1
|
Schwarz M, Glick D, Loewenstein Y, Soreq H. Engineering of human cholinesterases explains and predicts diverse consequences of administration of various drugs and poisons. Pharmacol Ther 1995; 67:283-322. [PMID: 7494866 DOI: 10.1016/0163-7258(95)00019-d] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The acetylcholine hydrolyzing enzyme, acetylcholinesterase, primarily functions in nerve conduction, yet it appears in several guises, due to tissue-specific expression, alternative mRNA splicing and variable aggregation modes. The closely related enzyme, butyrylcholinesterase, most likely serves as a scavenger of toxins to protect acetylcholine binding proteins. One or both of the cholinesterases probably also plays a non-catalytic role(s) as a surface element on cells to direct intercellular interactions. The two enzymes are subject to inhibition by a wide variety of synthetic (e.g., organophosphorus and carbamate insecticides) and natural (e.g., glycoalkaloids) anticholinesterases that can compromise these functions. Butyrylcholinesterase may function, as well, to degrade several drugs of interest, notably aspirin, cocaine and cocaine-like local anesthetics. The widespread occurrence of butyrylcholinesterase mutants with modified activity further complicates this picture, in ways that are only now being dissected through the use of site-directed mutagenesis and heterologous expression of recombinant cholinesterases.
Collapse
Affiliation(s)
- M Schwarz
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | | | | | |
Collapse
|
2
|
Landwehrmeyer B, Probst A, Palacios JM, Mengod G. Expression of acetylcholinesterase messenger RNA in human brain: an in situ hybridization study. Neuroscience 1993; 57:615-34. [PMID: 8309527 DOI: 10.1016/0306-4522(93)90010-d] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The distribution of messenger RNA coding for acetylcholinesterase was studied in human post mortem brain and rhesus monkey by in situ hybridization histochemistry and compared to the distribution of acetylcholinesterase activity. Acetylcholinesterase messenger RNA had--similar to acetylcholinesterase enzymatic activity--a widespread distribution in human bain. Acetylcholinesterase messenger RNA positive cells corresponded to perikarya rich in acetylcholinesterase activity in most but not all regions. Examples for mismatches included the inferior olive and human cerebellar cortex. The presence of hybridization signals in cerebral cortex and an enrichment in layer III and V of most isocortical areas confirmed that perikaryal acetylcholinesterase in cerebral cortex is of postsynaptic origin and not derived from cholinergic projections. In striatum the expression of high levels of acetylcholinesterase messenger RNA was restricted to a small population of large striatal neurons. In addition, low levels of expression were found in most medium sized striatal neurons. Cholinergic neurons tended to express high levels of acetylcholinesterase messenger RNA whereas in cholinoceptive neurons the levels were moderate to low. However, some noncholinergic neurons like dopaminergic cells in substantia nigra, noradrenergic cells in locus coeruleus, serotoninergic cells in raphé dorsalis, GABAergic cells in thalamic reticular nucleus, granular cells in cerebellar cortex and pontine relay neurons expressed levels comparable to cholinergic neurons in basal forebrain. It is suggested that neurons expressing high levels of acetylcholinesterase messenger RNA may synthesize acetylcholinesterase for axonal transport whereas neurons with an expression of acetylcholinesterase confined to somatodendritic regions tend to contain lower levels of acetylcholinesterase messenger RNA.
