1
|
Khairallah H, El Andalousi J, Simard A, Haddad N, Chen YH, Hou J, Ryan AK, Gupta IR. Claudin-7, -16, and -19 during mouse kidney development. Tissue Barriers 2014; 2:e964547. [PMID: 25610756 DOI: 10.4161/21688362.2014.964547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/04/2014] [Indexed: 11/19/2022] Open
Abstract
Members of the claudin family of tight junction proteins are critical for establishing epithelial barriers and for the regulation of paracellular transport. To understand their roles during kidney development, we first performed RT-PCR analyses and determined that 23 claudin family members were expressed in embryonic day (E) 13.5 mouse kidneys. Based on their developmental expression and phenotypes in mouse models, we hypothesized that 3 claudin members could affect nephron formation during kidney development. Using whole mount in situ hybridization and immunohistochemistry, we demonstrated that Claudin-7 (Cldn7) was expressed in the nephric duct, the emerging ureteric bud, and in tubules derived from ureteric bud branching morphogenesis. In contrast, Claudin-16 (Cldn16) and Claudin-19 (Cldn19) were expressed at later stages of kidney development in immature renal tubules that become the Loop of Henle. To determine if a loss of these claudins would perturb kidney development, we examined newborn kidneys from mutant mouse models lacking Cldn7 or Cldn16. In both models, we noted no evidence for any congenital renal malformation and quantification of nephron number did not reveal a decrease in nephron number when compared to wildtype littermates. In summary, Cldn7, Cldn16, and Cldn19 are expressed in different epithelial lineages during kidney development. Mice lacking Cldn7 or Cldn16 do not have defects in de novo nephron formation, and this suggests that these claudins primarily function to regulate paracellular transport in the mature nephron.
Collapse
Affiliation(s)
- Halim Khairallah
- Department of Human Genetics; McGill University ; Montreal, Quebec, Canada
| | - Jasmine El Andalousi
- The Research Institute of the McGill University Health Center; Montreal Children's Hospital ; Montreal, Quebec, Canada
| | - Annie Simard
- The Research Institute of the McGill University Health Center; Montreal Children's Hospital ; Montreal, Quebec, Canada
| | - Nicholas Haddad
- Department of Human Genetics; McGill University ; Montreal, Quebec, Canada
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology; Brody School of Medicine at East Carolina University ; Greenville, NC USA
| | - Jianghui Hou
- Washington University Renal Division ; St. Louis, MO USA
| | - Aimee K Ryan
- Department of Human Genetics; McGill University ; Montreal, Quebec, Canada ; The Research Institute of the McGill University Health Center; Montreal Children's Hospital ; Montreal, Quebec, Canada ; Department of Pediatrics; McGill University ; Montreal, Quebec, Canada
| | - Indra R Gupta
- Department of Human Genetics; McGill University ; Montreal, Quebec, Canada ; The Research Institute of the McGill University Health Center; Montreal Children's Hospital ; Montreal, Quebec, Canada ; Department of Pediatrics; McGill University ; Montreal, Quebec, Canada
| |
Collapse
|
2
|
Eom DS, Amarnath S, Fogel JL, Agarwala S. Bone morphogenetic proteins regulate neural tube closure by interacting with the apicobasal polarity pathway. Development 2011; 138:3179-88. [PMID: 21750029 DOI: 10.1242/dev.058602] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During neural tube closure, specialized regions called hinge points (HPs) display dynamic and polarized cell behaviors necessary for converting the neural plate into a neural tube. The molecular bases of such cell behaviors (e.g. apical constriction, basal nuclear migration) are poorly understood. We have identified a two-dimensional canonical BMP activity gradient in the chick neural plate that results in low and temporally pulsed BMP activity at the ventral midline/median hinge point (MHP). Using in vivo manipulations, high-resolution imaging and biochemical analyses, we show that BMP attenuation is necessary and sufficient for MHP formation. Conversely, BMP overexpression abolishes MHP formation and prevents neural tube closure. We provide evidence that BMP modulation directs neural tube closure via the regulation of apicobasal polarity. First, BMP blockade produces partially polarized neural cells, which retain contact with the apical and basal surfaces but where basolateral proteins (LGL) become apically localized and apical junctional proteins (PAR3, ZO1) become targeted to endosomes. Second, direct LGL misexpression induces ectopic HPs identical to those produced by noggin or dominant-negative BMPR1A. Third, BMP-dependent biochemical interactions occur between the PAR3-PAR6-aPKC polarity complex and phosphorylated SMAD5 at apical junctions. Finally, partially polarized cells normally occur at the MHP, their frequencies inversely correlated with the BMP activity gradient in the neural plate. We propose that spatiotemporal modulation of the two-dimensional BMP gradient transiently alters cell polarity in targeted neuronal cells. This ensures that the neural plate is flexible enough to be focally bent and shaped into a neural tube, while retaining overall epithelial integrity.
