1
|
Ni M, Li X, Rocha JBT, Farina M, Aschner M. Glia and methylmercury neurotoxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:1091-1101. [PMID: 22852858 PMCID: PMC4059390 DOI: 10.1080/15287394.2012.697840] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Methylmercury (MeHg) is a global environmental pollutant with significant adverse effects on human health. As the major target of MeHg, the central nervous system (CNS) exhibits the most recognizable poisoning symptoms. The role of the two major nonneuronal cell types, astrocytes and microglia, in response to MeHg exposure was recently compared. These two cell types share several common features in MeHg toxicity, but interestingly, these cells types also exhibit distinct response kinetics, indicating a cell-specific role in mediating MeHg-induced neurotoxicity. The aim of this study was to review the most recent literature and summarize key features of glial responses to this organometal.
Collapse
Affiliation(s)
- Mingwei Ni
- Department of Surgery, New York Hospital Medical Center Queens, New York City, New York, USA
| | - Xin Li
- Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - João B. T. Rocha
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschner
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Ni M, Li X, Yin Z, Sidoryk-Węgrzynowicz M, Jiang H, Farina M, Rocha JBT, Syversen T, Aschner M. Comparative study on the response of rat primary astrocytes and microglia to methylmercury toxicity. Glia 2011; 59:810-20. [PMID: 21351162 DOI: 10.1002/glia.21153] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 01/11/2011] [Indexed: 12/16/2022]
Abstract
As the two major glial cell types in the brain, astrocytes and microglia play pivotal but different roles in maintaining optimal brain function. Although both cell types have been implicated as major targets of methylmercury (MeHg), their sensitivities and adaptive responses to this metal can vary given their distinctive properties and physiological functions. This study was carried out to compare the responses of astrocytes and microglia following MeHg treatment, specifically addressing the effects of MeHg on cell viability, reactive oxygen species (ROS) generation and glutathione (GSH) levels, as well as mercury (Hg) uptake and the expression of NF-E2-related factor 2 (Nrf2). Results showed that microglia are more sensitive to MeHg than astrocytes, a finding that is consistent with their higher Hg uptake and lower basal GSH levels. Microglia also demonstrated higher ROS generation compared with astrocytes. Nrf2 and its downstream genes were upregulated in both cell types, but with different kinetics (much faster in microglia). In summary, microglia and astrocytes each exhibit a distinct sensitivity to MeHg, resulting in their differential temporal adaptive responses. These unique sensitivities appear to be dependent on the cellular thiol status of the particular cell type.
Collapse
Affiliation(s)
- Mingwei Ni
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Ni M, Li X, Yin Z, Jiang H, Sidoryk-Wegrzynowicz M, Milatovic D, Cai J, Aschner M. Methylmercury induces acute oxidative stress, altering Nrf2 protein level in primary microglial cells. Toxicol Sci 2010; 116:590-603. [PMID: 20421342 DOI: 10.1093/toxsci/kfq126] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The neurotoxicity of methylmercury (MeHg) is well documented in both humans and animals. MeHg causes acute and chronic damage to multiple organs, most profoundly the central nervous system (CNS). Microglial cells are derived from macrophage cell lineage, making up approximately 12% of cells in the CNS, yet their role in MeHg-induced neurotoxicity is not well defined. The purpose of the present study was to characterize microglial vulnerability to MeHg and their potential adaptive response to acute MeHg exposure. We examined the effects of MeHg on microglial viability, reactive oxygen species (ROS) generation, glutathione (GSH) level, redox homeostasis, and Nrf2 protein expression. Our data showed that MeHg (1-5 microM) treatment caused a rapid (within 1 min) concentration- and time-dependent increase in ROS generation, accompanied by a statistically significant decrease in the ratio of GSH and its oxidized form glutathione disulfide (GSSG) (GSH:GSSG ratio). MeHg increased the cytosolic Nrf2 protein level within 1 min of exposure, followed by its nuclear translocation after 10 min of treatment. Consistent with the nuclear translocation of Nrf2, quantitative real-time PCR revealed a concentration-dependent increase in the messenger RNA level of Ho-1, Nqo1, and xCT 30 min post MeHg exposure, whereas Nrf2 knockdown greatly reduced the upregulation of these genes. Furthermore, we observed increased microglial death upon Nrf2 knockdown by the small hairpin RNA approach. Taken together, our study has demonstrated that microglial cells are exquisitely sensitive to MeHg and respond rapidly to MeHg by upregulating the Nrf2-mediated antioxidant response.
