1
|
Kirkland D, Reeve L, Gatehouse D, Vanparys P. A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins. Mutat Res 2011; 721:27-73. [PMID: 21238603 DOI: 10.1016/j.mrgentox.2010.12.015] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/12/2010] [Accepted: 12/15/2010] [Indexed: 01/27/2023]
Abstract
In vitro genotoxicity testing needs to include tests in both bacterial and mammalian cells, and be able to detect gene mutations, chromosomal damage and aneuploidy. This may be achieved by a combination of the Ames test (detects gene mutations) and the in vitro micronucleus test (MNvit), since the latter detects both chromosomal aberrations and aneuploidy. In this paper we therefore present an analysis of an existing database of rodent carcinogens and a new database of in vivo genotoxins in terms of the in vitro genotoxicity tests needed to detect their in vivo activity. Published in vitro data from at least one test system (most were from the Ames test) were available for 557 carcinogens and 405 in vivo genotoxins. Because there are fewer publications on the MNvit than for other mammalian cell tests, and because the concordance between the MNvit and the in vitro chromosomal aberration (CAvit) test is so high for clastogenic activity, positive results in the CAvit test were taken as indicative of a positive result in the MNvit where there were no, or only inadequate data for the latter. Also, because Hprt and Tk loci both detect gene-mutation activity, a positive Hprt test was taken as indicative of a mouse-lymphoma Tk assay (MLA)-positive, where there were no data for the latter. Almost all of the 962 rodent carcinogens and in vivo genotoxins were detected by an in vitro battery comprising Ames+MNvit. An additional 11 carcinogens and six in vivo genotoxins would apparently be detected by the MLA, but many of these had not been tested in the MNvit or CAvit tests. Only four chemicals emerge as potentially being more readily detected in MLA than in Ames+MNvit--benzyl acetate, toluene, morphine and thiabendazole--and none of these are convincing cases to argue for the inclusion of the MLA in addition to Ames+MNvit. Thus, there is no convincing evidence that any genotoxic rodent carcinogens or in vivo genotoxins would remain undetected in an in vitro test battery consisting of Ames+MNvit.
Collapse
Affiliation(s)
- David Kirkland
- Kirkland Consulting, PO Box 79, Tadcaster LS24 0AS, United Kingdom.
| | | | | | | |
Collapse
|
2
|
Librando V, Alparone A, Tomaselli G. Electronic properties of some nitrobenzo[a]pyrene isomers: a possible relationship to mutagenic activity. J Mol Model 2008; 14:489-97. [DOI: 10.1007/s00894-008-0297-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 02/18/2008] [Indexed: 11/29/2022]
|
3
|
Zhan DJ, Chiu LH, Heflich RH, Fu PP. Molecular characterization of hprt mutations from Chinese hamster ovary cells treated with 1-, 3-, and 6-nitrosobenzo[a]pyrene. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1998; 31:60-69. [PMID: 9464317 DOI: 10.1002/(sici)1098-2280(1998)31:1<60::aid-em9>3.0.co;2-f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
1-, 3-, and 6-nitrobenzo[a]pyrene (nitro-BaP) are environmental contaminants that can be metabolized to genotoxic derivatives by either nitroreduction or ring-oxidation. In this study, we examined the types of mutations produced by the primary nitroreduced metabolites, 1-, 3-, and 6-nitroso-BaP (NO-BaP) in the hprt gene of Chinese hamster ovary cells. RNA from 6-thioguanine-resistant mutants was reverse-transcribed to cDNA and the hprt coding sequence was amplified and sequenced. The mutational patterns produced by the three compounds exhibited extensive similarities: 1) base pair substitutions accounted for 67% (28/42) of 1-NO-BaP, 51% (26/51) of 3-NO-BaP, and 50% (11/22) of 6-NO-BaP mutations; 19-36% of the mutations were exon deletions and 14-18% were frameshifts; 2) most (64-84%) of the simple base pair substitutions occurred at G:C, mainly G:C-->T:A and G:C-->C:G transversions; 3) 98% (46/47) of the simple base pair substitutions at G:C had the mutated dG on the non-transcribed strand and 81% (38/47) were located with the mutated dG flanked 3' by at least one purine; and 4) most simple base pair substitutions (48/62, 77%) occurred in exons 2, 3, and 8 of the hprt gene. Although there were no significant differences among the mutation profiles of the NO-BaPs, a significant difference did exist between the mutation pattern produced by 3-NO-BaP and the mutation pattern previously determined for the ring-oxidized product of 3-nitro-BaP metabolism, trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9, 10-tetrahydro-3-nitrobenzo[a]pyrene. This observation indicates that differences in the structures of closely related adducts can be important enough to have an effect on mutation profiles.
