.5.g897] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Spontaneous relaxations occurring within motor activity in the rat gastroduodenum in vivo can be distinguished by their dependence on either nitric oxide (NO) or ATP. We examined the interaction of gamma-aminobutyric acid (GABA) and vasoactive intestinal peptide (VIP) within pathways controlling this activity in the antrum (S) and duodenum (D) of anesthetized Sprague-Dawley rats, using miniaturized extraluminal foil strain gauges oriented perpendicular to (S1, D1) or in the axis of (S2) the circular smooth muscle. The NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 10 mg/kg iv) attenuated (P < 0.05) antral relaxations and, in the duodenum, nonpropagating "intergroup" relaxations. The GABAA receptor antagonist bicuculline (350 micrograms/kg sc) had similar effects. The GABAA agonist 3-amino-1-propanesulfonic acid stimulated L-NAME-sensitive relaxations at S1 and D1. Propagating "grouped" responses were unchanged. VIP (6 micrograms/kg iv) always induced a relaxation of the duodenum, which was attenuated by bicuculline and L-NAME. VIP caused simultaneous responses at S1 and S2; however, the antrum displayed either contraction or relaxation in response to VIP. All antral relaxations in response to VIP were attenuated (P < 0. 05) by L-NAME; however, only VIP-induced relaxations at S1 were sensitive to bicuculline. VIP-induced contractions were also unaffected. GABAA receptors mediate the pathway(s) controlling NO-related spontaneous relaxations of the antrum and duodenal circular muscle. All VIP-induced relaxations are mediated by NO. Spontaneous relaxations of the rat gastroduodenum include responses that involve a GABAAergic NO-related pathway, which is targeted by VIP. In addition, VIP can target NO relaxations of the antrum via other pathways.
Collapse
Affiliation(s)
- A Krantis
- Digestive Diseases Research Group, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | |
Collapse
|
15
|
Glasgow I, Mattar K, Krantis A. Rat gastroduodenal motility in vivo: involvement of NO and ATP in spontaneous motor activity. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G889-96. [PMID: 9815016 DOI: 10.1152/ajpgi.1998.275.5.g889] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Our studies of fasted anesthetized rats have shown that all spontaneous relaxations of the antrum are nitric oxide (NO) dependent. Duodenal motility is patterned into propagating "grouped" motor activity interposed with "intergroup" periods of nonpropagating motor activity; in the duodenum, only intergroup relaxations are NO dependent. We examined the involvement of NO and ATP in spontaneous motor activities of the gastroduodenum in vivo: contractions and relaxations were recorded and analyzed simultaneously from the antrum (S1) and proximal duodenum (D1) of anesthetized Sprague-Dawley rats (n = 10/group), using extraluminal foil strain gauges. Treatment with the NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 10 mg/kg iv) attenuated (P < 0.05) antral and intergroup relaxations, whereas grouped relaxations were enhanced (P < 0.05). These effects were reversed with L-arginine (300 mg/kg iv). L-NAME also increased (P < 0.05) the amplitude of duodenal contractions. ATP (8 mg. kg-1. min-1 iv) stimulated relaxations at S1 and D1 that were blocked by the P2-purinoceptor antagonist suramin (60 mg/kg iv). This treatment did not affect spontaneous antral relaxations; however, duodenal grouped relaxations were attenuated. Desensitization to the P2x-purinoceptor agonist alpha,beta-methylene ATP (300 micrograms/kg iv) gave results similar to suramin. In contrast, the P2y-purinoceptor agonist 2-methylthio-ATP (2-MeS-ATP; 360 micrograms/kg iv) evoked duodenal relaxations that were attenuated by L-NAME, and desensitization to 2-MeS-ATP attenuated intergroup relaxations. Spontaneous relaxations of the rat antrum and duodenal intergroup relaxations are NO dependent. Both gut regions relax in response to systemically administered ATP; this response is sensitive to suramin. Grouped duodenal relaxations display functional sensitivity to suramin and P2x- purinoceptor desensitization, indicative of the involvement of ATP and P2x purinoceptors. P2y purinoceptors must also be present; however, these occur on elements releasing NO. Although NO does not mediate grouped relaxations or duodenal contractions, the sensitivity of these responses to L-NAME indicates that the pathway(s) controlling these responses is modulated by NO.