Collapse
Affiliation(s)
- Dae Seok Eom
- Institute for Cell and Molecular Biology, University of Texas at Austin, TX 78712, USA
| | | | | | | |
Collapse
|
3
|
Meyer TN, Schwesinger C, Bush KT, Stuart RO, Rose DW, Shah MM, Vaughn DA, Steer DL, Nigam SK. Spatiotemporal regulation of morphogenetic molecules during in vitro branching of the isolated ureteric bud: toward a model of branching through budding in the developing kidney. Dev Biol 2004; 275:44-67. [PMID: 15464572 DOI: 10.1016/j.ydbio.2004.07.022] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 06/10/2004] [Accepted: 07/21/2004] [Indexed: 11/17/2022]
Abstract
In search of guiding principles involved in the branching of epithelial tubes in the developing kidney, we analyzed branching of the ureteric bud (UB) in whole kidney culture as well as in isolated UB culture independent of mesenchyme but in the presence of mesenchymally derived soluble factors. Microinjection of the UB lumen (both in the isolated UB and in the whole kidney) with fluorescently labeled dextran sulfate demonstrated that branching occurred via smooth tubular epithelial outpouches with a lumen continuous with that of the original structure. Epithelial cells within these outpouches cells were wedge-shaped with actin, myosin-2 and ezrin localized to the luminal side, raising the possibility of a "purse-string" mechanism. Electron microscopy and decoration of heparan sulfates with biotinylated FGF2 revealed that the basolateral surface of the cells remained intact, without the type of cytoplasmic extensions (invadopodia) that are seen in three-dimensional MDCK, mIMCD, and UB cell culture models of branching tubulogenesis. Several growth factor receptors (i.e., FGFR1, FGFR2, c-Ret) and metalloproteases (i.e., MT1-MMP) were localized toward branching UB tips. A large survey of markers revealed the ER chaperone BiP to be highly expressed at UB tips, which, by electron microscopy, are enriched in rough endoplasmic reticulum and Golgi, supporting high activity in the synthesis of transmembrane and secretory proteins at UB tips. After early diffuse proliferation, proliferating and mitotic cells were mostly found within the branching ampullae, whereas apoptotic cells were mostly found in stalks. Gene array experiments, together with protein expression analysis by immunoblotting, revealed a differential spatiotemporal distribution of several proteins associated with epithelial maturation and polarization, including intercellular junctional proteins (e.g., ZO-1, claudin-3, E-cadherin) and the subapical cytoskeletal/microvillar protein ezrin. In addition, Ksp-cadherin was found at UB ampullary cells next to developing outpouches, suggesting a role in epithelial-mesenchymal interactions. These data from the isolated UB culture system support a model where UB branching occurs through outpouching possibly mediated by wedge-shaped cells created through an apical cytoskeletal purse-string mechanism. Additional potential mechanisms include (1) differential localization of growth factor receptors and metalloproteases at tips relative to stalks; (2) creation of a secretory epithelium, in part manifested by increased expression of the ER chaperone BiP, at tips relative to stalks; (3) after initial diffuse proliferation, coexistence of a balance of proliferation vs. apoptosis favoring tip growth with a very different balance in elongating stalks; and (4) differential maturation of the tight and adherens junctions as the structures develop. Because, without mesenchyme, both lateral and bifid branching occurs (including the ureter), the mesenchyme probably restricts lateral branching and provides guidance cues in vivo for directional branching and elongation as well as functioning to modulate tubular caliber and induce differentiation. Selective cadherin, claudin, and microvillar protein expression as the UB matures likely enables the formation of a tight, polarized differentiated epithelium. Although, in vivo, metanephric mesenchyme development occurs simultaneously with UB branching, these studies shed light on how (mesenchymally derived) soluble factors alone regulate spatial and temporal expression of morphogenetic molecules and processes (proliferation, apoptosis, etc.) postulated to be essential to the UB branching program as it forms an arborized structure with a continuous lumen.