Collapse
|
3
|
Sáez-Valero J, Tornel PL, Muñoz-Delgado E, Vidal CJ. Amphiphilic and hydrophilic forms of acetyl- and butyrylcholinesterase in human brain. J Neurosci Res 1993; 35:678-89. [PMID: 8411269 DOI: 10.1002/jnr.490350610] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Human brain acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) were sequentially extracted, first with a Tris-saline buffer (S1) and then with 1% (w/v) Triton X-100 (S2). About 20 and 30% of the AChE and BuChE activities were recovered in S1 and most of the remaining enzymes in S2. Main molecular forms of about 10.5 S and 12.0 S, G4 forms of AChE and BuChE, and smaller amounts of 4.5 S and 5.5 S forms, G1 species of AChE and BuChE, were measured in S1. Application of Triton X-114 phase partitioning and affinity chromatography on phenyl-agarose to S1 revealed that 25% of the AChE and none of the BuChE molecules displayed amphiphilic properties. Analysis of the enzyme activity retained by the phenyl-agarose showed that G1 AChE constituted the bulk of the amphiphilic molecules released without detergent. Main G4 forms of AChE and BuChE were found in the S2 extract. Eighty and 45% of the AChE and BuChE activities in S2 were measured in the detergent-rich phase by Triton X-114 phase partitioning. Thus, most of the AChE and about half of the BuChE molecules in S2 displayed amphiphilic properties. The main peak of BuChE, a 12.0 S form in gradients made with Triton X-100, splits into two peaks of 9.5 S and 12.5 S in Brij 96-containing gradients. This suggests that hydrophilic G4 BuChE forms are predominant in S1 and that hydrophilic and amphiphilic isoforms coexist in S2.
Collapse
Affiliation(s)
- J Sáez-Valero
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, Spain
| | | | | | | |
Collapse
|
4
|
Legay C, Bon S, Vernier P, Coussen F, Massoulié J. Cloning and expression of a rat acetylcholinesterase subunit: generation of multiple molecular forms and complementarity with a Torpedo collagenic subunit. J Neurochem 1993; 60:337-46. [PMID: 8417155 DOI: 10.1111/j.1471-4159.1993.tb05856.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We obtained a cDNA clone encoding one type of catalytic subunit of acetylcholinesterase (AChE) from rat brain (T subunit). The coding sequence shows a high frequency of (G+C) at the third position of the codons (66%), as already noted for several AChEs, in contrast with mammalian butyrylcholinesterase. The predicted primary sequence of rat AChE presents only 11 amino acid differences, including one in the signal peptide, from that of the mouse T subunit. In particular, four alanines in the mouse sequence are replaced by serine or threonine. In northern blots, a rat AChE probe indicates the presence of major 3.2- and 2.4-kb mRNAs, expressed in the CNS as well as in some peripheral tissues, including muscle and spleen. In vivo, we found that the proportions of G1, G2, and G4 forms are highly variable in different brain areas. We did not observe any glycolipid-anchored G2 form, which would be derived from an H subunit. We expressed the cloned rat AChE in COS cells: The transfected cells produce principally an amphiphilic G1a form, together with amphiphilic G2a and G4a forms, and a nonamphiphilic G4na form. The amphiphilic G1a and G2a forms correspond to type II forms, which are predominant in muscle and brain of higher vertebrates. The cells also release G4na, G2a, and G1a in the culture medium. These experiments show that all the forms observed in the CNS in vivo may be obtained from the T subunit. By co-transfecting COS cells with the rat T subunit and the Torpedo collagenic subunit, we obtained chimeric collagen-tailed forms. This cross-species complementarity demonstrates that the interaction domains of the catalytic and structural subunits are highly conserved during evolution.
