1
|
Kuang SY, Huang T, Wang Z, Lin Y, Kindy M, Xi T, Gao BZ. Establishment of a Long-Term Chick Forebrain Neuronal Culture on a Microelectrode Array Platform. RSC Adv 2015; 5:56244-56254. [PMID: 26989485 PMCID: PMC4792308 DOI: 10.1039/c5ra09663d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The biosensor system formed by culturing primary animal neurons on a microelectrode array (MEA) platform is drawing an increasing research interest for its power as a rapid, sensitive, functional neurotoxicity assessment, as well as for many other electrophysiological related research purposes. In this paper, we established a long-term chick forebrain neuron culture (C-FBN-C) on MEAs with a more than 5 month long lifespan and up to 5 month long stability in morphology and physiological function; characterized the C-FBN-C morphologically, functionally, and developmentally; partially compared its functional features with rodent counterpart; and discussed its pros and cons as a novel biosensor system in comparison to rodent counterpart and human induced pluripotent stem cells (hiPSCs). Our results show that C-FBN-C on MEA platform 1) can be used as a biosensor of its own type in a wide spectrum of basic biomedical research; 2) is of value in comparative physiology in cross-species studies; and 3) may have potential to be used as an alternative, cost-effective approach to rodent counterpart within shared common functional domains (such as specific types of ligand-gated ion channel receptors and subtypes expressed in the cortical tissues of both species) in large-scale environmental neurotoxicant screening that would otherwise require millions of animals.
Collapse
Affiliation(s)
- Serena Y. Kuang
- William Beaumont School of Medicine, Oakland University, Rochester, MI 49309, USA
| | - Ting Huang
- Academy for Advanced Interdisciplinary Studies, Center for Biomedical Materials and Tissue Engineering, Peking University, Beijing, 100871, China
| | - Zhonghai Wang
- Department of Bioengineering, Clemson University, 201-5 Rhodes Research Hall, Clemson, SC 29634, USA
| | - Yongliang Lin
- National Engineering Laboratory for Regenerative Implantable Medical Devices, Guangzhou, Guangdong 510530, China
| | - Mark Kindy
- Departments of Neuroscience and Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29466, USA
| | - Tingfei Xi
- Academy for Advanced Interdisciplinary Studies, Center for Biomedical Materials and Tissue Engineering, Peking University, Beijing, 100871, China
| | - Bruce Z. Gao
- Department of Bioengineering, Clemson University, 201-5 Rhodes Research Hall, Clemson, SC 29634, USA
| |
Collapse
|
2
|
Prolonging life in chick forebrain-neuron culture and acquiring spontaneous spiking activity on a microelectrode array. Biotechnol Lett 2014; 37:499-509. [PMID: 25344105 DOI: 10.1007/s10529-014-1704-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/14/2014] [Indexed: 01/09/2023]
Abstract
Various types of animal neurons were cultured on a microelectrode array (MEA) platform to form biosensors to detect potential environmental neurotoxins. For a large-scale screening tool, rodent MEA-based cortical-neuron biosensors would be very costly but chick forebrain neurons (FBNs) are abundant, cost-effective, and easy to dissect. However, chick FBNs have a lifespan of ~14 days in vitro and their spontaneous spike activity (SSA) has been difficult to develop and detect. We used a high-density neuron-glia co-culture on an MEA to prolong chick FBN lifetime to 3 months with lifetime-long SSA. A remarkable embryonic age-dependency in the culture's morphology, lifespan, and most features of SSA signal was discovered. Our results show the feasibility of developing a chick FBN-MEA biosensor and also establish a new electrophysiological platform for functional study of an in vitro neuronal network.
