1
|
Olthof BMJ, Rees A, Gartside SE. Multiple Nonauditory Cortical Regions Innervate the Auditory Midbrain. J Neurosci 2019; 39:8916-8928. [PMID: 31541020 PMCID: PMC6832679 DOI: 10.1523/jneurosci.1436-19.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/02/2019] [Accepted: 08/21/2019] [Indexed: 02/03/2023] Open
Abstract
Our perceptual experience of sound depends on the integration of multiple sensory and cognitive domains, however the networks subserving this integration are unclear. Connections linking different cortical domains have been described, but we do not know the extent to which connections also exist between multiple cortical domains and subcortical structures. Retrograde tracing in adult male rats (Rattus norvegicus) revealed that the inferior colliculus, the auditory midbrain, receives dense descending projections not only, as previously established, from the auditory cortex, but also from the visual, somatosensory, motor, and prefrontal cortices. While all these descending connections are bilateral, those from sensory areas show a more pronounced ipsilateral dominance than those from motor and prefrontal cortices. Injections of anterograde tracers into the cortical areas identified by retrograde tracing confirmed those findings and revealed cortical fibers terminating in all three subdivisions of the inferior colliculus. Immunolabeling showed that cortical terminals target both GABAergic inhibitory, and putative glutamatergic excitatory neurons. These findings demonstrate that auditory perception and behavior are served by a network that includes extensive descending connections to the midbrain from sensory, behavioral, and executive cortices.SIGNIFICANCE STATEMENT Making sense of what we hear depends not only on the analysis of sound, but also on information from other senses together with the brain's predictions about the properties and significance of the sound. Previous work suggested that this interplay between the senses and the predictions from higher cognitive centers occurs within the cerebral cortex. By tracing neural connections in rat, we show that the inferior colliculus, the subcortical, midbrain center for hearing, receives extensive connections from areas of the cerebral cortex concerned with vision, touch, movement, and cognitive function, in addition to areas representing hearing. These findings demonstrate that wide-ranging cortical feedback operates at an earlier stage of the hearing pathway than previously recognized.
Collapse
Affiliation(s)
- Bas M J Olthof
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Adrian Rees
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Sarah E Gartside
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
2
|
Abstract
Our perceptual experience of sound depends on the integration of multiple sensory and cognitive domains, however the networks subserving this integration are unclear. Connections linking different cortical domains have been described, but we do not know the extent to which connections also exist between multiple cortical domains and subcortical structures. Retrograde tracing in adult male rats (Rattus norvegicus) revealed that the inferior colliculus, the auditory midbrain, receives dense descending projections not only, as previously established, from the auditory cortex, but also from the visual, somatosensory, motor, and prefrontal cortices. While all these descending connections are bilateral, those from sensory areas show a more pronounced ipsilateral dominance than those from motor and prefrontal cortices. Injections of anterograde tracers into the cortical areas identified by retrograde tracing confirmed those findings and revealed cortical fibers terminating in all three subdivisions of the inferior colliculus. Immunolabeling showed that cortical terminals target both GABAergic inhibitory, and putative glutamatergic excitatory neurons. These findings demonstrate that auditory perception and behavior are served by a network that includes extensive descending connections to the midbrain from sensory, behavioral, and executive cortices.SIGNIFICANCE STATEMENT Making sense of what we hear depends not only on the analysis of sound, but also on information from other senses together with the brain's predictions about the properties and significance of the sound. Previous work suggested that this interplay between the senses and the predictions from higher cognitive centers occurs within the cerebral cortex. By tracing neural connections in rat, we show that the inferior colliculus, the subcortical, midbrain center for hearing, receives extensive connections from areas of the cerebral cortex concerned with vision, touch, movement, and cognitive function, in addition to areas representing hearing. These findings demonstrate that wide-ranging cortical feedback operates at an earlier stage of the hearing pathway than previously recognized.
Collapse
|
3
|
da Silva Soares R, Falconi-Sobrinho LL, dos Anjos-Garcia T, Coimbra NC. 5-Hydroxytryptamine 2A receptors of the dorsal raphe nucleus modulate panic-like behaviours and mediate fear-induced antinociception elicited by neuronal activation in the central nucleus of the inferior colliculus. Behav Brain Res 2019; 357-358:71-81. [DOI: 10.1016/j.bbr.2017.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/14/2017] [Accepted: 07/15/2017] [Indexed: 12/26/2022]
|
4
|
Calvo F, Lobão-Soares B, de Freitas RL, Paschoalin-Maurin T, Dos Anjos-Garcia T, Medeiros P, da Silva JA, Lovick TA, Coimbra NC. The endogenous opioid system modulates defensive behavior evoked by Crotalus durissus terrificus: Panicolytic-like effect of intracollicular non-selective opioid receptors blockade. J Psychopharmacol 2019; 33:51-61. [PMID: 30407114 DOI: 10.1177/0269881118806301] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND There is a controversy regarding the key role played by opioid peptide neurotransmission in the modulation of panic-attack-related responses. AIMS Using a prey versus rattlesnakes paradigm, the present work investigated the involvement of the endogenous opioid peptide-mediated system of the inferior colliculus in the modulation of panic attack-related responses. METHODS Wistar rats were pretreated with intracollicular administration of either physiological saline or naloxone at different concentrations and confronted with rattlesnakes ( Crotalus durissus terrificus). The prey versus rattlesnake confrontations were performed in a polygonal arena for snakes. The defensive behaviors displayed by prey (defensive attention, defensive immobility, escape response, flat back approach and startle) were recorded twice: firstly, over a period of 15 min the presence of the predator and a re-exposure was performed 24 h after the confrontation, when animals were exposed to the experimental enclosure without the rattlesnake. RESULTS The intramesencephalic non-specific blockade of opioid receptors with microinjections of naloxone at higher doses decreased both anxiety- (defensive attention and flat back approach) and panic attack-like (defensive immobility and escape) behaviors, evoked in the presence of rattlesnakes and increased non-defensive responses. During the exposure to the experimental context, there was a decrease in duration of defensive attention. CONCLUSIONS These findings suggest a panicolytic-like effect of endogenous opioid receptors antagonism in the inferior colliculus on innate (panic attack) and conditioned (anticipatory anxiety) fear in rats threatened by rattlesnakes.