Collapse
Affiliation(s)
- Tobias N Meyer
- Department of Medicine, School of Medicine, University of California, La Jolla, San Diego, CA 92093-0693, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
van Straaten HWM, Sieben I, Hekking JWM. Multistep role for actin in initial closure of the mesencephalic neural groove in the chick embryo. Dev Dyn 2002; 224:103-8. [PMID: 11984878 DOI: 10.1002/dvdy.10078] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In a previous study, we have demonstrated that initial closure of the mesencephalic neural groove in the chick embryo is different from neurulation elsewhere. The neural groove invaginates, the walls appose and make contact in a ventrodorsal direction, and subsequently separate ventrally, forming an incipient neural tube lumen, which finally widens into a definitive lumen. In this study, a role for actin in the processes of this initial mesencephalic closure is studied. Based on rhodamine-phalloidin-stained sections, three distinct actin distribution patterns emerged, and time-lapse video microscopy revealed cytochalasin-D-reversible neurulation movements. We propose that actin is involved in formation and stabilization of the neural groove hinge point, in invagination of dorsal neuroepithelial cells into the neural groove, in the origin of the incipient lumen and the reinforcement of adhesion of the dorsal neural folds, and finally in the development of a wide lumen. Such a multifunctional effect of actin microfilaments within a narrow time window and at specific sites has not been reported yet.
Collapse
Affiliation(s)
- Henny W M van Straaten
- Department of Anatomy/Embryology, University of Maastricht, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | |
Collapse
|
5
|
Abstract
Neurulation occurs during the early embryogenesis of chordates, and it results in the formation of the neural tube, a dorsal hollow nerve cord that constitutes the rudiment of the entire adult central nervous system. The goal of studies on neurulation is to understand its tissue, cellular and molecular basis, as well as how neurulation is perturbed during the formation of neural tube defects. The tissue basis of neurulation consists of a series of coordinated morphogenetic movements within the primitive streak (e.g., regression of Hensen's node) and nascent primary germ layers formed during gastrulation. Signaling occurs between Hensen's node and the nascent ectoderm, initiating neurulation by inducing the neural plate (i.e., actually, by suppressing development of the epidermal ectoderm). Tissue movements subsequently result in shaping and bending of the neural plate and closure of the neural groove. The cellular basis of the tissue movements of neurulation consists of changes in the behavior of the constituent cells; namely, changes in cell number, position, shape, size and adhesion. Neurulation, like any morphogenetic event, occurs within the milieu of generic biophysical determinants of form present in all living tissues. Such forces govern and to some degree control morphogenesis in a tissue-autonomous manner. The molecular basis of neurulation remains largely unknown, but we suggest that neurulation genes have evolved to work in concert with such determinants, so that appropriate changes occur in the behaviors of the correct populations of cells at the correct time, maximizing the efficiency of neurulation and leading to heritable species- and axial-differences in this process. In this article, we review the tissue and cellular basis of neurulation and provide strategies to determine its molecular basis. We expect that such strategies will lead to the identification in the near future of critical neurulation genes, genes that when mutated perturb neurulation in a highly specific and predictable fashion and cause neurulation defects, thereby contributing to the formation of neural tube defects.