Collapse
|
3
|
Beta-Actin is a Target for Transglutaminase Activity at Synaptic Endings in Chicken Telencephalic Cell Cultures. J Mol Neurosci 2011; 46:410-9. [DOI: 10.1007/s12031-011-9601-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 07/13/2011] [Indexed: 10/18/2022]
|
4
|
Fischer TM, Steinmetz PN, Odde DJ. Robust micromechanical neurite elicitation in synapse-competent neurons via magnetic bead force application. Ann Biomed Eng 2005; 33:1229-37. [PMID: 16133929 DOI: 10.1007/s10439-005-5509-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 04/25/2005] [Indexed: 11/27/2022]
Abstract
The ability to engineer living networks of interconnected neurons with specified connectivity would facilitate the study of synaptogenesis and information processing in the nervous system. Previously, we found that a neurite can be elicited from embryonic chick forebrain neurons by direct mechanical means using magnetic bead force application (MBFA); however, our previous studies and others focused on young, synapse-incompetent neurons. To address this issue, we tested cultures of embryonic chick forebrain neurons of varying age and found that neurites could be micromechanically elicited via MBFA at all ages tested, which ranged between 7 and 22 embryonic equivalent (EE) days (days in ovo plus days in vitro). The probability of neurite initiation was at least 40% for all ages, with a maximum of approximately 80% after 2-4 days in vitro, and a decrease to approximately 60% by day 10 in vitro. The force required to elicit a neurite was approximately 1500 pN with a minimum of approximately 700 pN at embryonic equivalent day 14. The probability of success was similar for two rates of force application (10 and 500 pN/s). Neurite initiation via micromechanical force is robust with respect to cell age, and micromechanical force can induce neurites in synapse-competent neurons.
Collapse
Affiliation(s)
- Trent M Fischer
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
5
|
Kiyosue K, Hiyama TY, Nakayama K, Kasai M, Taguchi T. Re-expression of NR2B-containing NMDA receptors in vitro by suppression of neuronal activity. Int J Dev Neurosci 2004; 22:59-65. [PMID: 15036380 DOI: 10.1016/j.ijdevneu.2003.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 12/12/2003] [Accepted: 12/19/2003] [Indexed: 11/23/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are known to play critical roles in the development of the nervous system, and their expression is regulated in an activity-dependent fashion during development. However, the regulation of NMDAR expression after circuit formation is less well understood. To examine this, we performed patch-clamp recordings from chick cerebral neurons in an activity-controlled culture. Analysis of NMDAR channels from neurons before synapse formation showed that there are two components in channel open kinetics. The major slow component is clearly blocked by ifenprodil, a specific inhibitor of NR2B-containing NMDARs. In contrast, slow component of NMDAR channel opening from neurons after synapse formation became minor and ifenprodil had little effect on the NMDAR channel openings. Furthermore, this change is reversibly regulated by neuronal activity, in that suppression induces the re-expression of NR2B-containing NMDARs, even after circuit formation.
Collapse
Affiliation(s)
- Kazuyuki Kiyosue
- Special Division for Human Life Technology, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorioka, Ikeda, Osaka 563-8577, Japan
| | | | | | | | | |
Collapse
|
6
|
Fass JN, Odde DJ. Tensile force-dependent neurite elicitation via anti-beta1 integrin antibody-coated magnetic beads. Biophys J 2003; 85:623-36. [PMID: 12829516 PMCID: PMC1303117 DOI: 10.1016/s0006-3495(03)74506-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Previous work using glass microneedles to apply calibrated, localized force to neurons showed that tensile force is a sufficient signal for neurite initiation and elongation. However, previous studies did not examine the kinetics or probability of neurite initiation as a function of force or the rate of force application. Here we report the use of a new technique-magnetic bead force application-to systematically investigate the role of force in these phenomena with better ease of use and control over force than glass microneedles. Force-induced neurite initiation from embryonic chick forebrain neurons appeared to be a first-order random process whose rate increased with increasing force, and required the presence of peripheral microtubules. In addition, the probability of initiation was more than twofold lower for neurons exposed to rapid initial force ramps (450 pN/s) than for neurons exposed to slower ramps (1.5 and 11 pN/s). We observed a low force threshold for elongation (15-100 pN), which was not previously detected in chick forebrain neurites elongated by glass microneedles. Finally, neurites subjected to constant force elongated at variable instantaneous rates, and switched abruptly between elongation and retraction, similar to spontaneous, growth-cone-mediated outgrowth and microtubule dynamic instability.
