1
|
Hartmann K, Möstl K, Lloret A, Thiry E, Addie DD, Belák S, Boucraut-Baralon C, Egberink H, Frymus T, Hofmann-Lehmann R, Lutz H, Marsilio F, Pennisi MG, Tasker S, Truyen U, Hosie MJ. Vaccination of Immunocompromised Cats. Viruses 2022; 14:v14050923. [PMID: 35632665 PMCID: PMC9147348 DOI: 10.3390/v14050923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Immunocompromise is a common condition in cats, especially due to widespread infections with immunosuppressive viruses, such as feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV), but also due to chronic non-infectious diseases, such as tumours, diabetes mellitus, and chronic kidney disease, as well as treatment with immunosuppressive drugs, such as glucocorticoids, cyclosporins, or tumour chemotherapy. In this review, the European Advisory Board on Cat Diseases (ABCD), a scientifically independent board of experts in feline medicine from eleven European countries, discusses the current knowledge and rationale for vaccination of immunocompromised cats. So far, there are few data available on vaccination of immunocompromised cats, and sometimes studies produce controversial results. Thus, this guideline summarizes the available scientific studies and fills in the gaps with expert opinion, where scientific studies are missing. Ultimately, this review aims to help veterinarians with their decision-making in how best to vaccinate immunocompromised cats.
Collapse
Affiliation(s)
- Katrin Hartmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany
- Correspondence:
| | - Karin Möstl
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Albert Lloret
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, 4000 Liège, Belgium;
| | - Diane D. Addie
- Veterinary Diagnostic Services, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK;
| | - Sándor Belák
- Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), 750 07 Uppsala, Sweden;
| | | | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands;
| | - Tadeusz Frymus
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland;
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (R.H.-L.); (H.L.)
| | - Hans Lutz
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (R.H.-L.); (H.L.)
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università Degli Studi di Teramo, 64100 Teramo, Italy;
| | - Maria Grazia Pennisi
- Dipartimento di Scienze Veterinarie, Università di Messina, 98168 Messina, Italy;
| | - Séverine Tasker
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK;
- Linnaeus Veterinary Ltd., Shirley, Solihull B90 4BN, UK
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany;
| | - Margaret J. Hosie
- MRC—University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK;
| |
Collapse
|
2
|
Troyer JL, Roelke ME, Jespersen JM, Baggett N, Buckley-Beason V, MacNulty D, Craft M, Packer C, Pecon-Slattery J, O'Brien SJ. FIV diversity: FIV Ple subtype composition may influence disease outcome in African lions. Vet Immunol Immunopathol 2011; 143:338-46. [PMID: 21723622 PMCID: PMC3168974 DOI: 10.1016/j.vetimm.2011.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Feline immunodeficiency virus (FIV) infects domestic cats and at least 20 additional species of non-domestic felids throughout the world. Strains specific to domestic cat (FIV(Fca)) produce AIDS-like disease progression, sequelae and pathology providing an informative model for HIV infection in humans. Less is known about the immunological and pathological influence of FIV in other felid species although multiple distinct strains of FIV circulate in natural populations. As in HIV-1 and HIV-2, multiple diverse cross-species infections may have occurred. In the Serengeti National Park, Tanzania, three divergent subtypes of lion FIV (FIV(Ple)) are endemic, whereby 100% of adult lions are infected with one or more of these strains. Herein, the relative distribution of these subtypes in the population are surveyed and, combined with observed differences in lion mortality due to secondary infections based on FIV(Ple) subtypes, the data suggest that FIV(Ple) subtypes may have different patterns of pathogenicity and transmissibility among wild lion populations.