Collapse
Affiliation(s)
- J F Colas
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 50 N. Medical Drive, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
6
|
Smirnov EB, Bystròn IP, Puchkov VF, Otellin VA. Mitotic activity and rosette formation in the neuroepithelium of the human embryo neocortex in vitro. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1998; 28:473-7. [PMID: 9809283 DOI: 10.1007/bf02463004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- E B Smirnov
- Department of Morphology, Russian Academy of Medical Sciences, St. Petersburg
| | | | | | | |
Collapse
|
7
|
van Straaten HW, Peeters MC, Szpak KF, Hekking JW. Initial closure of the mesencephalic neural groove in the chick embryo involves a releasing zipping-up mechanism. Dev Dyn 1997; 209:333-41. [PMID: 9264257 DOI: 10.1002/(sici)1097-0177(199708)209:4<333::aid-aja1>3.0.co;2-j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
According to a traditional viewpoint, initial closure of the anterior neural groove involves bilateral elevation of the edges of the neural plate, flattening of the midline area, subsequent convergence of the dorsal neural folds, and finally adhesion and fusion of the medial fold edges. In a transverse view, the shape of the neural groove thereby changes from V > U > toppled C > O. This sequence implicates that the neural groove is wide almost from its inception. In the present study, a new mechanism of initial closure is proposed, based on observations in living chick embryos and on light and scanning electron microscopic observations during neurulation in the presumptive mesencephalic region. The medial part of the neural plate invaginates in ventral direction. The walls of the arising neural groove appose, beginning in the depth, and make subsequent contact. During continued invagination the neural walls extend in ventral direction, the apposition/contact zone shifts in dorsal direction up to the neural folds and the neural walls separate ventrally, resulting in the incipient neural tube lumen. The mechanism is best compared with a zipping-up releasing model. In a transverse view, the shape of the neural groove changes from V > Y > I > O. While, according to the traditional view, the neural folds have to converge from a distance in order to contact each other, in the present mechanism the walls and folds are sequentially in contact by the ventro-dorsal zipping-up mechanism, thereby avoiding the possibility of mismatch of the neural folds. The above process is initiated over a considerable longitudinal distance along the neural plate, but only at the mesencephalic level does the dorsal shift of the contact zone become complete. At other levels of the neuraxis, the contact zone releases prematurely and the neural walls become widely separated well before their dorsal neural folds are in contact. These folds have to converge, therefore, in order to close, but their matching is facilitated by the alignment of the previously contacted neural folds at the mesencephalic level as well as by guidance underneath the vitelline membrane.
Collapse
Affiliation(s)
- H W van Straaten
- Department of Anatomy/Embryology, University of Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
8
|
Abstract
Progression of neurulation in the chick embryo has not been well documented. To provide a detailed description, chick embryos were stained in ovo after the least manipulation possible to avoid distortion of the neural plate and folds. This allowed a morphological and morphometric description of the process of neurulation in relatively undisturbed chick embryos. Neurulation comprises several specific phases with distinct closure patterns and closure rates. The first closure event occurs, de novo, in the future mesencephalon at the 4-6 somite stage (sst 4-6). Soon afterwards, at sst 6-7, de novo closure is seen at the rhombocervical level in the form of multisite contacts of the neural folds. These contacts occur in register with the somites, suggesting that the somites may play a role in forcing elevation and apposition of the neural folds. The mesencephalic] and rhombocervical closure events define an intervening rhombencephalic neuropore, which is present for a brief period before it closes. The remaining pear-shaped posterior neuropore (PNP) narrows and displaces caudally, but its length remains constant in embryos with seven to ten somites, indicating that the caudal extension of the rhombocervical closure point and elongation of the caudal neural plate are keeping pace with each other. From sst 10 onward, the tapered cranial portion of the PNP closes fast in a zipper-like manner, and, subsequently, the wide caudal portion of the PNP closes rapidly as a result of the parallel alignment of its folds, with numerous button-like temporary contact points. A role for convergent extension in this closure event is suggested. The final remnant of the PNP closes at sst 18. Thus, as in mammals, chick neurulation involves multisite closure and probably results form several different development mechanisms at varying levels of the body axis.
