1
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Antioxidant Therapies in the Treatment of Multiple Sclerosis. Biomolecules 2024; 14:1266. [PMID: 39456199 PMCID: PMC11506420 DOI: 10.3390/biom14101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Several studies have proposed a potential role for oxidative stress in the development of multiple sclerosis (MS). For this reason, it seems tentative to think that treatment with antioxidant substances could be useful in the treatment of this disease. In this narrative review, we provide a summary of the current findings on antioxidant treatments, both in experimental models of MS, especially in experimental autoimmune encephalomyelitis (EAE) and in the cuprizone-induced demyelination model, and clinical trials in patients diagnosed with MS. Practically all the antioxidants tested in experimental models of MS have shown improvement in clinical parameters, in delaying the evolution of the disease, and in improving histological and biochemical parameters, including decreased levels of markers of inflammation and oxidative stress in the central nervous system and other tissues. Only a few clinical trials have been carried out to investigate the potential efficacy of antioxidant substances in patients with MS, most of them in the short term and involving a short series of patients, so the results of these should be considered inconclusive. In this regard, it would be desirable to design long-term, randomized, multicenter clinical trials with a long series of patients, assessing several antioxidants that have demonstrated efficacy in experimental models of MS.
Collapse
Grants
- PI18/00540 Fondo de Investigación Sanitaria, Instituto de Salud Carlos, Madrid, Spain
- PI21/01683 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Madrid, Spain
- IB20134 Junta de Extremadura, Mérida, Spain
- GR21073 Junta de Extremadura, Mérida, Spain
Collapse
Affiliation(s)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
2
|
Bisaga GN, Mikhailenko AA, Barsukov IN. [Progress and prospects of metabolic therapy in multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:73-78. [PMID: 31089100 DOI: 10.17116/jnevro201911903173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Side-effects and incomplete response to standard therapy of patients with multiple sclerosis (MS) stimulate the development of an alternative therapy, that influences, in particular, metabolic functions of MS patients. Metabolic therapy (vitamins, antioxidants and others) have been used for a long time in neurologic practice for the treatment of MS on the basis of pathophysiological mechanisms, positive clinical experience, low rate of side-effects and practical availability. Recent objective scientific data explain the necessity of correction of the disturbed metabolic profile (metabolome) in MS, and the first evidence of the efficacy of several metabolic agents, particularly, biotin and vitamin D, was shown. Taking into account the mechanisms of action and clinical experience, the authors consider the prospects of using the combined medicine cytoflavin, that contains succinate, nicotinamide, riboflavin and inosine, in metabolic therapy of MS.
Collapse
Affiliation(s)
- G N Bisaga
- FGBE 'National Medical Research Centre V.A. Almazov', St.-Petersburg, Russia; Military Medical Academy S.M. Kirov, St.-Petersburg, Russia
| | | | - I N Barsukov
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
3
|
|
4
|
Abstract
Phosphodiesterases (PDEs) are involved in the regulation of intracellular levels of the second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). These enzymes hydrolyse the cyclic nucleotides to the corresponding nucleoside 5'-monophosphates. Nine PDE subtypes have been identified; these differ in their substrate specificity and mode of activation. The type 4 PDE (PDE(4)) hydrolyses cAMP, is activated by elevated levels of cAMP, and is inhibited by rolipram. Inhibition of enzyme activity has been shown to modulate the activity of cells of the immune system. The production of tumour necrosis factor (TNF)(alpha) by activated monocytes and macrophages is inhibited, and cytokine secretion and proliferation of type 1 T helper cells are suppressed. Both immune cell activation and their concomitant induction of cytokine secretion are implicated in multiple sclerosis (MS), which is the major demyelinating disease of the central nervous system. Studies with the selective PDE(4) inhibitor rolipram in experimental autoimmune encephalomyelitis (an animal model of MS) in mice, rats and nonhuman primates have demonstrated the efficacy of the compound in this disease model, suggesting that PDE(4) inhibitors could ameliorate the clinical course of MS. Unfortunately, clinical trials with PDE(4) inhibitors revealed the major adverse effects of these drugs, namely nausea and vomiting. However, novel PDE(4) inhibitors, which target only a subpopulation of PDE(4) enzymes, may provoke fewer adverse effects. The efficacy of a PDE(4) inhibitor in MS still needs to be demonstrated in a well designed clinical trial.
Collapse
Affiliation(s)
- H Dinter
- Department of Immunology, Berlex Biosciences, Richmond, California 94804, USA.
| |
Collapse
|
5
|
Zhu J, Mix E, Winblad B. The antidepressant and antiinflammatory effects of rolipram in the central nervous system. CNS DRUG REVIEWS 2001; 7:387-98. [PMID: 11830756 PMCID: PMC6741679 DOI: 10.1111/j.1527-3458.2001.tb00206.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rolipram is a selective inhibitor of phosphodiesterases (PDE) IV, especially of the subtype PDE IVB. These phosphodiesterases are responsible for hydrolysis of the cyclic nucleotides cAMP and cGMP, particularly in nerve and immune cells. Consequences of rolipram-induced elevation of intracellular cAMP are increased synthesis and release of norepinephrine, which enhance central noradrenergic transmission, and suppress expression of proinflammatory cytokines and other mediators of inflammation. In humans and animals rolipram produces thereby a variety of biological effects. These effects include attenuation of endogenous depression and inflammation in the central nervous system (CNS), both effects are of potential clinical relevance. There are some discrepancies between in vitro and in vivo effects of rolipram, as well as between results obtained in animal models and clinical studies. The clinical use of rolipram is limited because of its behavioral and other side effects. Newly developed selective PDE IV inhibitors with presumably higher potency and lower toxicity are currently under investigation.