Collapse
Affiliation(s)
- Mingwei Ni
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Wang L, Jiang H, Yin Z, Aschner M, Cai J. Methylmercury toxicity and Nrf2-dependent detoxification in astrocytes. Toxicol Sci 2009; 107:135-43. [PMID: 18815141 PMCID: PMC2638644 DOI: 10.1093/toxsci/kfn201] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 09/16/2008] [Indexed: 12/30/2022] Open
Abstract
Methylmercury (MeHg) is a potent neurotoxicant and preferentially induces oxidative injury in astrocytes. In neuronal tissues, nuclear factor erythroid 2-related factor 2 (Nrf2) is a key factor determining the protective antioxidant response against various environmental toxicants. Nrf2 is subjected to regulation by many other signaling pathways. The purpose of this study is to characterize its interaction with the phosphatidylinositol 3 (PI3) kinase in cultured rat neonatal primary astrocytes. The results showed that at pathologically relevant concentrations, exposure of primary astrocytes to MeHg led to Nrf2 activation and upregulation of its downstream antioxidant genes. Inhibition of the PI3 kinase resulted in decreased Nrf2 activity, decreased cellular glutathione, and increased cell death to high-dose MeHg. The functional interaction between the two signaling pathways underlined an important mechanism for astrocyte protection against MeHg toxicity. Modulation of Nrf2 by pharmacological modalities should afford a treatment to attenuate MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Ling Wang
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232
- EENT Hospital, Fudan University, Shanghai, China
| | - Haiyan Jiang
- Departments of Pediatrics and Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Zhaobao Yin
- Departments of Pediatrics and Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Michael Aschner
- Departments of Pediatrics and Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jiyang Cai
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
5
|
Nogueira CW, Rotta LN, Zeni G, Souza DO, Rocha JBT. Exposure to ebselen changes glutamate uptake and release by rat brain synaptosomes. Neurochem Res 2002; 27:283-8. [PMID: 11958529 DOI: 10.1023/a:1014903127672] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated effects of Ebselen, diphenyl diselenide (PhSe)2 and diphenyl ditelluride (PhTe)2 on [3H]glutamate uptake and release by brain synaptosomes. Ebselen after acute exposure inhibited K+-stimulated [3H]glutamate release by brain synaptosomes. (PhSe)2 and (PhTe)2 did not change [3H]glutamate release by brain synaptosomes. Ebselen, (PhSe)2 and (PhTe)2 had no significantly effects on [3H]glutamate uptake after acute exposure. In vitro, Ebselen (100 microM) inhibited [3H]glutamate release and uptake. (PhSe)2 had no significant effect, while (PhTe)2 (100 microM) inhibited [3H]glutamate uptake by brain synaptosomes. In vitro, (PhSe)2, (PhTe)2 and Ebselen caused a significant inhibition of [3H]glutamate uptake by brain synaptic vesicles in vitro. The results demonstrated that organochalcogenides have a rather complex effect on glutamate homeostasis depending on the compound and the schedule of exposition. We propose that the neuroprotective action of Ebselen can be related, in addition to its glutathione peroxidase-like and antilipoperoxidative activity, to a direct interaction with the glutamatergic system by reducing K+-evoked glutamate release.