Collapse
Affiliation(s)
- Joseph N Fass
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
7
|
Corner MA, van Pelt J, Wolters PS, Baker RE, Nuytinck RH. Physiological effects of sustained blockade of excitatory synaptic transmission on spontaneously active developing neuronal networks--an inquiry into the reciprocal linkage between intrinsic biorhythms and neuroplasticity in early ontogeny. Neurosci Biobehav Rev 2002; 26:127-85. [PMID: 11856557 DOI: 10.1016/s0149-7634(01)00062-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spontaneous bioelectric activity (SBA) taking the form of extracellularly recorded spike trains (SBA) has been quantitatively analyzed in organotypic neonatal rat visual cortex explants at different ages in vitro, and the effects investigated of both short- and long-term pharmacological suppression of glutamatergic synaptic transmission. In the presence of APV, a selective NMDA receptor blocker, 1-2- (but not 3-)week-old cultures recovered their previous SBA levels in a matter of hours, although in imitation of the acute effect of the GABAergic inhibitor picrotoxin (PTX), bursts of action potentials were abnormally short and intense. Cultures treated either overnight or chronically for 1-3 weeks with APV, the AMPA/kainate receptor blocker DNQX, or a combination of the two were found to display very different abnormalities in their firing patterns. NMDA receptor blockade for 3 weeks produced the most severe deviations from control SBA, consisting of greatly prolonged and intensified burst firing with a strong tendency to be broken up into trains of shorter spike clusters. This pattern was most closely approximated by acute GABAergic disinhibition in cultures of the same age, but this latter treatment also differed in several respects from the chronic-APV effect. In 2-week-old explants, in contrast, it was the APV+DNQX treated group which showed the most exaggerated spike bursts. Functional maturation of neocortical networks, therefore, may specifically require NMDA receptor activation (not merely a high level of neuronal firing) which initially is driven by endogenous rather than afferent evoked bioelectric activity. Putative cellular mechanisms are discussed in the context of a thorough review of the extensive but scattered literature relating activity-dependent brain development to spontaneous neuronal firing patterns.
Collapse
Affiliation(s)
- M A Corner
- Academic Medical Centre, Meibergdreef 33, Netherlands Institute for Brain Research, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
8
|
Kudoh SN, Kiyosue K, Taguchi T. A synaptic potentiation by a protein factor distinct from those induced by neurotrophins. Int J Dev Neurosci 2002; 20:55-62. [PMID: 12008075 DOI: 10.1016/s0736-5748(01)00061-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
We report a protein factor(s) contained in the conditioned medium (CM) of the Mg(2+)-free treatment induced the synaptic potentiation. This type of potentiation shared a different pathway from those induced by neurotrophins. Neurotrophins were confirmed to induce a synaptic potentiation in the dissociated chick neurons. Furthermore, K252a, an inhibitor of tyrosine kinase, abolished this potentiation. Nevertheless, the potentiation induced by the CM was not blocked by K252a. In addition, the CM prepared from the chick neurons induced a similar potentiation in rat and mouse neurons. These results suggest that the protein factor is a novel protein molecule for inducing the potentiation and it plays a critical role in the common mechanism for the potentiation between avian and mammal.