Collapse
Affiliation(s)
- H W Van Straaten
- Department of Anatomy/Embryology, University of Limburg, Maastricht, Netherlands
| | | | | | | | | |
Collapse
|
9
|
Moury JD, Schoenwolf GC. Cooperative model of epithelial shaping and bending during avian neurulation: autonomous movements of the neural plate, autonomous movements of the epidermis, and interactions in the neural plate/epidermis transition zone. Dev Dyn 1995; 204:323-37. [PMID: 8573723 DOI: 10.1002/aja.1002040310] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Morphogenetic movements during neurulation cause a tissue to change shape within the plane of the epithelium (e.g., conversion of the oval neural plate into the narrow spinal plate and the wide brain plate), cause bending out of the plane of the epithelium (e.g., raise the neural folds and curl the neural plate into a tube), or contribute to both phenomena. In this study, pieces that contain neural plate alone, epidermis alone, or both tissues (with or without underlying tissues) are cut from chick embryos and allowed to develop for up to 24 hr. Examination of histological sections through such isolates allows analysis of the formation of neural folds. When the neural plate/epidermis transition zone is disrupted, neural folds do not form. Conversely, when the transition zone remains intact, neural folds form. Neural folds form even when most of the medial neural plate and lateral epidermis has been removed, leaving only the isolated transition zone. These data indicate that the transition zone is both necessary and sufficient for the formation of neural folds. The transition zone may play a number of roles in epithelial bending including organizing, focussing, and redirecting movements that are autonomous to the neural plate or epidermis. Time-lapse video recording, and sequential photographs allowed the documentation of such movements. Neural plate isolates exhibit autonomous rostrocaudal lengthening and mediolateral narrowing. Isolated strips of epidermis exhibit autonomous movements which, unlike wound-healing movements, are unidirectional (medial), and region-specific (beginning and reaching their greatest extent in the cranial region). Isolated pieces of neural plate or epidermis remain flat instead of bending, providing further evidence that the transition zone is necessary for the formation of neural folds.
Collapse
Affiliation(s)
- J D Moury
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | |
Collapse
|
10
|
Martin JV, Nagele RG, Lee HY. Temporal changes in intracellular free calcium levels in the developing neuroepithelium during neurulation in the chick. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. COMPARATIVE PHYSIOLOGY 1994; 107:655-9. [PMID: 7911410 DOI: 10.1016/0300-9629(94)90365-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Intracellular free calcium ion (Ca2+) levels of the developing chick neuroepithelium during neural tube closure (Hamburger and Hamilton stages 3-11 of embryonic development) were determined using the hydrophobic acetoxymethyl ester of the fluorescent dye fura-2 (fura-2/AM). Temporal changes in the free Ca2+ level in neuroepithelial cells are correlated with the degree of folding of the neuroepithelium. The concentration of intracellular Ca2+ in the neuroepithelium reaches its highest level when apposing neural folds are actively making contact.
Collapse
Affiliation(s)
- J V Martin
- Department of Biology, Rutgers University, Camden, NJ 08102
| | | | | |
Collapse
|
11
|
van Straaten HW, Hekking JW, Consten C, Copp AJ. Intrinsic and extrinsic factors in the mechanism of neurulation: effect of curvature of the body axis on closure of the posterior neuropore. Development 1993; 117:1163-72. [PMID: 8325240 DOI: 10.1242/dev.117.3.1163] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neurulation has been suggested to involve both factors intrinsic and extrinsic to the neuroepithelium. In the curly tail (ct) mutant mouse embryo, final closure of the posterior neuropore is delayed to varying extents resulting in neural tube defects. Evidence was presented recently (Brook et al., 1991 Development 113, 671–678) to suggest that enhanced ventral curvature of the caudal region is responsible for the neurulation defect, which probably originates from an abnormally reduced rate of cell proliferation affecting the hindgut endoderm and notochord, but not the neuroepithelium (Copp et al., 1988, Development 104, 285–295). This axial curvature probably generates a mechanical stress on the posterior neuropore, opposing normal closure. We predicted, therefore, that the ct/ct posterior neuropore should be capable of normal closure if the neuropore should be capable of normal closure if the neuroepithelium is isolated from its adjacent tissues. This prediction was tested by in vitro culture of ct/ct posterior neuropore regions, isolated by a cut caudal to the 5th from last somite. In experimental explants, the neuroepithelium of the posterior neuropore, together with the contiguous portion of the neural tube, were separated mechanically from all adjacent non-neural tissues. The posterior neuropore closed in these explants at a similar rate to isolated posterior neuropore regions of non-mutant embryos. By contrast, control ct/ct explants, in which the caudal region was isolated but the neuroepithelium was left attached to adjacent tissues, showed delayed neurulation. To examine further the idea that axial curvature may be a general mechanism regulating neurulation, we cultured chick embryos on curved substrata in vitro. Slight curvature of the body axis (maximally 1 degree per mm axial length), of either concave or convex nature, resulted in delay of posterior neuropore closure in the chick embryo. Both incidence and extent of closure delay correlated with the degree of curvature that was imposed. We propose that during normal embryogenesis the rate of neurulation is related to the angle of axial curvature, such that experimental alterations in curvature will have differing effects (either enhancement or delay of closure) depending on the angle of curvature at which neurulation normally occurs in a given species, or at a given level of the body axis.