Collapse
Affiliation(s)
- Cristina W Nogueira
- Departamento de Química, CCNE, Universidade Federal de Santa Maria, RS, Brazil
| | | | | | | | | |
Collapse
|
6
|
Nogueira CW, Rocha JB, Souza DO. Effect of dithiol chelating agents on [3H]MK-801 and [3H]glutamate binding to synaptic plasma membranes. Neurochem Res 2001; 26:1305-10. [PMID: 11885782 DOI: 10.1023/a:1014297401088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
2,3-Dimercaptopropanol (BAL- British Anti-Lewesite) is a dithiol chelating agent used for the treatment of heavy metal poisoning, however, BAL can produce neurotoxic effects in a variety of situations. Based on the low therapeutic efficiency of BAL other dithiols were developed and DMSA (meso-2,3-dimercaptosuccinic acid) and DMPS (2,3-dimercaptopropane-1-sulfonic acid) are becoming used for treatments of humans exposed to heavy metals. In the present investigation the effect of dithiols in the glutamatergic system was examined. The results showed that BAL inhibited [3H]MK-801 and [3H]glutamate binding in a concentration-dependent manner. At 100 microM BAL and DMSA caused a significantly inhibition of [3H]MK-801 binding to brain membranes (p < 0.05 by Duncan's multiple range test). BAL at 100 microM caused an inhibition of 40% on [3H]glutamate binding. DMPS and DMSA had no significant effect on [3H]glutamate binding. Dithiotreitol (DTT), abolished the inhibitory effect of BAL on [3H]MK-801 binding. The protection exerted by DTT suggests that BAL inhibit [3H]MK-801 binding by interacting with cysteinyl residues that are important for redox modulation of receptor responses. ZnCl2 inhibited [3H]glutamate and [3H]MK-801 binding to brain synaptic membrane; nevertheless, the inhibitory effect was slight more accentuated for [3H]MK-801 than [3H]glutamate binding (p < 0.05). The inhibition caused by 10 microM ZnCl2 on [3H]MK-801 binding was attenuated by BAL. The findings present in this study may provide the evidence that BAL affect the glutamatergic system and these effects can contributed to explain, at least in part, why BAL, in contrast to DMPS and DMSA is neurotoxic.
Collapse
Affiliation(s)
- C W Nogueira
- Departamento de Quimica, Centro de Ciencias Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brasil.
| | | | | |
Collapse
|
7
|
Abstract
Brain tissue has a remarkable ability to accumulate glutamate. This ability is due to glutamate transporter proteins present in the plasma membranes of both glial cells and neurons. The transporter proteins represent the only (significant) mechanism for removal of glutamate from the extracellular fluid and their importance for the long-term maintenance of low and non-toxic concentrations of glutamate is now well documented. In addition to this simple, but essential glutamate removal role, the glutamate transporters appear to have more sophisticated functions in the modulation of neurotransmission. They may modify the time course of synaptic events, the extent and pattern of activation and desensitization of receptors outside the synaptic cleft and at neighboring synapses (intersynaptic cross-talk). Further, the glutamate transporters provide glutamate for synthesis of e.g. GABA, glutathione and protein, and for energy production. They also play roles in peripheral organs and tissues (e.g. bone, heart, intestine, kidneys, pancreas and placenta). Glutamate uptake appears to be modulated on virtually all possible levels, i.e. DNA transcription, mRNA splicing and degradation, protein synthesis and targeting, and actual amino acid transport activity and associated ion channel activities. A variety of soluble compounds (e.g. glutamate, cytokines and growth factors) influence glutamate transporter expression and activities. Neither the normal functioning of glutamatergic synapses nor the pathogenesis of major neurological diseases (e.g. cerebral ischemia, hypoglycemia, amyotrophic lateral sclerosis, Alzheimer's disease, traumatic brain injury, epilepsy and schizophrenia) as well as non-neurological diseases (e.g. osteoporosis) can be properly understood unless more is learned about these transporter proteins. Like glutamate itself, glutamate transporters are somehow involved in almost all aspects of normal and abnormal brain activity.