Collapse
Affiliation(s)
- Suguru N Kudoh
- Neuronics Research Group, Special Division for Human Life Technology, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | | | | |
Collapse
|
9
|
|
10
|
Li C, Cheng Y, Gutmann DA, Mangoura D. Differential localization of the neurofibromatosis 1 (NF1) gene product, neurofibromin, with the F-actin or microtubule cytoskeleton during differentiation of telencephalic neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 130:231-48. [PMID: 11675125 DOI: 10.1016/s0165-3806(01)00190-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The protein product of the neurofibromatosis 1 gene, neurofibromin, is abundantly expressed in the cerebral cortex during development, but its physiological role remains unknown. To gain insights into the functions of neurofibromin in neurons, we examined patterns of expression and subcellular localization of neurofibromin during neuronal differentiation. Western blot analysis of telencephali homogenates throughout chick embryogenesis revealed that neurofibromin expression increased during embryonic development. Further analysis showed that telencephalic neurons were also enriched in neurofibromin in culture and that a biphasic gain in expression correlated well with both phases of differentiation in culture, first with a massive outgrowth of processes and gains in neurotransmitter phenotype differentiation, and then with synapse formation. Compared to proteins associated with distinct cytoskeleton systems, the pattern of neurofibromin expression correlated closely with that of the cortical cytoskeleton protein paxillin. Moreover, analysis of immunofluorescence staining of neurofibromin showed that in the presence of a protein crosslinker which preserves both soluble and filamentous cytoskeleton proteins after extraction with Triton X-100, neurofibromin colocalized with F-actin only during the first differentiation phase. This colocalization persisted when the actin cytoskeleton was collapsed with cytochalasin D treatment. In contrast, during the second phase of differentiation neurofibromin colocalized with microtubules, but not F-actin, and the staining pattern was disrupted with nocodazole, but not cytochalasin. A constant finding under all conditions was the presence of neurofibromin in the nucleus, which supports the idea that the bipartite nuclear targeting sequence between residues 2555 and 2572 of neurofibromin may be functional. In summary, we have shown that telencephalic neurons and astroblasts are enriched in neurofibromin and that the subcellular targeting of neurofibromin toward the actin or the microtubule cytoskeleton is developmentally regulated.
Collapse
Affiliation(s)
- C Li
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
11
|
Kudoh SN, Nagai R, Kiyosue K, Taguchi T. PKC and CaMKII dependent synaptic potentiation in cultured cerebral neurons. Brain Res 2001; 915:79-87. [PMID: 11578622 DOI: 10.1016/s0006-8993(01)02835-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have reported that the long-lasting potentiation of spontaneous excitatory postsynaptic currents (SEPSCs) was induced by a Mg(2+)-free treatment in cultured chick cerebral neurons and a factor(s) extracellularly released during the treatment could induce the potentiation by itself. In this paper, protein kinase C (PKC) and calcium/calmodulin-dependent protein kinase type II (CaMKII) but not protein kinase A (PKA) were reported to contribute to the potentiation mechanism during a step between the activation of the N-methyl-D-aspartate receptors by the Mg(2+)-free treatment and the secretion of the protein factor(s).
Collapse
Affiliation(s)
- S N Kudoh
- Neuronics Research Group, Special Division for Human Life Technology, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | | | | | | |
Collapse
|
12
|
Cheng Y, Leung S, Mangoura D. Transient suppression of cortactin ectopically induces large telencephalic neurons towards a GABAergic phenotype. J Cell Sci 2000; 113 ( Pt 18):3161-72. [PMID: 10954415 DOI: 10.1242/jcs.113.18.3161] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Excitatory and inhibitory neuronal cell fates require specific expression of both neurotransmitter and morphological phenotypes. The role of the F-actin cytoskeleton in morphological phenotypes has been well documented, but its role in neurotransmitter phenotype expression remains unknown. Here we present evidence that the F-actin binding protein cortactin participates in determining both aspects of cell fate in large telencephalic neurons. We show that the expression of cortactin was upregulated early in development just prior to appearance of GABAergic neurons in the chick telencephalon at embryonic day 6. This program was faithfully maintained in primary neuronal cultures derived from E6 telencephalon, where immature neurons differentiate either to large pyramidal and large stellate excitatory neurons or to small inhibitory GABAergic neurons. Immunostaining revealed that cortactin was enriched in areas of membrane budding, growth cones, and in the cell cortex of immature neurons. With differentiation, intense punctate staining was also observed in an extraction-resistant cytosolic compartment of the soma and processes. More importantly, suppression of cortactin by inhibition of cortactin mRNA translation with antisense oligonucleotides caused permanent phenotypic changes. Specifically, a transient suppression of cortactin was achieved in immature neurons with a single exposure to antisense oligonucleotides. This inhibition first induced both the expression of mRNA and the enzymatic activity of GAD significantly earlier than in control neurons. Second, cortactin-suppressed large projectional neurons exhibited significantly shorter processes and growth cones with protrusive filopodia and an enlarged lamellipodia veil. Most importantly, this remodeling of neuritic outgrowth in projectional somata was accompanied by the ectopic induction of GABA (*-aminobutyric acid) expression. Considering this data altogether, it appears that cortactin may function to suppress concurrently several parameters of the GABAergic program in large developing neurons.