Collapse
Affiliation(s)
- D J Zhan
- National Center for Toxicological Research, Division of Biochemical Toxicology, Jefferson, Arkansas 72079, USA
| | | | | | | |
Collapse
|
4
|
Zhan DJ, Chiu LH, Von Tungeln LS, Herreno-Saenz D, Cheng E, Evans FE, Heflich RH, Fu PP. Characterization of DNA adducts in Chinese hamster ovary cells treated with mutagenic doses of 1- and 3-nitrosobenzo[a]pyrene and the trans-7,8-diol-anti-9,10-epoxides of 1- and 3-nitrobenzo[a]pyrene. Mutat Res 1997; 379:43-52. [PMID: 9330621 DOI: 10.1016/s0027-5107(97)00105-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The environmental contaminants 1- and 3-nitrobenzo[a]pyrene (1- and 3-nitro-BaP) are mutagens in Chinese hamster ovary (CHO) cells with exogenous metabolic activation. Previous studies demonstrated the potent direct-acting mutagenicity of the oxidized metabolites, trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydro-1-nitrobenzo[a] pyrene (1-NBaPDE) and trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9, 10-tetrahydro-3-nitrobenzo[a]pyrene (3-NBaPDE), and the partially nitroreduced metabolites, 1- and 3-nitrosobenzo[a]pyrene (1- and 3-NO-BaP). In this study, we have identified the major adduct formed by incubation of calf thymus DNA with 1-NBaPDE and used this standard in conjunction with other adduct standards to characterize the 32P-postlabeled DNA adducts produced by 1- and 3-nitro-BaP metabolites in CHO cultures. The major adduct from 1-NBaPDE exposure was 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-1- nitrobenzo[a]pyrene; from 3-NBaPDE, 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-3- nitrobenzo[a]pyrene; from 1-NO-BaP, 6-(deoxyguanosin-N2-yl)-1-aminobenzo[a]pyrene; and from 3-NO-BaP, 6-(deoxyguanosin-N2-yl)-3-aminobenzo[a]pyrene. For comparison, the adducts formed by trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene and the related nitroreduced derivative 6-nitrosobenzo[a]pyrene were also examined. The nitrobenzo[a]pyrene DNA adducts described in this study are proposed to be involved in the mutagenicity of 1- and 3-nitro-BaP upon either oxidative or reductive metabolism.