Collapse
Affiliation(s)
- C Legay
- Laboratoire de Neurobiologie, CNRS UA 295, Ecole Normale Supérieure, Paris, France
| | | | | | | | | |
Collapse
|
5
|
Meneguz A, Bisso GM, Michalek H. Age-related changes in acetylcholinesterase and its molecular forms in various brain areas of rats. Neurochem Res 1992; 17:785-90. [PMID: 1641060 DOI: 10.1007/bf00969013] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A previous study conducted in this laboratory revealed a decrease in total cholinesterase (total ChE) in the cerebral cortex, hippocampus and striatum in aged rats (24 months) of various strains, as compared with young animals (3 months). The purpose of the present experiments was to extend the study to other brain areas (hypothalamus, medulla-pons and cerebellum) and to assess whether this decrease was dependent on the reduction of either specific acetylcholinesterase (AChE) or butyrylcholinesterase (BuChE) or both. By using ultracentrifugation on a sucrose gradient, the molecular forms of AChE were evaluated in all the brain areas of young and aged Sprague-Dawley rats. In young rats the regional distribution of total ChE and AChE varied considerably with respect to BuChE. The age-related loss of total ChE was seen in all areas. Although there was a reduction of AChE and, to somewhat lesser extent, of BuChE in the cerebral cortex, hippocampus, striatum, and hypothalamus (but not in the medulla-pons or the cerebellum), the ratio AChE/BuChE was not substantially modified by age. Two molecular forms of AChE, namely G4 (globular tetrameric) and G1 (monomeric), were detected in all the brain areas. Their distribution, expressed as G4/G1 ratio, varied in young rats from about 7.5 for the striatum to about 2.0 for the medulla-pons and cerebellum. The age-related changes consisted in a significant and selective loss of the enzymatic activity of G4 forms in the cerebral cortex, hippocampus, striatum, and hypothalamus, which resulted in a significant decrease of the G4/G1 ratio. No such changes were found in the medulla-pons or the cerebellum.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Meneguz
- Laboratory of Pharmacology, Istituto Superiore di Sanità, Roma, Italy
| | | | | |
Collapse
|
6
|
Mesulam MM, Geula C. Acetylcholinesterase-rich neurons of the human cerebral cortex: cytoarchitectonic and ontogenetic patterns of distribution. J Comp Neurol 1991; 306:193-220. [PMID: 2050843 DOI: 10.1002/cne.903060202] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Layers 3 and 5 of the adult human cerebral cortex contain a very large number of pyramidal neurons that express intense acetylcholinesterase (AChE) enzymatic activity and AChE-like immunoreactivity. The density of these neurons is high in motor, premotor, and neocortical association areas but quite low in paralimbic cortex. These AChE-rich neurons are located predominantly within layer 3 in the premotor and association cortex, within layer 5 in the non-isocortical components of the paralimbic cortex, and are equally prominent in layers 3 and 5 in the motor cortex. Almost all Betz cells in the motor cortex and up to 80% of layer 3 pyramidal neurons in some parts of the association neocortex yield an AChE-rich staining pattern. The existence of a specific laminar and cytoarchitectonic distribution suggests that the AChE-rich enzymatic pattern of these neurons is selectively regulated. The AChE-rich enzymatic reactivity of the layer 3 and layer 5 neurons is not detectable during early childhood, becomes fully established during adulthood, and does not show signs of decline during advanced senescence in mentally intact individuals. The AChE activity (or enzyme synthesis) in these neurons is therefore held in check for several years during infancy and childhood and begins to be expressed at a time when the more advanced motor and cognitive skills are also being acquired. The absence of immunostaining with an antibody to choline acetyltransferase suggests that these AChE-rich neurons are not cholinergic. The regional distribution of these AChE-rich neurons does not parallel the regional variations of cortical cholinergic innervation. Whereas the AChE-rich pyramidal neurons of layers 3 and 5 almost certainly represent one subgroup of cholinoceptive cortical neurons, their AChE-rich enzymatic pattern is probably also related to a host of non-cholinergic processes that may include maturational changes and plasticity in the adult brain.
Collapse
Affiliation(s)
- M M Mesulam
- Bullard and Denny-Brown Laboratories, Division of Neuroscience and Behavioral Neurology, Beth Israel Hospital, Boston, Massachusetts 02215
| | | |
Collapse
|
7
|
Marquis JK. Pharmacological significance of acetylcholinesterase inhibition by tetrahydroaminoacridine. Biochem Pharmacol 1990; 40:1071-6. [PMID: 2390104 DOI: 10.1016/0006-2952(90)90495-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tetrahydroaminoacridine (THA; Tacrine) is a potent, non-competitive inhibitor of the neuronal enzyme acetylcholinesterase (AChE) and, consequently, a potent modulator of central cholinergic function. The compound reportedly improves the memory deficits of Alzheimer's dementia. Experiments were run with purified bovine caudate AChE to examine the kinetic properties of THA-AChE interaction within the scheme of multiple binding sites on the enzyme and a proposed "map" of the enzyme surface. The kinetic analyses were also designed to determine whether chemical modification of peripheral anionic sites on AChE may provide insight into mechanism for selective pharmacological alteration of cholinergic function in the brain. The studies demonstrated that THA is a reversible, non-competitive inhibitor with an I50 of 160 +/- 10 nM. THA bound primarily at a hydrophobic area outside of the catalytic sites, and binding of THA enhanced the effect of Ca2+ binding to a separate group of "accelerator" sites. Experiments with Al3+ demonstrated non-competitive inhibitor effects that were additive with THA inhibition and consistent with a model suggesting interaction of THA and Al3+ at the enzyme surface. In vitro enzyme inhibition studies also provide evidence for THA "protection" of the catalytic site against inhibition by the high-affinity phosphorylating agent, DFP (isoflurophate).