Collapse
Affiliation(s)
- Y Cheng
- Department of Pediatrics, Committee on Neurobiology and Committee on Cell Physiology, Chicago, IL 60637, USA
| | | | | |
Collapse
|
13
|
Kudoh SN, Kiyosue K, Kasai M, Taguchi T. Synaptic potentiation induced by a protein factor in cultured cerebral neurons. Cell Mol Neurobiol 1999; 19:575-85. [PMID: 10384256 PMCID: PMC11545401 DOI: 10.1023/a:1006976200474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. We reported in a previous paper that long-lasting enhancement of spontaneous excitatory post synaptic currents (SEPSCs) in cultured chick cerebral neurons was induced by exposure to a conditioned medium (CM) prepared by Mg(2+)-free treatment of neurons. This suggested that the CM contained a diffusible factor(s) for the potentiation. 2. In this paper, the factor(s) was shown to be a protein(s) by heat and trypsin treatment of the CM. 3. The factor induced the potentiation within 5 min, but it was not required for maintenance of increased SEPSCs. 4. The factors in CM induced the potentiation without protein synthesis. 5. Protein synthesis at least in postsynaptic neurons, was indispensable to induce the potentiation by the Mg(2+)-free condition.
Collapse
Affiliation(s)
- S N Kudoh
- Department of Organic Materials, Osaka National Research Institute, Ikeda, Japan
| | | | | | | |
Collapse
|
14
|
Nicolau DV, Taguchi T, Taniguchi H, Tanigawa H, Yoshikawa S. Patterning neuronal and glia cells on light-assisted functionalised photoresists. Biosens Bioelectron 1999; 14:317-25. [PMID: 10230032 DOI: 10.1016/s0956-5663(98)00133-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A common photosensitive polymeric material used in semiconductor microlithography (diazo-naphto-quinone/novolak resist) was pattern-exposed with near-UV light to create carboxylic-rich areas on the polymer surface. The patterned surfaces were further functionalised via: (1) the anchorage of peptides for specific cell-attachment or cell-detachment functions; or (2) the diffusion of silicon rich chemical species to achieve the cell detachment. Pairs of antagonistic surface characteristics controlled the cell attachment: (1) amino-rich or carboxylic-rich surfaces; and (2) hydrophilic or hydrophobic surfaces; in which the former promoted the adhesion. It was found that common microlithographic materials and techniques can be upgraded to allow an effective control of the lateral organisation of the artificial arrays of neuronal and glia cells.
Collapse
|
15
|
Nishimune H, Oishi I, Koyanagi S, Taguchi T. Neurite outgrowth-promoting factors in extracts of denervated chick skeletal muscle. Cell Mol Neurobiol 1998; 18:391-8. [PMID: 9619294 PMCID: PMC11560165 DOI: 10.1023/a:1022545414755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1. An extract of denervated skeletal muscle contained activity for promotion of neurite outgrowth from telencephalic neurons, as well as that from neurons in the spinal cord. A factor responsible for the activity was characterized in cultures of dissociated neurons. 2. The factor acted on neurons only when they were attached to the surface of culture dishes. Since treatments with proteases and lectins reduced the outgrowth-promoting activity, the factor was thought to be a glycoprotein. 3. Among the monoclonal antibodies raised against the partially purified extract, five antibodies were found to inhibit the activity for spinal and telencephalic neurons. The most potent antibody, 4D2a, recognized mainly a 63-kD protein and other minor proteins in the extract. Although the 63-kD protein was confirmed to be chick serum albumin by analysis of amino acid sequence, the purified albumin exhibited no activity. 4. From these observations, the factor was found to be a glycoprotein recognized by the neutralizing antibody as one of the minor components of the extract. This factor exhibits its activity in a substrate-bound form but not in a diffusible one.