Collapse
Affiliation(s)
- D J Zhan
- Department of Health and Human Services, Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Fu PP, Qui FY, Jung H, Von Tungeln LS, Zhan DJ, Lee MJ, Wu YS, Heflich RH. Metabolism of isomeric nitrobenzo[a]pyrenes leading to DNA adducts and mutagenesis. Mutat Res 1997; 376:43-51. [PMID: 9202737 DOI: 10.1016/s0027-5107(97)00024-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have been interested in determining the structural and electronic features that may be useful in predicting the mutagenic activity of nitro-polycyclic aromatic hydrocarbons (nitro-PAHs). We have previously found that a correlation between structural and electronic features and direct-acting mutagenicity in Salmonella typhimurium cannot be made using nitro-PAHs with different molecular size. In this study, a series of structurally related nitro-PAHs, the environmental contaminants 1-, 3-, and 6-nitrobenzo[alpha]pyrene (NBaP) and their derivatives, was used to determine structure-activity relationships. It was found that isomeric NBaPs are activated to DNA damaging and mutagenic derivatives by nitroreduction, ring-oxidation, or by a combination of these two pathways. A general finding was that NBaPs and derivatives with their nitro substituent oriented perpendicular to the aromatic system exhibit either very weak or no direct-acting mutagenicity in S. typhimurium strains TA98 and TA100. In this paper, we also discuss the effect of the location of the nitro group on the metabolism and the mutagenicity of NBaPs and the effect of oxygen-containing functional groups on the mutagenicity of NBaP derivatives. These findings provide a useful molecular basis for interpreting and predicting the direct-acting mutagenicity of nitro-PAHs.
Collapse
Affiliation(s)
- P P Fu
- Department of Health and Human Services, Food and Drug Administration, National Center for Toxicological Research, Division of Biochemical Toxicology, Jefferson, AR 72079, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhan DJ, Heflich RH, Fu PP. Molecular characterization of mutation and comparison of mutation profiles in the hprt gene of Chinese hamster ovary cells treated with benzo[a]pyrene trans-7,8-diol-anti-9,10-epoxide, 1-nitrobenzo[a]pyrene trans-7,8-diol-anti-9,10-epoxide, and 3-nitrobenzo[a]pyrene trans-7,8- diol-anti-9,10-epoxide. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1996; 27:19-29. [PMID: 8625944 DOI: 10.1002/(sici)1098-2280(1996)27:1<19::aid-em3>3.0.co;2-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Both 1- and 3-nitrobenzo[a]pyrene (nitro-BaP) are environmental contaminants, potent mutagens in Salmonella, and moderate mutagens in Chinese hamster ovary (CHO) cells. The mutagenicity of their oxidized metabolites,trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-epoxy -7,8,9,10-tetrahydro-1-nitrobenzo[a]pyrene (1-nitro-BaP-DE) and trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydro-3-nitrobenzo[a]- pyrene (3-nitro-BaPDE), together with trans-7,8-dihydroxy-anti-9, 10-ep- oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BaP-DE), was determined in CHO-K1 cells, and the resulting mutations at the hprt locus were characterized by polymerase chain reaction (PCR) amplification of reverse-transcribed hprt mRNA, followed by DNA sequence analysis. The mutant frequencies, in mutants/10(6) clonable cells, at 30 and 100 ng/ml, were BaP-DE, 248 and 456; 1-nitro-BaP-DE, 68 and 260; 3-nitro-BaP-DE, 81 and 232, respectively. In general, the three diolepoxides exhibited similar mutational spectra: 1) 64% (23/36 sequenced mutants) of BaP-DE, 53% (19/36) of 1-nitro-BaP-DE, and 64% (23/36) of 3-nitro-BaP-DE mutants resulted from simple base pair substitution, with the predominant mutation being G-->T transversion; 2) 90%, 100%, and 100% of mutations at G:C had the mutated dG on the nontranscribed DNA strand; and 3) about one quarter of the mutants produced by each mutagen had one or more PCR products with partial or complete exon deletions. The mutagens induced few frameshifts or complex mutations. Among the differences in mutational specificity for the three diolepoxides, the proportion of substituted dGs with 3' purines was significant (P < 0.05) for BaP-DE (16/19, 84%) and 3-nitro-BaP-DE (17/20, 85%), but not significant for 1-nitro-BaP-DE-induced mutants (11/17, 65%, P > 0.05). Also, high proportions of BaP-DE and 3-nitro-BaP-DE base pair substitutions at G:C occurred in DNA sequence contexts of 5'-GG-3', 5'-GGA-3', and 5'-TGGA-3', while the proportions of 1-nitro-BaP-DE mutants in these contexts were often lower. The results indicate that nitro substitution at C1 or C3 of BaP-DE reduces mutational potency in CHO cells and appears to have only subtle effects upon the mutational pattern in the hprt gene.