Collapse
Affiliation(s)
- J K Marquis
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, MA 02118
| |
Collapse
|
8
|
Siek GC, Katz LS, Fishman EB, Korosi TS, Marquis JK. Molecular forms of acetylcholinesterase in subcortical areas of normal and Alzheimer disease brain. Biol Psychiatry 1990; 27:573-80. [PMID: 2322617 DOI: 10.1016/0006-3223(90)90524-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have previously reported that the 10s molecular form (G4) of acetylcholinesterase (AChE) is selectively lost from several cortical areas of Alzheimer's disease (AD) brain. In the current follow-up study, we microdissected several areas of nondemented and AD brain, including the hippocampus, amygdala, and cingulate gyrus. Tissue homogenates were separated on sucrose density gradients and the resulting fractions were analyzed for AChE activity in order to define the ratios of the predominant AChE molecular forms (G4/G1). Both the hippocampus and amygdala exhibited distinct patterns of alterations in the G4/G1 ratio which correlate with the known distribution of histopathological changes in AD brain. In order to further define the major pool of AChE that is depleted in AD, we separated fractionated tissue homogenates into salt-soluble and detergent-soluble fractions. The G4/G1 ratios were only altered in the detergent-soluble fractions, indicating that the loss of the G4 AChE molecular form involves a selective depletion of the membrane pool. Available evidence would suggest that this form is the AChE molecular form physiologically relevant at the cholinergic synapse.
Collapse
Affiliation(s)
- G C Siek
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, MA
| | | | | | | | | |
Collapse
|
9
|
Meneguz A, Bisso GM, Michalek H. Alterations in the distribution of cholinesterase molecular forms in maternal and fetal brain following diisopropyl fluorophosphate treatment of pregnant rats. Neurochem Res 1989; 14:285-91. [PMID: 2725829 DOI: 10.1007/bf00971325] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previous work in this laboratory showed that during intoxication of rats with diisopropyl fluorophosphate at day 20 of pregnancy the recovery of ChE activity was faster in fetal than in maternal brain. In the present study the differences between recovery rats in dam and fetus brain were evaluated in terms of molecular forms and spontaneous reactivation. Using ultracentrifugation on sucrose gradient two molecular forms of ChE, namely 10S (tetrameric globular G4 form) and 4S (monomeric G1 form) were detected both in maternal and fetal brain of untreated rats. The ratios 10S/4S were about 5.0 and 0.75 for dams and 20-day fetuses, respectively. DFP administration (1.1 mg/kg sc) inducing at 90 min an about 80% inhibition of ChE in maternal brain caused a shift in its 10S/4S ratio to 1.63, and to 0.53 in fetal brain (in which overall inhibition was about 70%). This means that 10S forms were preferentially inhibited by DFP both in maternal and fetal brain. After 24 and 48 hr there was a negligible recovery of overall ChE in maternal brain with no shift in the ratio. On the other hand, complete recovery of ChE in fetal brain within 48 hr was accompanied by almost total normalization of the 10S/4S ratio. Rapid recovery of fetal ChE appeared not to depend on hydrolysis of DFP-inhibited ChE. In fact, maternal and fetal DFP-inhibited enzyme preparations following the addition of oximes (pralidoxime or obidoxime) in vitro showed similar rates of reactivation. The overall data indicate considerable differences in recovery rate of molecular forms between dams and fetuses, but not in reactivation by dephosphorylation.