Collapse
Affiliation(s)
- N C Danbolt
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, N-0317, Oslo, Norway
| |
Collapse
|
8
|
Yao CP, Allen JW, Conklin DR, Aschner M. Transfection and overexpression of metallothionein-I in neonatal rat primary astrocyte cultures and in astrocytoma cells increases their resistance to methylmercury-induced cytotoxicity. Brain Res 1999; 818:414-20. [PMID: 10082827 DOI: 10.1016/s0006-8993(98)01229-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Metallothionein-I (MT-I) was expressed in neonatal rat primary astrocyte cultures and an astrocytoma cell line by pGFAP-MT-I plasmid transfection under the control of the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter. Following transient transfection of the pGFAP-MT-I plasmid, MT-I mRNA and MT-I protein levels were determined by northern blot and immunoprecipitation analyses, respectively. The ability of cells over-expressing MT-I to withstand acute methylmercury (MeHg) treatment was measured by the release of preloaded Na251CrO4, an indicator of membrane integrity. Transfection with the pGFAP-MT-I plasmid led to increased mRNA (2. 5-fold in astrocytes and 7.4-fold in astrocytomas) and MT-I protein (2.4-fold in astrocytes and 4.0-fold in astrocytomas) levels compared with their respective controls. Increased expression of MT-I was associated with attenuated release of Na251CrO4 upon MeHg (5 microM) treatment. These results demonstrate that MT-I can be highly expressed both in primary astrocyte cultures and astrocytomas by pGFAP-MT-I plasmid transfection, and lend credence to the hypothesis that increased expression of MT-I affords protection against the cytotoxic effects of MeHg. Taken together, the data suggest that MT offer effective cellular adaptation to MeHg cytotoxicity.
Collapse
Affiliation(s)
- C P Yao
- Department of Physiology and Pharmacology, Bowman Gray School of Medicine, Wake Forest University, Medical Center Blvd., Winston-Salem, NC 27157-1083, USA
| | | | | | | |
Collapse
|
9
|
Trotti D, Danbolt NC, Volterra A. Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol Sci 1998; 19:328-34. [PMID: 9745361 DOI: 10.1016/s0165-6147(98)01230-9] [Citation(s) in RCA: 354] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Increasing evidence indicates that glutamate transporters are vulnerable to the action of biological oxidants, resulting in reduced uptake function. This effect could contribute to the build-up of neurotoxic extracellular glutamate levels, with major pathological consequences. Specific 'redox-sensing' elements, consisting of cysteine residues, have been identified in the structures of at least three transporter subtypes (GLT1, GLAST and EAAC1) and shown to regulate transport rate via thiol-disulphide redox interconversion. In this article, Davide Trotti, Niels Danbolt and Andrea Volterra discuss these findings in relation to the emerging view that in brain diseases oxidative and excitotoxic mechanisms might often operate in tight conjunction to induce neuronal damage. In particular, they review evidence suggesting a possible involvement of oxidative alterations of glutamate transporters in specific pathologies, including amyotrophic lateral sclerosis, Alzheimer's disease, brain trauma and ischaemia.
Collapse
Affiliation(s)
- D Trotti
- Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
10
|
Abstract
Exposure to mercury vapor (Hg0) produces neurotoxic effects which are for the most part subsequent to its biotransformation in brain to the mercuric cation (Hg2 +), which has an exceptionally strong affinity towards the SH groups in proteins. However, neurologic symptoms are often encountered in subjects in which Hg+ concentration in the brain remains in the submicromolar range, markedly below the anticipated threshold for direct inhibition of cerebral metabolism and function. In this report we review biochemical and morphological evidence obtained in this and other laboratories in tissue culture studies suggesting that in such instances mercury neurotoxicity may be mediated by excitotoxic activity of glutamate (GLU). Mercuric chloride (MC) at 1 microM concentration (or less) inhibits GLU uptake and stimulates GLU release in cultured astrocytes, which in vivo is likely to result in excessive GLU accumulation in the extracellular space of the CNS. Inhibition of GLU uptake and stimulation of GLU release by MC may be attenuated by addition to the cultures of a cell membrane-penetrating agent dithiothreitol (DTT) but not of glutathione (GSH), which is not transported to the inside of the cells. However, MC-stimulated release of GLU is suppressed when the intracellular GSH levels are increased by metabolic manipulation. The results indicate that the MC-vulnerable SH groups critical for GLU transport are located within the astrocytic membranes. Ultrastructural evidence for GLU-mediated MC neurotoxicity came from studies in an organotypic culture of rat cerebellum. We have shown that: 1) 1 microM MC lowers the threshold of GLU neurotoxicity, 2) the combined neurotoxic effect of GLU plus MC is attenuated by DTT but not by GSH, which is consistent with the involvement of impaired astrocytic GLU transport, and 3) neuronal damage induced by GLU plus MC becomes less accentuated in a medium with dizocilpine (MK-801), a noncompetitive NMDA receptor antagonist.