Collapse
Affiliation(s)
- D J Zhan
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | | | | |
Collapse
|
7
|
Rafii F, Selby AL, Newton RK, Cerniglia CE. Reduction and mutagenic activation of nitroaromatic compounds by a Mycobacterium sp. Appl Environ Microbiol 1994; 60:4263-7. [PMID: 7811065 PMCID: PMC201978 DOI: 10.1128/aem.60.12.4263-4267.1994] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mycobacterium sp. strain Pyr-1 cells, which were grown to the stationary phase in media with and without pyrene, were centrifuged and resuspended in a medium containing 1-nitropyrene. Cells that had been grown with pyrene oxidized up to 20% of the added 1-nitropyrene to 1-nitropyrene-cis-9,10- and 4,5-dihydrodiols. However, cells that had been grown without pyrene reduced up to 70% of the 1-nitropyrene to 1-aminopyrene but did not produce dihydrodiols. The nitroreductase activity was oxygen insensitive, intracellular, and inducible by nitro compounds. Nitroreductase activity was inhibited by p-chlorobenzoic acid, o-iodosobenzoic acid, menadione, dicumarol, and antimycin A. Extracts from cells that had been grown without pyrene activated 1-nitropyrene, 1-amino-7-nitrofluorene, 2,7-dinitro-9-fluorenone, 1,3-dinitropyrene, 1,6-dinitropyrene, and 6-nitrochrysene to DNA-damaging products, as shown in Salmonella typhimurium tester strains by the reversion assay and by induction of the umuC gene. Activation of nitro compounds, as shown by the umu test, was enhanced by NADPH. This study shows that Mycobacterium sp. strain Pyr-1 metabolizes nitroaromatic compounds by both oxidative and reductive pathways. During reduction, it generates products that are mutagenic.
Collapse
Affiliation(s)
- F Rafii
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 72079
| | | | | | | |
Collapse
|
8
|
Fu PP, Herreno-Saenz D, Von Tungeln LS, Lay JO, Wu YS, Lai JS, Evans FE. DNA adducts and carcinogenicity of nitro-polycyclic aromatic hydrocarbons. ENVIRONMENTAL HEALTH PERSPECTIVES 1994; 102 Suppl 6:177-83. [PMID: 7889844 PMCID: PMC1566865 DOI: 10.1289/ehp.94102s6177] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We have been interested in the structure-activity relationships of nitro-polycyclic aromatic hydrocarbons (nitro-PAHs), and have focused on the correlation of structural and electronic features with biological activities, including mutagenicity and tumorigenicity. In our studies, we have emphasized 1-, 2-, 3-, and 6-nitrobenzo[a]pyrenes (nitro-B[a]Ps) and related compounds, all of which are derived from the potent carcinogen benzo[a]pyrene. While 1-, 2-, and 3-nitro-B[a]P are potent mutagens in Salmonella, 6-nitro-B[a]P is a weak mutagen. In vitro metabolism of 1- and 3-nitro-B[a]P has been found to generate multiple pathways for mutagenic activation. The formation of the corresponding trans-7,8-dihydrodiols and 7,8,9,10-tetrahydrotetrols suggests that 1- and 3-nitro-B[a]P trans-7,8-diol-9,10-epoxides are ultimate