Collapse
Affiliation(s)
- H W van Straaten
- Department of Anatomy and Embryology, University of Limburg, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
12
|
Smirnov EB, Puchkov VF, Otellin VA. Structural changes of the human embryonal cortex during explantation. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1993; 23:115-7. [PMID: 8487935 DOI: 10.1007/bf01189106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- E B Smirnov
- Department of Morphology, USSR Academy of Medical Sciences, Leningrad
| | | | | |
Collapse
|
13
|
Bush KT, Lee H, Nagele RG. Lipid droplets of neuroepithelial cells are a major calcium storage site during neural tube formation in chick and mouse embryos. EXPERIENTIA 1992; 48:516-9. [PMID: 1601118 DOI: 10.1007/bf01928178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In situ precipitation of calcium (Ca2+) with fluoride and antimonate shows that Ca(2+)-specific precipitate is localized almost exclusively within lipid droplets of neuroepithelial cells during neural tube formation in chick and mouse embryos. The density of Ca2+ precipitate within lipid droplets is generally greater in the apical ends of cells situated in regions of the neuroepithelium that are actively engaged in bending. These findings suggest that lipid droplets, in addition to providing a source of metabolic fuel for developing neuroepithelial cells, also serve as Ca(2+)-storage and -releasing sites during neurulation.
Collapse
Affiliation(s)
- K T Bush
- Department of Molecular Biology, University of Medicine and Dentistry of New Jersey, School of Osteopathic Medicine, Stratford 08084
| | | | | |
Collapse
|
14
|
Wilson DB, Wyatt DP. Aberrant convergence of the neural folds in the mouse mutant vl. TERATOLOGY 1992; 45:105-12. [PMID: 1731393 DOI: 10.1002/tera.1420450110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Progressive changes in the dorsolateral angles (DA) and ventral angle (VA) during elevation and convergence of the caudal neural folds were morphometrically analyzed in normal and dysraphic abnormal embryos of the mouse mutant vacuolated lens (vl), and correlations with the configuration of microfilaments in the apices of neuroepithelial cells were made by means of ultrastructural cytochemistry. In 22-28 somite stage abnormal (vl/vl) embryos, the DA and VA are larger than those in their normal counterparts at each comparable level of the caudal neural folds, suggesting that defective convergence involves both the DA and VA in this mutant. In 30-35 somite stage abnormal embryos, the VA is likewise larger than that in normal embryos in which the neural folds have converged and closed; however, the DAs are much smaller, indicating that a medial collapse of the dorsal ends of the neural folds may occur secondary to the closure failure. At the DA, the ultrastructural configuration of microfilaments is similar in abnormal and normal embryos in terms of their circumferential arrangement around the perimeters of the neuroepithelial cell apices. In abnormal embryos, however, the bundles of microfilaments are more delicate and less prominent than in normal embryos; thus it is possible that a quantitative and/or functional deficiency in these elements may be involved in the failure of the abnormal neuroepithelium to bend properly during convergence of the neural folds.
Collapse
Affiliation(s)
- D B Wilson
- Division of Anatomy, University of California, San Diego, School of Medicine, La Jolla 92093
| | | |
Collapse
|
15
|
Jaskoll T, Greenberg G, Melnick M. Neural tube and neural crest: a new view with time-lapse high-definition photomicroscopy. AMERICAN JOURNAL OF MEDICAL GENETICS 1991; 41:333-45. [PMID: 1789290 DOI: 10.1002/ajmg.1320410315] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The dynamic process of neural tube formation and neural crest migration in live, unstained cultured avian embryos at Hamburger-Hamilton (H.H.) stages 8-11 was investigated by time-lapse cinematography using a high-definition microscope. These studies have demonstrated that neural tube closure in the trunk region differs from that observed in the head. The cephalic neural folds elevate slowly, then make contact rapidly. Following this initial apposition, they gradually "zip-up" in the rostrad and caudad direction. In the trunk region where the neuroepithelium bulges adjacent to the somites, the edges of the folds pulsate and forcefully touch-retract-touch in these bulging regions; the intersomitic epithelia retract, remain open even after more posterior somitic regions have apposed, and then close slowly. Epithelial blebs and N-CAM antibody were observed at the leading edges of the neuroepithelia. Between the open folds only a few bridging cells were seen; they probably represent the sites of initial cell adhesion following epithelial retraction. Focusing into the developing embryo shows that neuroepithelial fusion occurs prior to surface epithelial fusion. A meshwork of synchronously pulsating neural crest cells was identified below the surface epithelium and a preliminary investigation of their initial migration was conducted.