Collapse
Affiliation(s)
- I Glasgow
- Digestive Diseases Research Group, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | |
Collapse
|
16
|
Kuriyama H, Kitamura K, Itoh T, Inoue R. Physiological features of visceral smooth muscle cells, with special reference to receptors and ion channels. Physiol Rev 1998; 78:811-920. [PMID: 9674696 DOI: 10.1152/physrev.1998.78.3.811] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Visceral smooth muscle cells (VSMC) play an essential role, through changes in their contraction-relaxation cycle, in the maintenance of homeostasis in biological systems. The features of these cells differ markedly by tissue and by species; moreover, there are often regional differences within a given tissue. The biophysical features used to investigate ion channels in VSMC have progressed from the original extracellular recording methods (large electrode, single or double sucrose gap methods), to the intracellular (microelectrode) recording method, and then to methods for recording from membrane fractions (patch-clamp, including cell-attached patch-clamp, methods). Remarkable advances are now being made thanks to the application of these more modern biophysical procedures and to the development of techniques in molecular biology. Even so, we still have much to learn about the physiological features of these channels and about their contribution to the activity of both cell and tissue. In this review, we take a detailed look at ion channels in VSMC and at receptor-operated ion channels in particular; we look at their interaction with the contraction-relaxation cycle in individual VSMC and especially at the way in which their activity is related to Ca2+ movements and Ca2+ homeostasis in the cell. In sections II and III, we discuss research findings mainly derived from the use of the microelectrode, although we also introduce work done using the patch-clamp procedure. These sections cover work on the electrical activity of VSMC membranes (sect. II) and on neuromuscular transmission (sect. III). In sections IV and V, we discuss work done, using the patch-clamp procedure, on individual ion channels (Na+, Ca2+, K+, and Cl-; sect. IV) and on various types of receptor-operated ion channels (with or without coupled GTP-binding proteins and voltage dependent and independent; sect. V). In sect. VI, we look at work done on the role of Ca2+ in VSMC using the patch-clamp procedure, biochemical procedures, measurements of Ca2+ transients, and Ca2+ sensitivity of contractile proteins of VSMC. We discuss the way in which Ca2+ mobilization occurs after membrane activation (Ca2+ influx and efflux through the surface membrane, Ca2+ release from and uptake into the sarcoplasmic reticulum, and dynamic changes in Ca2+ within the cytosol). In this article, we make only limited reference to vascular smooth muscle research, since we reviewed the features of ion channels in vascular tissues only recently.
Collapse
Affiliation(s)
- H Kuriyama
- Seinan Jogakuin University, Kokura-Kita, Fukuoka, Japan
| | | | | | | |
Collapse
|
17
|
Geboes K, Collins S. Structural abnormalities of the nervous system in Crohn's disease and ulcerative colitis. Neurogastroenterol Motil 1998; 10:189-202. [PMID: 9659662 DOI: 10.1046/j.1365-2982.1998.00102.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- K Geboes
- Catholic University of Leuven, Belgium
| | | |
Collapse
|
18
|
Krantis A, Nichols K, Staines W. Neurochemical characterization and distribution of enteric GABAergic neurons and nerve fibres in the human colon. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1998; 68:33-42. [PMID: 9531443 DOI: 10.1016/s0165-1838(97)00113-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GABA, somatostatin and enkephalin are neurotransmitters of enteric interneurons and comprise part of the intrinsic neural circuits regulating peristalsis. Within the relaxation phase of reflex peristalsis, nitric oxide (NO) is released by inhibitory motor neurons and perhaps enteric interneurons as well. Previously, we identified by GABA transaminase (GABA-T) immunohistochemistry, a subpopulation of GABAergic interneurons in the human colon which also contain NO synthase activity and hence produce NO. In this study, we have examined further the capacity for cotransmission within the GABAergic innervation in human colon. The expression of two important neuropeptides within GABAergic neurons was determined by combined double-labelled immunocytochemistry using antibodies for GABA-T, enkephalin and somatostatin, together with the demonstration of NO synthase-related NADPH diaphorase staining in cryosectioned colon. Both neuropeptides were found in GABAergic neurons of the colon. The evidence presented herein confirms the colocalization of NO synthase activity and GABA-T immunoreactivity in subpopulations of enteric neurons and further allows the neurochemical classification of GABAergic neurons of the human colon into three subsets: (i) neurons colocalizing somatostatin-like immunoreactivity representing about 40% of the GABAergic neurons, (ii) neurons colocalizing enkephalin-like immunoreactivity, about 9% of the GABAergic neurons and (iii) neurons colocalizing NO synthase activity, about 23% of the GABAergic neurons. This division of GABAergic interneurons into distinct subpopulations of neuropeptide or NO synthase containing cells is consistent with and provides an anatomical correlate for the pharmacology of these transmitters and the pattern of transmitter release during reflex peristalsis.