metabolites of the parent nitro-B[a]Ps. We have isolated a DNA adduct from the reaction between 3-nitro-B[a]P trans-7,8-diol-anti9,10-epoxide and calf thymus DNA, and identified it as 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-3-ni tro-B[a]P . The same adduct was identified from in vitro metabolism of [3H]3-nitro-B[a]P by rat liver microsomes in the presence of calf thymus DNA. A DNA adduct of 3-nitro-B[a]P formed from reaction of N-hydroxy-3-amino-B[a]P, prepared in situ with calf thymus DNA was also isolated. This adduct was identified as 6-(deoxyguanosin-N2-yl)-3-amino-B[a]P. The same adduct was obtained from incubating DNA with 3-nitro-B[a]P in the presence of the mammalian nitroeductase, xanthine oxidase, and hypoxanthine.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P P Fu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079-9502
| | | | | | | | | | | | | |
Collapse
|
9
|
Yu S, Herreno-Saenz D, Miller DW, Kadlubar FF, Fu PP. Mutagenicity of nitro-polycyclic aromatic hydrocarbons with the nitro substituent situated at the longest molecular axis. Mutat Res 1992; 283:45-52. [PMID: 1380662 DOI: 10.1016/0165-7992(92)90120-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- S Yu
- National Center for Toxicological Research, Jefferson, AR 72079
| | | | | | | | | |
Collapse
|
10
|
Sera N, Fukuhara K, Miyata N, Horikawa K, Tokiwa H. Mutagenicity of nitro-azabenzo[a]pyrene and its related compounds. Mutat Res 1992; 280:81-5. [PMID: 1378541 DOI: 10.1016/0165-1218(92)90002-h] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The mutagenicity of nitrated benzo[a]pyrene (BP) and the related compounds, 1- and 3-nitrobenzo[a]pyrene (NBP), 1- and 3-nitro-6-cyanobenzo[a]pyrene (N-6-CBP), 1- and 3-nitro-6-azabenzo[a]-pyrene (N-6-ABP), 1- and 3-nitro-6-azabenzo[a]-pyrene-N-oxide (N-6-ABPO) and 1,6- and 3,6-dinitrobenzo[a]-pyrene (DNBP), was investigated. The mutagenic activities of 3-N-6-CBP and 3-N-6-ABP were 117 and 76 times, respectively, that of 3-NBP. In addition, 3,6-DNBP was more mutagenic than 1,6-DNBP. It is suggested that the mutagenic activation differs with the position of NO2 substitution in the chemical structure. A nitro derivative with NO2 substitution at the 3 position of the aromatic ring of BP was more mutagenic than that with the substitution at the 1 or 6 position. The reducibility of DNBPs was then determined by detecting 1- or 3-amino-6-nitrobenzo[a]pyrene (A-6-NBP), a metabolite of DNBP; 3,6- and 1,6-DNBP were reduced to 3- and 1-A-6-NBP at frequencies of 958 +/- 26 and 79 +/- 8, respectively, pmole per mg of protein, when the compound was incubated anaerobically with rat liver S9 mix at 37 degrees C for 15 min. NO2 substituted at the 3 position of the aromatic ring of BP was readily reduced by a microsome enzyme to form an amino derivative. The result suggests that these compounds have a structure-activity relationship between mutagenicity and NO2 substitution of BP.