Collapse
Affiliation(s)
- T Jaskoll
- Department of Basic Science, University of Southern California Dental School, Los Angeles 90089-0641
| | | | | |
Collapse
|
16
|
Nagele RG, Bush KT, Lynch FJ, Lee HY. A morphometric and computer-assisted three-dimensional reconstruction study of neural tube formation in chick embryos. Anat Rec (Hoboken) 1991; 231:425-36. [PMID: 1793173 DOI: 10.1002/ar.1092310405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The origin of the driving forces for neural tube formation remains uncertain but is currently thought to involve the participation of microfilament bundles situated in the apical ends of neuroepithelial cells. In the work presented here, we show how morphometric measurements that map local variations in the apical geometry of neuroepithelial cells (especially apical constriction) can provide information on the distribution of motive forces within the neuroepithelium during neural tube formation. When used in combination with computer-assisted, three-dimensional reconstruction, it becomes possible to analyze the morphometric data from a dynamic, three-dimensional perspective. As an example application of this method, we have used morphometry to evaluate the effects of ionomycin on the developing neuroepithelium. Treatment of early (stages 6-8) chick embryos with 5 microM ionomycin was found to cause rapid bending of the neuroepithelium within 1 min of exposure and a dramatic acceleration of the normal sequence of neural tube formation. Electron microscopy and morphometry revealed that this acceleration was coincident with a marked increase in the local degree of apical constriction of neuroepithelial cells, presumably a consequence of enhanced contractile activity of apical microfilament bundles. This work shows that transient elevation of free calcium levels can accelerate the usual sequential phases of NT formation. The rapidity of the response (hours of normal development reduced to minutes), increased prominence of apical microfilament bundles, and the enhanced degree of apical constriction strongly support a direct causal role for apical microfilament bundles and apical constriction of neuroepithelial cells in bending of the neuroepithelium.
Collapse
Affiliation(s)
- R G Nagele
- Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey 08103
| | | | | | | |
Collapse
|
17
|
Bush KT, Lynch FJ, DeNittis AS, Steinberg AB, Lee HY, Nagele RG. Neural tube formation in the mouse: a morphometric and computerized three-dimensional reconstruction study of the relationship between apical constriction of neuroepithelial cells and the shape of the neuroepithelium. ANATOMY AND EMBRYOLOGY 1990; 181:49-58. [PMID: 2305970 DOI: 10.1007/bf00189727] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Morphometry and computerized three-dimensional reconstruction were used to study the relationship between apical constriction of neuroepithelial cells and the pattern of bending of the neuroepithelium in the developing neural tube of the 12-somite mouse embryo. The neuroepithelium of the mouse exhibits prominent regional variations in size and shape along the embryo axis. The complex shape of most of the cephalic neural tube (e.g., forebrain and midbrain) is due to the coexistence of concave and convex bending sites whereas more caudal regions (e.g., hindbrain and spinal cord) generally lack sites of convex bending and have a relatively simple shape. The apical morphology of neuroepithelial cells was found to be correlated more closely with the local status of bending of the neuroepithelium than with the specific region of the neural tube in which they are located. In areas of enhanced apical constriction, microfilament bundles were particularly prominent. Morphometry revealed that patterns of bending of the neuroepithelium were correlated almost exactly with those of apical constriction throughout the forming neural tube. These findings support the idea that apical constriction of neuroepithelial cells, resulting from tension generated by microfilament bundles, plays a major role in bending of the neuroepithelium during neural tube formation in the mouse.
Collapse
Affiliation(s)
- K T Bush
- Department of Biology, Rutgers University, Camden, NJ 08102
| | | | | | | | | | | |
Collapse
|