Collapse
Affiliation(s)
- A Meneguz
- Laboratory of Pharmacology, Istituto Superiore di Sanità, Roma, Italy
| | | | | |
Collapse
|
10
|
Bisso GM, Diana G, Fortuna S, Meneguz A, Michalek H. Change in the distribution of acetylcholinesterase molecular forms in frontoparietal cortex of the rat following nucleus basalis lesions with kainic acid. Brain Res 1988; 449:391-4. [PMID: 3395855 DOI: 10.1016/0006-8993(88)91061-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The unilateral injection of kainic acid into the nucleus basalis magnocellularis (NBM) resulted in an alteration of the distribution of acetylcholinesterase (AChE) molecular forms in frontoparietal cortex ipsilaterally to the lesion. The G4/G1 ratio fell from 5.4 +/- 0.8 in contralateral to 3.0 +/- 0.5 in ipsilateral cortex. The NBM lesion effect thus, mimicks, the loss of tetrameric G4 form reported for various brain cortical areas of Alzheimer's disease (AD) patients. The data support the suggestion that G4 form is enriched in presynaptic nerve terminals.
Collapse
Affiliation(s)
- G M Bisso
- Department of Pharmacology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | |
Collapse
|
11
|
Atack JR, Perry EK, Bonham JR, Boakes R, Candy JM. Loss and recovery of acetylcholinesterase molecular forms in the fornix-lesioned rat hippocampus. Neurosci Lett 1987; 79:179-84. [PMID: 3670727 DOI: 10.1016/0304-3940(87)90693-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The loss and recovery of hippocampal acetylcholinesterase (AChE) molecular forms was studied following fornix lesions. Two weeks after lesioning, the G4 form, which constituted the majority (91%) of AChE activity in the unlesioned hippocampus, was significantly reduced (P less than 0.01) to levels 21% of those in the unlesioned hippocampus, suggesting that this form is probably presynaptic. Thirteen weeks after lesioning total hippocampal AChE activity had increased 3-fold relative to 2-week animals, with the majority of the recovery in total AChE activity being due to a significant (P less than 0.05) increase in the abundance of the G4 form to levels 340% of those at 2 weeks. The increase in the abundance of the G4 form, which appears to be a functionally important molecular form of AChE within the CNS, serves as a marker of the integrity of the newly formed hippocampal cholinergic synapses.
Collapse
Affiliation(s)
- J R Atack
- Department of Neuropathology, Newcastle General Hospital, U.K
| | | | | | | | | |
Collapse
|
12
|
Fishman EB, Siek GC, MacCallum RD, Bird ED, Volicer L, Marquis JK. Distribution of the molecular forms of acetylcholinesterase in human brain: alterations in dementia of the Alzheimer type. Ann Neurol 1986; 19:246-52. [PMID: 3963769 DOI: 10.1002/ana.410190305] [Citation(s) in RCA: 112] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acetylcholinesterase (AChE), the enzyme that degrades acetylcholine, is a heterogeneous enzyme that can be separated into multiple molecular forms. A tetrameric membrane-bound form (G4) and a monomeric soluble form (G1) are the two predominant enzyme species in mammalian brain. The distribution of AChE molecular forms was defined by sucrose density gradients of 11 anatomical regions of postmortem brains from 10 patients with dementia of the Alzheimer type (DAT) and 14 nondemented controls of similar ages. The results demonstrate an overall loss of protein and enzyme activity in all areas of the DAT brains studied and a selective loss of the G4 form of AChE in Brodmann areas 9, 10, 11, 21, 22, and 40, and the amygdala. There was no change in the G4/G1 ratio in areas 17 and 20, in the hippocampus, or in the cerebellum. There was a high regional correlation of the G4/G1 ratios with published values for choline acetyltransferase activity but lower correlation with total AChE activity. We propose that there is a predominant loss of the G4 form of AChE in DAT and that this loss is correlated with the degeneration of presynaptic elements.
Collapse
|