Collapse
Affiliation(s)
- N Sera
- Fukuoka Environmental Research Center, Japan
| | | | | | | | | |
Collapse
|
11
|
Delclos KB, Heflich RH. Mutation induction and DNA adduct formation in Chinese hamster ovary cells treated with 6-nitrochrysene, 6-aminochrysene and their metabolites. Mutat Res 1992; 279:153-64. [PMID: 1377330 DOI: 10.1016/0165-1218(92)90062-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
6-Nitrochrysene, 6-aminochrysene and several of their metabolites were assayed for mutagenic activity at the hypoxanthine-guanine phosphoribosyl transferase (hprt) locus in DNA-repair-proficient Chinese hamster ovary (CHO-K1) cells and excision-repair-deficient CHO-UV5 cells. Mutagen-DNA adducts were analyzed by 32P-postlabeling in cells treated under the conditions of the mutagenicity assay and compared with the adduct patterns produced from the in vitro reaction of metabolites of 6-nitrochrysene and 6-aminochrysene with calf-thymus DNA. The mutagenic activities of the test compounds in the presence of a liver homogenate (S9) fraction from Aroclor 1254-pretreated rats, expressed as the number of mutants per 10(6) cells per nmole test compound per ml, in CHO-K1 and CHO-UV5 cells, respectively, were as follows: 6-nitrochrysene, 0.3 and 4; 6-aminochrysene, 35 and 117; 6-nitrochrysene-1,2-dihydrodiol, 1 and 6; 6-aminochrysene-1,2-dihydrodiol, 488 and 644; chrysene (run as a positive control), 12 and 28. 6-Nitrosochrysene was a direct-acting mutagen, yielding 127 and 618 mutants per 10(6) cells per nmole per ml in CHO-K1 and CHO-UV5 cells, respectively. Mutagen-DNA adduct analysis indicated that cells treated with 6-aminochrysene in the presence of S9 or 6-nitrosochrysene in the absence of S9 contained an adduct pattern identical to that derived from the in vitro reaction of N-hydroxy-6-aminochrysene with calf-thymus DNA. Cells treated with 6-aminochrysene-1,2-dihydrodiol plus S9 contained a single mutagen-DNA adduct that was distinct from those derived from N-hydroxy-6-aminochrysene. Based on comparison with previous studies, this adduct is presumed to be derived from 1,2-dihydroxy-3,4-epoxy-1,2,3,4-tetrahydro-6-aminochrysene. Cells treated with 6-nitrochrysene plus S9 and 6-nitrochrysene-1,2-dihydrodiol plus S9 contained a single major chromatographically identical adduct that was apparently derived from N-hydroxy-6-aminochrysene-1,2-dihydrodiol. The results indicate that 6-nitrochrysene, 6-aminochrysene and their metabolites are mutagenic in CHO cells, but that the major activation pathway for 6-nitrochrysene and 6-nitrochrysene-1,2-dihydrodiol in this system differs from previously described pathways.
Collapse
Affiliation(s)
- K B Delclos
- Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR 72079
| | | |
Collapse
|
12
|
Affiliation(s)
- P P Fu
- National Center for Toxicological Research, Jefferson, AR 72079
| | | | | | | |
Collapse
|
13
|
Ashby J, Gallagher JE, Kohan M, Tinwell H, Kimber I, Paton D, Callander RD, Chouroulinkov I. 1-Chloromethylpyrene: a reference skin sensitizer and genotoxin. Mutat Res 1990; 243:281-9. [PMID: 2325693 DOI: 10.1016/0165-7992(90)90144-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
1-Chloromethylpyrene (1-CMP) has been evaluated as a model mutagen and toxin related to the ultimate electrophiles derived from benzo[a]pyrene and 1-nitropyrene. It was mutagenic to Salmonella (greater than 100 pg/plate) and exceptionally reactive to DNA when assessed by the 32P-postlabelling technique. 1-CMP was inactive in a mouse bone micronucleus assay when administered by gavage, probably due to hydrolysis, whose kinetics have been studied (t1/2 approximately 23 min at 37 degrees C). However, as expected, it was a potent skin toxin as determined by its activity as a mitogen to mouse skin and its contact allergenicity, as determined using the local lymph node proliferative assay. It is concluded that 1-CMP will probably be a potent human skin carcinogen and contact allergen.
Collapse
Affiliation(s)
- J Ashby
- ICI Central Toxicology Laboratory, Alderley Park, Macclesfield, Cheshire, Great Britain
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Heflich RH, Hass BS, Chen JJ, Thornton-Manning JR, Fu PP. Reply to 'Comment on the Non-Additivity of the Mutagenic Response of Mixtures of Nitrobenzo[a]Pyrenes'. Mutat Res 1989; 227:69-71. [PMID: 2671719 DOI: 10.1016/0165-7992(89)90071-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- R H Heflich
- National Center for Toxicological Research, Jefferson, AR 72079
| | | | | | | | | |
Collapse
|