Collapse
Affiliation(s)
- A Krantis
- Department of Cellular and Molecular Medicine, University of Ottawa, Ont., Canada.
| | | | | |
Collapse
|
19
|
Peaire AE, Krantis A, Staines WA. Distribution of the NPY receptor subtype Y1 within human colon: evidence for NPY targeting a subpopulation of nitrergic neurons. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1997; 67:168-75. [PMID: 9479668 DOI: 10.1016/s0165-1838(97)00101-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuropeptide Y is a neurotransmitter in both the central nervous system and the enteric nervous system. Neuropeptide Y receptors have been demonstrated by in situ hybridization and ligand binding techniques to be present in both of these systems. In this study we report on the distribution of the Y1 isoform of the neuropeptide Y receptor (YY1) in human colon using an antibody raised against the Y1 receptor. This method permits greater resolution in determining the distribution of the receptor and provides the opportunity to study neurotransmitter markers in relationship to the Y1 receptor. Y1 receptor immunoreactivity was localized within ganglionic neurons and axons of the myenteric and submucosal nerve networks, axons within the muscularis mucosae, longitudinal and circular smooth muscle layers, sympathetic nerve fibers around blood vessels and within scattered cells in the mucosa and basal cells of the crypts. Neuropeptide Y/Y1 double staining showed that the peptide and its Y1 receptor subtype were often colocalized within ganglion cells of Henle's plexus in the submucosa. Thus, Y1 may act as an autoreceptor within the colonic gut wall. Nitric oxide synthase was found within most neurons of the myenteric plexus which displayed Y1-receptor immunoreactivity but this correlation was not seen in the submucosa. Instead, the colocalization of nitric oxide synthase and Y1-immunoreactivity was extremely low. These results indicate a striking difference in the Y1 Neuropeptide Y activation of nitrergic mechanisms within the myenteric and submucosal nerve networks.
Collapse
Affiliation(s)
- A E Peaire
- Department of Cellular and Molecular Medicine, University of Ottawa, Ont., Canada
| | | | | |
Collapse
|
20
|
Schleiffer R, Raul F. Nitric oxide and the digestive system in mammals and non-mammalian vertebrates. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART A, PHYSIOLOGY 1997; 118:965-74. [PMID: 9505415 DOI: 10.1016/s0300-9629(97)00026-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The focus of the presentation will review the distribution of nitric oxide (NO)-producing sites in the digestive system in mammals and nonmammalian vertebrates and will center on the roles that NO plays in modulating physiological and pathophysiological functions in digestive system.
Collapse
Affiliation(s)
- R Schleiffer
- CJF INSERM 95-09, IRCAD, Hôpitaux Universitaires, Strasbourg, France
| | | |
Collapse
|
21
|
Krowicki ZK, Hornby PJ. Bicuculline blocks the inhibitory effects of substance p but not vasoactive intestinal polypeptide on gastric motor function in the nucleus raphe obscurus of the rat. Inflammopharmacology 1997. [DOI: 10.1007/bf02679006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|