Collapse
Affiliation(s)
- Jennifer L Troyer
- Laboratory of Genomic Diversity, SAIC-Frederick, National Cancer Institute, Frederick, MD, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Troyer JL, Brown MA. Feline models of viral pathogenesis: Opportunity knocks. Vet J 2011; 188:252-3. [PMID: 20716490 PMCID: PMC2988874 DOI: 10.1016/j.tvjl.2010.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 11/19/2022]
|
4
|
Abstract
Animal models for human immunodeficiency virus (HIV) infection play a key role in understanding the pathogenesis of AIDS and the development of therapeutic agents and vaccines. As the only lentivirus that causes an immunodeficiency resembling that of HIV infection, in its natural host, feline immunodeficiency virus (FIV) has been a unique and powerful model for AIDS research. FIV was first described in 1987 by Niels Pedersen and co-workers as the causative agent for a fatal immunodeficiency syndrome observed in cats housed in a cattery in Petaluma, California. Since this landmark observation, multiple studies have shown that natural and experimental infection of cats with biological isolates of FIV produces an AIDS syndrome very similar in pathogenesis to that observed for human AIDS. FIV infection induces an acute viremia associated with Tcell alterations including depressed CD4 :CD8 T-cell ratios and CD4 T-cell depletion, peripheral lymphadenopathy, and neutropenia. In later stages of FIV infection, the host suffers from chronic persistent infections that are typically self-limiting in an immunocompetent host, as well as opportunistic infections, chronic diarrhea and wasting, blood dyscracias, significant CD4 T-cell depletion, neurologic disorders, and B-cell lymphomas. Importantly, chronic FIV infection induces a progressive lymphoid and CD4 T-cell depletion in the infected cat. The primary mode of natural FIV transmission appears to be blood-borne facilitated by fighting and biting. However, experimental infection through transmucosal routes (rectal and vaginal mucosa and perinatal) have been well documented for specific FIV isolates. Accordingly, FIV disease pathogenesis exhibits striking similarities to that described for HIV-1 infection.
Collapse
|
5
|
Pistello M, Matteucci D, Bonci F, Isola P, Mazzetti P, Zaccaro L, Merico A, Del Mauro D, Flynn N, Bendinelli M. AIDS vaccination studies using an ex vivo feline immunodeficiency virus model: protection from an intraclade challenge administered systemically or mucosally by an attenuated vaccine. J Virol 2003; 77:10740-50. [PMID: 14512524 PMCID: PMC224962 DOI: 10.1128/jvi.77.20.10740-10750.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Feline immunodeficiency virus (FIV) infection of domestic cats represents a valuable system through which to investigate criteria for antilentiviral vaccines in a natural host species. Here, we examined whether vaccination with a strain of FIV attenuated as a result of prolonged growth in vitro could protect against a fully virulent, highly heterologous intraclade challenge. The results indicated that the vaccine virus produced a low-grade infection with no detectable pathological effects and afforded a long-lasting sterilizing immunity if the challenge was delivered intraperitoneally as cell-free virus but not against a cell-associated intravaginal challenge. In the latter case, however, the replication and pathological consequences of the challenge virus were markedly suppressed. Together with similar results obtained in rhesus monkey models, these findings should give impulse to the development of attenuated FIV vaccines to be tested in controlled studies in field cats. Field studies may provide answers to some of the existing safety concerns surrounding attenuated AIDS vaccines in humans.
Collapse
Affiliation(s)
- Mauro Pistello
- Retrovirus Center and Virology Section, Department of Experimental Pathology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Pistello M, Moscardini M, Mazzetti P, Bonci F, Zaccaro L, Isola P, Freer G, Specter S, Matteucci D, Bendinelli M. Development of feline immunodeficiency virus ORF-A (tat) mutants: in vitro and in vivo characterization. Virology 2002; 298:84-95. [PMID: 12093176 DOI: 10.1006/viro.2002.1442] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A functional ORF-A is essential for efficient feline immunodeficiency virus replication in lymphocytes. We have characterized a series of mutants of the Petaluma strain, derived from p34TF10 and having different combinations of stop codons and increasingly long deletions in ORF-A. Six clones proved fully replicative in fibroblastoid Crandell feline kidney cells and monocyte-derived macrophage cultures but failed to replicate in T cell lines and primary lymphoblasts. Cats inoculated with three selected mutants had considerably milder infections than controls given intact ORF-A virus. In vivo, the mutants maintained growth properties similar to those in vitro for at least 7 months, except that replication in lymphoid cells was strongly reduced but not ablated. One mutant underwent extensive ORF-A changes without, however, reverting to wild-type. Antiviral immune responses were feeble in all cats, suggesting that viral loads were too low to represent a sufficiently powerful antigenic stimulus.