Collapse
Affiliation(s)
- J Zhu
- Division of Geriatric Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Huddinge Hospital, S-141 86 Stockholm, Sweden.
| | | | | |
Collapse
|
6
|
Liefner M, Siebert H, Sachse T, Michel U, Kollias G, Brück W. The role of TNF-alpha during Wallerian degeneration. J Neuroimmunol 2000; 108:147-52. [PMID: 10900348 DOI: 10.1016/s0165-5728(00)00262-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The role of TNF-alpha in the course of Wallerian degeneration of the sciatic nerve was studied in control and TNF-alpha deficient mice. In control animals, the characteristic phenomena of Wallerian degeneration such as axon and myelin degeneration as well as macrophage recruitment with subsequent myelin removal were observed. In TNF-alpha deficient mice, in contrast, macrophage recruitment into the degenerating nerves was impaired resulting in a delayed myelin removal. However, the myelin phagocytic capacity of macrophages was not affected as it could be demonstrated by a similar myelin load of control and TNF-alpha deficient macrophages. These data indicate that the main function of TNF-alpha during Wallerian degeneration is the induction of macrophage recruitment from the periphery without affecting myelin damage or phagocytosis.
Collapse
Affiliation(s)
- M Liefner
- Department of Neuropathology, Georg-August-Universität, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Lock C, Oksenberg J, Steinman L. The role of TNFalpha and lymphotoxin in demyelinating disease. Ann Rheum Dis 1999; 58 Suppl 1:I121-8. [PMID: 10577988 PMCID: PMC1766588 DOI: 10.1136/ard.58.2008.i121] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- C Lock
- Department of Neurology and Neurological Sciences, Stanford University, Beckman Center B002, Stanford, CA 94305, USA
| | | | | |
Collapse
|
8
|
Abstract
Symptomatic treatment of multiple sclerosis (MS) includes a diverse range of drugs intended to relieve the specific symptoms with which a patient may present at a particular point in the progression of the disease. These drugs, not specifically designed for the treatment of MS, may include antispastic agents (e.g. baclofen), drugs to reduce tremor (e.g. clonazepam), anticholinergics (e.g. oxybutynin) which relieve urinary symptoms, anti-epileptics (e.g. carbamazepine) to control neuralgia, stimulants to reduce fatigue (e.g. amantadine), and antidepressants (e.g. fluoxetine) to treat depression. The treatment of acute relapses or exacerbations is dominated by corticosteroids such as methylprednisolone. The most active area of current investigation is the development of drugs which will inhibit the progression of the disease process itself, and in this category the beta- and alpha-interferons are the most effective drugs currently available, although many new treatments are currently in trials, including immunoglobulin, copolymer-1. bovine myelin, T-cell receptor (TCR) peptide vaccines, platelet activating factor (PAF) antagonists, matrix metallo-proteinase inhibitors, campath-1, and insulin-like growth factor (IGF).
Collapse
Affiliation(s)
- P F Smith
- Department of Pharmacology, School of Medical Sciences, University of Otago Medical School, Dunedin, New Zealand
| | | |
Collapse
|
9
|
Bright JJ, Du C, Coon M, Sriram S, Klaus SJ. Prevention of Experimental Allergic Encephalomyelitis via Inhibition of IL-12 Signaling and IL-12-Mediated Th1 Differentiation: An Effect of the Novel Anti-Inflammatory Drug Lisofylline. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.12.7015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Experimental allergic encephalomyelitis (EAE) is an inflammatory, CD4+ Th1-mediated autoimmune disease, which serves as a model for multiple sclerosis. We examined the effect of a novel anti-inflammatory drug, lisofylline (LSF), on EAE induced either by injection of mouse spinal cord homogenate or following transfer of myelin basic protein-reactive T cells. Orally administered LSF significantly inhibited EAE in both cases, decreasing peak clinical scores by >70% and >80%, respectively. In addition, analysis of representative spinal cord sections from LSF-treated mice showed complete lack of demyelination and lymphocyte infiltration. The reduction in EAE correlated with the inhibition of Th1 differentiation by LSF in vivo, as indicated by a reduction in T cell IFN-γ production ex vivo after Ag restimulation. The inhibition of Th1 differentiation in vivo is consistent with a block in IL-12 receptor signaling, because LSF blocked IL-12-driven Th1 differentiation and T cell proliferation in vitro, yet had no effect on IL-12 secretion from APCs ex vivo or in vitro.
Collapse
Affiliation(s)
- John J. Bright
- *Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212; and
| | - Caigan Du
- *Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212; and
| | | | - Subramaniam Sriram
- *Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212; and
| | | |
Collapse
|
10
|
Singh VK. Immunotherapy for brain diseases and mental illnesses. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1997; 48:129-46. [PMID: 9204685 DOI: 10.1007/978-3-0348-8861-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- V K Singh
- Department of Pharmaceutics, College of Pharmacy, University of Michigan, Ann Arbor 48109-1065, USA
| |
Collapse
|