Collapse
Affiliation(s)
- J Albrecht
- Department of Neurotoxicology, Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
11
|
Upton EL, Law RO. The role of sulphydryl groups in efflux of taurine and GABA from cerebral cortical cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 403:409-16. [PMID: 8915378 DOI: 10.1007/978-1-4899-0182-8_44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1. Effluxes of taurine and GABA from pre-loaded cells in slices of rat cerebral cortex in isosmotic media is enhanced by the -SH reagent p-chloromercuriphenylsulphonic acid (pCMPS) (100 microM) accompanied by moderate swelling. Those effects were more pronounced with GABA than with taurine. N-ethylmaleimide (NEM) (100 microM) had only slight affects on these variables. 2. The acceleration of effluxes that occurs when medium osmolality is reduced from 315 to 265 mosmol/kg is blocked by NEM and by pCMPS, with pronounced cell swelling. 3. The inhibitory effects of these reagents on efflux is abolished when cell swelling is prevented by the addition of 25 mM sucrose to hyposmotic incubation media (with equimolar reduction in NaCl concentration). 4. Pre-exposure of slices to dithiothreitol (DTT) (100 microM) blocks the effects of NEM and pCMPS on GABA efflux in hyposmotic media, but has no effect on taurine efflux. 5. The cell membrane and cytoskeletal responses which may underlie these effects are briefly discussed.
Collapse
Affiliation(s)
- E L Upton
- Department of Cell Physiology and Pharmacology, University of Leicester, United Kingdom
| | | |
Collapse
|
12
|
Matyja E, Albrecht J. Reduction of neurotoxicity of mercuric chloride and glutamate by a membrane-permeating thiol reagent in vitro. Toxicol In Vitro 1995; 9:931-5. [DOI: 10.1016/0887-2333(95)00078-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/1995] [Indexed: 11/29/2022]
|
13
|
Aschner M, Mullaney KJ, Wagoner DE, Lash LH, Kimelberg HK. Adenosine modulates methylmercuric chloride (MeHgCl)-induced D-aspartate release from neonatal rat primary astrocyte cultures. Brain Res 1995; 689:1-8. [PMID: 8528692 DOI: 10.1016/0006-8993(95)00496-d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effects of adenosine, and selective adenosine receptor agonists and antagonists on methylmercury (MeHg)-induced aspartate release were studied in neonatal rat primary astrocyte cultures. Whereas basal levels of D-[3H]aspartate release were unchanged upon treatment with adenosine or the selective A1 receptor agonists, N6-cyclopentyladenosine (CPA), cyclohexyladenosine (CHA), and R-phenylisopropyladenosine (R-PIA), all partially reversed the MeHg-induced release of D-aspartate. Treatment of astrocytes with the xanthine derivative, theophylline, an adenosine antagonist, reversed the inhibitory effect of adenosine on MeHg-induced D-[3H]aspartate release. Since the effect of MeHg on D-[3H]aspartate release is known to be associated with sulfhydryl (-SH) groups which are controlled by intracellular glutathione concentrations [GSH]i, we also evaluated the effects of adenosine, the A1 agonists CPA and CHP, and the adenosine antagonist, theophylline, on astrocytic [GSH]i. Attenuation of the stimulatory effect of MeHg on D-[3H]aspartate release by adenosine and its agonists occurred in the presence of reduced astrocytic [GSH]i, suggesting that other mechanisms must be invoked for this protective effect. Whilst the mechanism of MeHg-induced D-[3H]aspartate release is not known, the data suggest a role for adenosine in its regulation.