Collapse
Affiliation(s)
- M Pistello
- Retrovirus Center and Virology Section, University of Pisa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
de Monte M, Nonnenmacher H, Brignon N, Ullmann M, Martin JP. A multivariate statistical analysis to follow the course of disease after infection of cats with different strains of the feline immunodeficiency virus (FIV). J Virol Methods 2002; 103:157-70. [PMID: 12008010 DOI: 10.1016/s0166-0934(02)00024-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A descriptive multivariate assay is described which is suitable to analyze results of a biological experiment with small sample size but high qualitative and quantitative complexity of variables. This type of assay allows evaluation of multiple variables observed in the course of an experimental virus infection (e.g. viremia, nucleic acid detection, antibody titers, clinical parameters, anti-microbial treatments or vaccination) in a single graph. In our study, a multiple correspondence analysis (MCA) was used to correlate a total of 145 measurements from each of a dozen of variables measured in five groups of three cats infected by five isolates of feline immunodeficiency virus (FIV). Three groups of virus isolates with distinct virulence were defined and correlation between dynamics of lymphocyte subset counts and viral virulence was established. Comparison between the primary stages of illness and follow-up examinations were of prognostic value and are thus helpful for development and monitoring of therapeutic strategies.
Collapse
Affiliation(s)
- M de Monte
- INSERM U 74, Institut de Virologie, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | |
Collapse
|
8
|
Bendinelli M, Pistello M, Del Mauro D, Cammarota G, Maggi F, Leonildi A, Giannecchini S, Bergamini C, Matteucci D. During readaptation in vivo, a tissue culture-adapted strain of feline immunodeficiency virus reverts to broad neutralization resistance at different times in individual hosts but through changes at the same position of the surface glycoprotein. J Virol 2001; 75:4584-93. [PMID: 11312328 PMCID: PMC114211 DOI: 10.1128/jvi.75.10.4584-4593.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The broad resistance to antibody-mediated neutralization of lentiviruses recently isolated from infected hosts is a poorly understood feature which might contribute to the ability of these viruses to persist and to the failure of experimental vaccines to protect against virulent viruses. We studied the underlying molecular mechanisms by examining the evolution of a neutralization-sensitive, tissue culture-adapted strain of feline immunodeficiency virus upon reinoculation into specific-pathogen-free cats. Reversion to broad neutralization resistance was observed in seven of seven inoculated animals and, in individual hosts, started to develop between less than 4 and more than 15 months from infection. After comparison of the envelope sequences of the inoculum virus, of an additional 4 neutralization-sensitive in vitro variants, and of 14 ex vivo-derived variants (6 neutralization sensitive, 5 resistant, and 3 with intermediate phenotype), a Lys-->Asn or -->Glu change at position 481 in the V4 region of the surface glycoprotein appeared as a key player in the reversion. This conclusion was confirmed by mutagenesis of molecularly cloned virus. Analysis of viral quasispecies and biological clones showed that the intermediate phenotype was due to transient coexistence of neutralization-sensitive and -resistant variants. Since the amino acid position involved was the same in four of four recent revertants, it is suggested that the number of residues that control reversion to broad neutralization resistance in FIV might be very limited. Amino acid 481 was found to be changed only in one of three putative long-term revertants. These variants shared a Ser-->Asn change at position 557 in region V5, which probably collaborated with other mutations in long-term maintenance of neutralization resistance, as suggested by the study of mutagenized virus.