Collapse
Affiliation(s)
- H Nishimune
- Department of Organic Materials, Osaka National Research Institute, AIST, Ikeda, Japan
| | | | | | | |
Collapse
|
16
|
Kudoh SN, Matsuo A, Kiyosue K, Kasai M, Taguchi T. Long-lasting enhancement of synaptic activity in dissociated cerebral neurons induced by brief exposure to Mg2+-free conditions. Neurosci Res 1997; 28:337-44. [PMID: 9274829 DOI: 10.1016/s0168-0102(97)00061-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The long-lasting enhancement of periodic clusters of spontaneous excitatory postsynaptic currents (SEPSCs) was examined in dissociated chick cerebral neurons that had been transiently exposed to Mg2+-free solution for 15 min. Since the enhancement was diminished by blockade of synaptic transmission, it clearly depended on synaptic activities. A specific antagonist of N-methyl-D-aspartate receptors (NMDARs) also inhibited the potentiations. Furthermore, the presence of inhibitors of protein and RNA synthesis in the Mg2+-free solution blocked the potentiation. In the potentiated neurons, the frequency of miniature excitatory postsynaptic currents (mEPSPs) increased. In addition, a diffusible molecule(s) that promoted the potentiation appeared to be involved in this phenomenon, since the conditioned medium of Mg2+-free treated neurons enhanced synaptic activity in other dish.
Collapse
Affiliation(s)
- S N Kudoh
- Department of Organic Materials, Osaka National Research Institute, Ikeda, Japan
| | | | | | | | | |
Collapse
|
17
|
de Lima AD, Merten MD, Voigt T. Neuritic differentiation and synaptogenesis in serum-free neuronal cultures of the rat cerebral cortex. J Comp Neurol 1997; 382:230-46. [PMID: 9183691 DOI: 10.1002/(sici)1096-9861(19970602)382:2<230::aid-cne7>3.0.co;2-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To better understand the dynamics of the cellular processes involved in early neocortical development, we studied the neuritic differentiation and synaptogenesis of dispersed neurons grown in serum-free cultures under a wide variety of culture conditions. Microtubule-associated protein (MAP2), phosphorylated neurofilament (SMI 31) and synaptophysin immunocytochemistry was complemented with time-lapse studies. During the first week in vitro dissociated cortical neurons developed from roundish cells without processes to neurons with axons and differentiated dendrites, going through five distinct phases. The sequence of these phases was unaltered in a wide range of culturing methods, but the timing of the steps varied among cultures started with different cell densities. Synaptic terminals were first observed after 3-4 days in vitro, coincident with the beginning of dendritic differentiation. Synaptogenesis progressed at least until the end of the third week in vitro, despite a decline in cell density during the second week in vitro. The process of cellular differentiation of cerebral cortical neurons in vitro resembled the development of these cells in the intact tissue, suggesting that organized cell migration is not a prerequisite for the differentiation of single cortical neurons.
Collapse
Affiliation(s)
- A D de Lima
- Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany.
| | | | | |
Collapse
|
18
|
Kiyosue K, Kasai M, Taguchi T. Selective formation of silent synapses on immature postsynaptic cells in cocultures of chick neurons of different ages. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 99:201-7. [PMID: 9125473 DOI: 10.1016/s0165-3806(97)00008-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glutamatergic synapses usually contain two types of ionotropic glutamate receptor, N-methyl-D-aspartate receptors (NMDARs) and non-NMDA receptors (non-NMDARs), and the ratio of these receptors is thought to be critical for synaptic plasticity. To determine whether or not the ratio of these receptors at synaptic sites is controlled by the developmental stage of postsynaptic neurons, we applied a dual whole-cell recording technique to a culture of dissociated chick cerebral neurons of different ages. We found that formation of synapses that contained both types of receptor required maturation of postsynaptic neurons. Moreover, during the early development of postsynaptic neurons, NMDARs were selectively present at synaptic sites prior to the presence of non-NMDARs, even though both types of receptor were expressed in functional form in the neuronal membranes.