Collapse
Affiliation(s)
- M Aschner
- Department of Physiology and Pharmacology, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, NC 27157-1083, USA
| | | | | | | | | |
Collapse
|
14
|
Combined Electrical Resistance Method for Cell Volume Measurement and Continuous Perfusion for the Measurement of the Release of Endogenous Substances. Neurotoxicology 1995. [DOI: 10.1016/b978-012168055-8/50030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Aschner M, Mullaney KJ, Wagoner D, Lash LH, Kimelberg HK. Intracellular glutathione (GSH) levels modulate mercuric chloride (MC)- and methylmercuric chloride (MeHgCl)-induced amino acid release from neonatal rat primary astrocytes cultures. Brain Res 1994; 664:133-40. [PMID: 7895022 DOI: 10.1016/0006-8993(94)91963-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mercuric chloride (MC) and methylmercury (MeHg) were found to increase amino acid release from astrocytes. This suggests interaction with sulfhydryl (-SH) groups which are controlled by glutathione [GSH] levels. In the present study, we evaluated the effects of alterations in intracellular glutathione concentrations [GSH]i on the outcome of MC and MeHg treatment. [GSH]i were increased in a time-dependent fashion by incubating the astrocytes with 1 mM L-2-oxothiazolidine-4-carboxylic acid (OTC), a cysteine precursor. OTC attenuated the release of [2,3-3H]D-aspartic acid from astrocytes exposed to MC- (5 microM) and MeHg-(10 microM). MeHg-induced [3H]D-taurine release was also reduced by pretreatment of astrocytes with OTC. Treatment with BSO (50 microM) decreased [GSH]i in astrocytes, and increased [2,3-3H]D-aspartate release from MC- and MeHg-treated astrocytes, and [3H]D-taurine release from MeHg-treated cells. Neither OTC nor BSO when added to cultures in the absence of MC or MeHg had an effect on amino acid release by astrocytes. The current study underscores both the sensitivity of astrocytes to mercurials in terms of amino acid release and the relationship of these effects of astrocytic [GSH]i.
Collapse
Affiliation(s)
- M Aschner
- Department of Pharmacology and Toxicology, Albany Medical College, NY
| | | | | | | | | |
Collapse
|
16
|
Mullaney KJ, Fehm MN, Vitarella D, Wagoner DE, Aschner M. The role of -SH groups in methylmercuric chloride-induced D-aspartate and rubidium release from rat primary astrocyte cultures. Brain Res 1994; 641:1-9. [PMID: 8019833 DOI: 10.1016/0006-8993(94)91808-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Methylmercuric chloride (MeHgCl) was shown to increase D-aspartate and rubidium (Rb; a marker for potassium) release from preloaded astrocytes in a dose- and time-dependent fashion. Two sulfhydryl (-SH) protecting agents: a cell membrane non-penetrating compound, reduced glutathione (GSH), and the membrane permeable dithiothreitol (DTT), were found to inhibit the stimulatory action of MeHgCl on the efflux of radiolabeled D-aspartate as well as Rb. MeHgCl-induced D-aspartate and Rb release was completely inhibited by the addition of 1 mM DTT or GSH during the actual 5 min perfusion period with MeHgCl (10 microM). However, when added after MeHgCl treatment, this inhibition could not be fully sustained by GSH, while DTT fully inhibited the MeHgCl-induced release of D-aspartate. Neither DTT or GSH alone had any effect on the rate of astrocytic D-aspartate release. Accordingly, it is postulated that the stimulatory effect exerted by MeHgCl on astrocytic D-aspartate release is associated with vulnerable -SH groups located within, but not on the surface of the cell membrane. Omission of Na+ from the perfusion solution did not accelerate MeHgCl-induced D-aspartate release, suggesting that reversal of the D-aspartate carrier cannot be invoked to explain MeHgCl-induced D-aspartate release. Omission of Ca2+ from the perfusion solution increased the time-dependent MeHgCl-induced D-aspartate release.
Collapse
Affiliation(s)
- K J Mullaney
- Department of Pharmacology and Toxicology, Albany Medical College, NY 12208
| | | | | | | | | |
Collapse
|