Collapse
Affiliation(s)
- M Bendinelli
- Retrovirus Center and Virology Section, Department of Biomedicine, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lockridge KM, Chien M, Dean GA, Stefano Cole K, Montelaro RC, Luciw PA, Sparger EE. Protective immunity against feline immunodeficiency virus induced by inoculation with vif-deleted proviral DNA. Virology 2000; 273:67-79. [PMID: 10891409 DOI: 10.1006/viro.2000.0395] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine whether live-attenuated feline immunodeficiency virus (FIV) proviral DNA will induce protective immunity, a plasmid clone constructed with a FIV provirus containing a deletion in the viral accessory gene vif (FIV-pPPR-Deltavif) was inoculated as proviral DNA into four cats by the intramuscular route. After 43 weeks, these cats were boosted with the same proviral plasmid. Analysis of peripheral blood mononuclear cells at several time points after the primary and booster inoculations revealed no detectable virus or proviral DNA. At 6 weeks after the booster, immunized cats and additional naive control cats were challenged with a cell-free preparation of the infectious biological isolate FIV-PPR by the intraperitoneal route. Virus was detected after challenge in unvaccinated control cats but not in any of the FIV-pPPR-Deltavif-immunized cats. Both FIV Gag- and Env-specific cytotoxic T lymphocyte (CTL) activities were detected in peripheral blood cells of control cats after challenge infection, whereas only one of four cats immunized with FIV-pPPR-Deltavif DNA exhibited a measurable CTL response to Env following challenge. Although anti-Gag antibodies were not detected after both proviral DNA inoculation and challenge, anti-Env antibodies were found in FIV-pPPR-Deltavif-immunized cats after vaccination as well as after challenge. These findings indicate that inoculation with FIV-pPPR-Deltavif proviral DNA induced resistance to challenge with infectious FIV and that a vif deletion mutant may provide a relatively safe attenuated lentiviral vaccine.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Antigens, Viral/immunology
- Cats
- DNA, Viral/administration & dosage
- DNA, Viral/analysis
- DNA, Viral/genetics
- Gene Deletion
- Gene Products, env/immunology
- Gene Products, gag/immunology
- Gene Products, vif/genetics
- Genome, Viral
- Immunodeficiency Virus, Feline/genetics
- Immunodeficiency Virus, Feline/immunology
- Immunodeficiency Virus, Feline/physiology
- Lentivirus Infections/immunology
- Lentivirus Infections/prevention & control
- Lentivirus Infections/virology
- Lymphocyte Count
- Proviruses/genetics
- T-Lymphocytes, Cytotoxic/immunology
- Time Factors
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- K M Lockridge
- Departments of Medicine and Epidemiology, University of California, Davis, California, 95616, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Pistello M, Matteucci D, Cammarota G, Mazzetti P, Giannecchini S, Del Mauro D, Macchi S, Zaccaro L, Bendinelli M. Kinetics of replication of a partially attenuated virus and of the challenge virus during a three-year intersubtype feline immunodeficiency virus superinfection experiment in cats. J Virol 1999; 73:1518-27. [PMID: 9882357 PMCID: PMC103976 DOI: 10.1128/jvi.73.2.1518-1527.1999] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of preinfecting cats with a partially attenuated feline immunodeficiency virus (FIV) on subsequent infection with a fully virulent FIV belonging to a different subtype were investigated. Eight specific-pathogen-free cats were preinfected with graded doses of a long-term in vitro-cultured cell-free preparation of FIV Petaluma (FIV-P, subtype A). FIV-P established a low-grade or a silent infection in the inoculated animals. Seven months later, the eight preinfected cats and two uninfected cats were challenged with in vivo-grown FIV-M2 (subtype B) and periodically monitored for immunological and virological status. FIV-P-preinfected cats were not protected from acute infection by FIV-M2, and the sustained replication of this virus was accompanied by a reduction of FIV-P viral loads in the peripheral blood mononuclear cells and plasma. However, from 2 years postchallenge (p.c.) until 3 years p.c., when the experiment was terminated, preinfected cats exhibited reduced total viral burdens, and some also exhibited a diminished decline of circulating CD4(+) T lymphocytes relative to control cats infected with FIV-M2 alone. Interestingly, most of the virus detected in challenged cats at late times p.c. was of FIV-P origin, indicating that the preinfecting, attenuated virus had become largely predominant. By the end of follow-up, two challenged cats had no FIV-M2 detectable in the tissues examined. The possible mechanisms underlying the interplay between the two viral populations are discussed.