Collapse
Affiliation(s)
- K Kiyosue
- Department of Organic Materials, Osaka National Research Institute, Midorigaoka, Ikeda, Japan
| | | | | |
Collapse
|
19
|
Kawaguchi H, Tokioka R, Murai N, Fukunishi K. Multichannel optical recording of neuronal network activity and synaptic potentiation in dissociated cultures from rat hippocampus. Neurosci Lett 1996; 205:177-80. [PMID: 8852587 DOI: 10.1016/0304-3940(96)12407-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The activity of neuronal networks formed by dissociated rat hippocampal neurons was observed with a 128-channel optical recording apparatus using an absorptive voltage-sensitive dye, RH482. Two-dimensional patterns of neural electrical events along somata and neurites in the networks were visualized as the responses to pulse stimuli applied to the somata of the presynaptic neurons by patch-clamp electrodes. Synaptic delay was analyzed from propagation delay of the responses along the neurites. Synaptic potentiation was also observed in postsynaptic responses that were amplified by a factor of 1.24 after tetanization. In contrast, presynaptic components were unaffected by the procedure. In the light of the present results, multichannel optical recording promises to promote our understanding of neuronal interactions at cellular level.
Collapse
Affiliation(s)
- H Kawaguchi
- Advanced Research Laboratory, Hitachi, Ltd., Saitama, Japan
| | | | | | | |
Collapse
|
20
|
Control of the neuronal cell attachment by functionality manipulation of diazo-naphthoquinone/novolak photoresist surface. Biosens Bioelectron 1996. [DOI: 10.1016/0956-5663(96)88089-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Kowalski C, Crest M, Vuillet J, Pin T, Gola M, Nieoullon A. Emergence of a synaptic neuronal network within primary striatal cultures seeded in serum-free medium. Neuroscience 1995; 64:979-93. [PMID: 7753390 DOI: 10.1016/0306-4522(94)00453-c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to investigate the basic cellular mechanisms involved in neuronal interactions within the striatum, we prepared a primary striatal cell culture from rat fetal brain in chemically defined medium. Using morphological and whole-cell recording methods, we observed that an intensive neuritic elongation with a progressive build up of a sodium-dependent electrogenesis occurred during the first week of culture. Morphologically mature synapses began to develop after 10 days in vitro. By this time, most of the neurons (82 +/- 9%) received spontaneously synaptic potentials, which led them to fire (71 +/- 11%). The spontaneous firing was prevented by cadmium (200 microM) and tetrodotoxin (5 microM), which suggested that a Ca(2+)-dependent release of neurotransmitters was involved in the synaptic activation. We further obtained evidence that GABA, and to a lesser extent acetylcholine, contributed to these spontaneous synaptic potentials. At 15 days in vitro, it was possible to observe up to four synaptic contacts on a given dendrite. By this time, whole-cell recordings performed on pairs of neurons showed that the mature neurons were interconnected by excitatory synapses. As the number of synapses increased, the striatal neurons gradually formed a large network in which spontaneous activity developed, which tended to be organized into synchronized bursting patterns.
Collapse
Affiliation(s)
- C Kowalski
- Laboratoire de Neurobiologie Cellulaire et Fonctionnelle, CNRS UPR 9013, Marseille, France
| | | | | | | | | | | |
Collapse
|
22
|
Smith RA, Jiang ZG. Neuronal modulation and plasticity in vitro. INTERNATIONAL REVIEW OF CYTOLOGY 1994; 153:233-96. [PMID: 8045703 DOI: 10.1016/s0074-7696(08)62192-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- R A Smith
- Department of Anatomy, University of Glasgow, Scotland, United Kingdom
| | | |
Collapse
|