Collapse
Affiliation(s)
- M Pistello
- Retrovirus Center and Virology Section, Department of Biomedicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hartmann K, Ferk G, North TW, Pedersen NC. Toxicity associated with high dosage 9-[(2R,5R-2,5-dihydro-5-phosphonomethoxy)-2-furanyl]adenine therapy off attempts to abort early FIV infection. Antiviral Res 1997; 36:11-25. [PMID: 9330757 DOI: 10.1016/s0166-3542(97)00030-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
9-[(2R,5R-2,5-dihydro-5-phosphonomethoxy)-2-furanyl]adenine, or D4API, was tested in the feline immunodeficiency virus (FIV) infection model and found to be significantly more inhibitory in vitro than its parent compound 9-phosphonylmethoxethyl adenine (PMEA). Cytotoxicity was less than for PMEA or azidothymidine (AZT) for culture periods of 7 days, but more toxic after 10 days. D4API was rapidly absorbed by cats following subcutaneous inoculation, with a plasma half-life of less than 1 h after intravenous inoculation and between 2 and 3 h after subcutaneous injection. Peripheral blood mononuclear cells collected from cats given a single dose of D4API were refractory, however, to FIV infection in vitro for up to 24 h. Given its prolonged intracellular phase and high selectivity index, high dose D4API therapy was tested for its ability to abort an acute (i.e. 2 week) FIV infection. A divided daily dose of D4API, which was one-fourth the toxic dose and 125 times the concentration that would totally inhibit virus replication in vitro, completely abrogated the anticipated viremia and antibody responses. Unfortunately, a majority of treated/uninfected and treated/infected test cats died acutely of drug toxicity after 47 days of treatment. Toxicity in vivo mirrored what was observed in vitro, being precipitous and cumulative in nature. Toxic signs included widespread hepatic and lymphoid necrosis. A surviving treated/FIV infected cat remained healthy to day 175 when the study was terminated; antibodies appeared 2 months later than in untreated/infected cats and virus was only detectable at low levels on day 175. In contrast, untreated/infected cats were viremic and antibody positive from 3 to 4 weeks post-infection onwards. Therefore, it was possible to alter, but not abort, an early FIV infection with prolonged, high-dose D4API treatment.
Collapse
Affiliation(s)
- K Hartmann
- I. Medizinische Tierklinik, München, Germany
| | | | | | | |
Collapse
|
12
|
Whetstone CA, Suarez DL, Miller JM, Pesch BA, Harp JA. Bovine lentivirus induces early transient B-cell proliferation in experimentally inoculated cattle and appears to be pantropic. J Virol 1997; 71:640-4. [PMID: 8985394 PMCID: PMC191095 DOI: 10.1128/jvi.71.1.640-644.1997] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bovine immunodeficiency-like virus (BIV) was first isolated in 1972 (M. J. VanDerMaaten et al., J. Natl. Cancer Inst. 49:1649-1657, 1972). Much work has been done on the molecular characterization of BIV in studies using the original BIV R29 isolate; however, R29 is believed to be attenuated since it no longer causes either mononuclear cell number increases or detectable enlargement of lymphatic nodules in experimentally infected cattle. The host cell tropism and changes in host peripheral blood lymphocyte populations following infection with BIV are unknown. Recently, we isolated and characterized a field isolate of BIV, FL112 (D. L. Suarez et al., J. Virol. 67:5051-5055, 1993) that causes a transient, mononuclear cell lymphocytosis in experimentally infected cattle. In the present study, cattle were inoculated with BIV FL112, and data from flow cytometry showed that BIV causes a B-cell lymphocytosis with no consistent, significant changes in other mononuclear cell populations, including CD3+, CD4+, and CD8+ cells. Cell sorting and PCR amplification were used to show that BIV may be pantropic. Proviral DNA was present in CD3+, CD4+, CD8+, and B-cells, monocytes, and WC1 cells (gamma/delta T cells, null cells) by 3 to 6 days postinoculation and also at 2.5 years postinoculation.
Collapse
Affiliation(s)
- C A Whetstone
- Agricultural Research Service, U.S. Department of Agriculture, National Animal Disease Center, Ames, Iowa 50010, USA.
| | | | | | | | | |
Collapse
|
13
|
Barlough JE, Madigan JE, DeRock E, Bigornia L. Nested polymerase chain reaction for detection of Ehrlichia equi genomic DNA in horses and ticks (Ixodes pacificus). Vet Parasitol 1996; 63:319-29. [PMID: 8966998 DOI: 10.1016/0304-4017(95)00904-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A nested polymerase chain reaction for detecting Ehrlichia equi in horses and ticks (Ixodes pacificus) was developed. A major second-round PCR product of 928 bp could be readily visualized in ethidium bromide-stained agarose minigels. An internal probe was used to verify the identity of the amplified product by non-radioactive (digoxigenin-based) Southern blotting; additional confirmation was provided by DNA sequence analysis. A dilution study testing the sensitivity of the PCR indicated that DNA derived from < = 7.6 but > 3 infected neutrophils was sufficient to generate a PCR signal. The specificity of the PCR was examined using a panel of rickettsiae, of which only E. equi and the closely-related human granulocytotropic ehrlichia produced PCR bands. In an in vivo infection study, E. equi DNA was detected in blood buffy-coat cells of an experimentally-infected horse on days three through 14 post-inoculation. In a separate study, three of six adult I. pacificus that as nymphs had been fed on an experimentally infected horse were found to be PCR-positive for E. equi.
Collapse
Affiliation(s)
- J E Barlough
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis 95616, USA
| | | | | | | |
Collapse
|
14
|
Affiliation(s)
- D W Kimberlin
- Department of Pediatrics, University of Alabama at Birmingham 35233, USA
| | | | | | | | | |
Collapse
|
15
|
Bendinelli M, Pistello M, Lombardi S, Poli A, Garzelli C, Matteucci D, Ceccherini-Nelli L, Malvaldi G, Tozzini F. Feline immunodeficiency virus: an interesting model for AIDS studies and an important cat pathogen. Clin Microbiol Rev 1995; 8:87-112. [PMID: 7704896 PMCID: PMC172850 DOI: 10.1128/cmr.8.1.87] [Citation(s) in RCA: 254] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The lentivirus feline immunodeficiency virus (FIV) is a widespread pathogen of the domestic cat that is mainly transmitted through bites, although other means of transmission are also possible. Its prevalence ranges from 1 to 10% in different cat populations throughout the world, thus representing a large reservoir of naturally infected animals. FIV resembles the human immunodeficiency virus (HIV) in many respects. Similarities include the structural features of the virion, the general organization and great variability of the genome, the life cycle in the infected host, and most importantly, the pathogenic potential. Infection is associated with laboratory signs of immunosuppression as well as with a large variety of superinfections, tumors, and neurological manifestations. Our understanding of FIV is steadily improving and is providing important clues to the pathogenesis of immunodeficiency-inducing lentiviruses. The cellular receptor for FIV is different from the feline equivalent of the human CD4 molecule used by HIV; nevertheless, the major hallmark of infection is a progressive loss of CD4+ T lymphocytes as in HIV infection. The mechanisms by which FIV escapes the host's immune responses are being actively investigated. FIV causes lysis of infected T cells and also appears to predispose these cells to apoptosis. Infection of macrophages and other cell types has also been documented. For reasons yet to be understood, antibody-mediated neutralization of fresh FIV isolates is very inefficient both in vitro and in vivo. Vaccination studies have provided some encouraging results, but the difficulties encountered appear to match those met in HIV vaccine development. FIV susceptibility to antiviral agents is similar to that of HIV, thus providing a valuable system for in vivo preclinical evaluation of therapies. It is concluded that in many respects FIV is an ideal model for AIDS studies.
Collapse
Affiliation(s)
- M Bendinelli
- Department of Biomedicine, University of Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Barlough J, East N, Rowe JD, Van Hoosear K, DeRock E, Bigornia L, Rimstad E. Double-nested polymerase chain reaction for detection of caprine arthritis-encephalitis virus proviral DNA in blood, milk, and tissues of infected goats. J Virol Methods 1994; 50:101-13. [PMID: 7714032 DOI: 10.1016/0166-0934(94)90167-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A nested polymerase chain reaction (PCR) for detecting proviral DNA of caprine arthritis-encephalitis virus (CAEV) in biological samples was developed. Primers for both gag and pol sequences of the CAEV genome were included in a single tube for simultaneous amplification ('double' PCR), and the resulting bands were resolved visually in ethidium bromide-stained agarose gels. Internal gag and pol probes were used to verify the identity of the amplified products by non-radioactive Southern hybridization. Final confirmation of the identity of representative PCR bands was provided by DNA sequence analysis. A comparison between the PCR and an antibody ELISA (with recombinant CAEV p28 as target) using 141 caprine blood samples indicated very strong agreement between the two assays (kappa = 0.912). Four of 7 goats with indeterminate ELISA results were PCR-positive as were 5 of 40 (12.5%) seronegative goats, most probably indicating delayed seroconversion. Eleven of 27 goats (41%) PCR-positive on blood had detectable CAEV proviral DNA in milk. Proviral DNA was also detected in lung, mesenteric lymph node, bone marrow, synovial membrane, and mammary gland of a seropositive, clinically affected goat, but not in equivalent tissues of a healthy seronegative goat.
Collapse
Affiliation(s)
- J Barlough
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis 95616
| | | | | | | | | | | | | |
Collapse
|
17
|
Lombardi S, Garzelli C, Pistello M, Massi C, Matteucci D, Baldinotti F, Cammarota G, da Prato L, Bandecchi P, Tozzini F. A neutralizing antibody-inducing peptide of the V3 domain of feline immunodeficiency virus envelope glycoprotein does not induce protective immunity. J Virol 1994; 68:8374-9. [PMID: 7966629 PMCID: PMC237306 DOI: 10.1128/jvi.68.12.8374-8379.1994] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Specific-pathogen-free cats, immunized with a 22-amino-acid synthetic peptide designated V3.3 and derived from the third variable region of the envelope glycoprotein of the Petaluma isolate of feline immunodeficiency virus (FIV), developed high antibody titers to the V3.3 peptide and to purified virus, as assayed by enzyme-linked immunoassays, as well as neutralizing antibodies, as assayed by the inhibition of syncytium formation in Crandell feline kidney cells. V3.3-immunized animals and control cats were challenged with FIV and then monitored for 12 months; V3.3 immunization failed to prevent FIV infection, as shown by virus isolation, anti-whole virus and anti-p24 immunoglobulin G antibody responses, and positive PCRs for gag and env gene fragments. Sequence analysis of the V3 region showed no evidence for the emergence of escape mutants that might have contributed to the lack of protection. The sera of the V3.3-hyperimmunized cats and two anti-V3.3 monoclonal antibodies neutralized FIV infectivity for Crandell feline kidney cells at high antibody dilutions but paradoxically failed to completely neutralize FIV infectivity at low dilutions. Moreover, following FIV challenge, V3.3-immunized animals developed a faster and higher antiviral antibody response than control cats. This was probably due to enhanced virus replication, as also suggested by quantitative PCR data.
Collapse
Affiliation(s)
- S Lombardi
- Department of Biomedicine, University of Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gobert JM, Remington KM, Zhu YQ, North TW. Multiple-drug-resistant mutants of feline immunodeficiency virus selected with 2',3'-dideoxyinosine alone and in combination with 3'-azido-3'-deoxythymidine. Antimicrob Agents Chemother 1994; 38:861-4. [PMID: 8031060 PMCID: PMC284556 DOI: 10.1128/aac.38.4.861] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mutants of feline immunodeficiency virus (FIV) were selected in cell culture in the continuous presence of 10 microM (each) 3'-azido-3'-deoxythymidine (AZT) and 2',3'-dideoxyinosine (ddI). These mutants (AIR-1 and AIR-3) displayed a 13-fold resistance to AZT but had less than a 2-fold decrease in susceptibility to ddI. Interestingly, the AIR mutants were cross-resistant to phosphonoformate (PFA) and were hypersensitive to 2',3'-dideoxycytidine (ddC). Mutants of FIV were also selected in the presence of 10 microM ddI alone (DIS-1, DIS-2c), and these displayed a two- to fourfold decrease in susceptibility to ddI. Like the mutants selected with the combination of AZT plus ddI, DIS-1 and DIS-2c were cross-resistant to PFA and were hypersensitive to ddC. However, they remained as susceptible as wild-type FIV to AZT. Thus, the mutants selected with the combination of AZT plus ddI have phenotypes which reflect those obtained by selection with these drugs individually.
Collapse
Affiliation(s)
- J M Gobert
- Division of Biological Sciences, University of Montana, Missoula 59812
| | | | | | | |
Collapse
|