Collapse
Affiliation(s)
- Fabrício Calvo
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,3 Department of Pharmacology, São Lucas College, Porto Velho (RO), Brazil.,4 Aparício Carvalho Integrative College, Porto Velho (RO), Brazil.,9 Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Bruno Lobão-Soares
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,5 Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte (UFRN), Natal (RN), Brazil.,6 Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto (SP), Brazil.,9 Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Renato Leonardo de Freitas
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,7 Laboratory of Neurobiology of Pain and Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto (SP), Brazil.,10 Biomedical Sciences Institute, Federal University of Alfenas (UNIFAL-MG), Alfenas (MG), Brazil
| | - Tatiana Paschoalin-Maurin
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,6 Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto (SP), Brazil.,9 Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Tayllon Dos Anjos-Garcia
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,9 Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Priscila Medeiros
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,9 Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Juliana Almeida da Silva
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,9 Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| | - Thelma Anderson Lovick
- 2 School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.,6 Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto (SP), Brazil
| | - Norberto Cysne Coimbra
- 1 Laboratory of Neuroanatomy & Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,6 Instituto de Neurociências e Comportamento (INeC), Ribeirão Preto (SP), Brazil.,7 Laboratory of Neurobiology of Pain and Emotions and Multi-User Centre of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto (SP), Brazil.,8 NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil.,9 Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), Brazil
| |
Collapse
|
5
|
Incrocci RM, Paliarin F, Nobre MJ. Prelimbic NMDA receptors stimulation mimics the attenuating effects of clozapine on the auditory electrophysiological rebound induced by ketamine withdrawal. Neurotoxicology 2018; 69:1-10. [PMID: 30170016 DOI: 10.1016/j.neuro.2018.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 11/26/2022]
Abstract
Ketamine (KET) is a non-competitive N-Methyl-d-aspartate (NMDA) receptors antagonist that intensifies sensory experiences, prompts hallucinations and delusions, exacerbates previously installed psychosis and disrupts physiological evoked potentials (AEPs). Pharmacologically, KET stimulates glutamate efflux in the medial prefrontal cortex, mainly in the prelimbic (PrL) sub-region. Efferences from this region exert a top-down regulatory control of bottom-up sensory processes either directly or indirectly. In the midbrain, the central nucleus of the inferior colliculus (CIC) plays a fundamental role in the processing of auditory ascending information related to sound localization, sensorimotor gating, and preattentive event-related potentials. Auditory hallucinations elicited during a psychotic outbreak are accompanied by CIC neural activation. Thus, it is possible that NMDA-mediated glutamate neurotransmission in the PrL indirectly modulates CIC neuronal firing. The aim of the present study was to assess the effects of KET on the latency and amplitude of AEPs elicited in the CIC of rats tested during KET effects and following withdrawal from the chronic administration. Changes on emotionally induced by KET treatment were evaluated with the use of the elevated zero maze (EZM). Unlike typical neuroleptics, the atypical antipsychotic clozapine (CLZ) potently blocks the disruption of the sensorimotor gating induced by NMDA antagonists. Therefore, the effects of KET withdrawal on AEPs were challenged with a systemic injection of CLZ. In addition, we further investigated the role of NMDA receptors of the PrL on the AEPs expression recorded in the CIC through intra-PrL infusions of NMDA itself. Our results showed that the processing of sensory information in the CIC is under indirect control of PrL. These data suggest that the long-term KET treatment disrupts the collicular auditory field potentials, possibly through influencing PrL glutamate activity on intrinsic 5-HT mechanisms in the dorsal raphe and CIC.
Collapse
Affiliation(s)
- Roberta Monteiro Incrocci
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - Franciely Paliarin
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - Manoel Jorge Nobre
- Departamento de Psicologia, Uni-FACEF, 14401-135, Franca, SP, Brazil; Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Ullah F, dos Anjos-Garcia T, Mendes-Gomes J, Elias-Filho DH, Falconi-Sobrinho LL, Freitas RLD, Khan AU, Oliveira RD, Coimbra NC. Connexions between the dorsomedial division of the ventromedial hypothalamus and the dorsal periaqueductal grey matter are critical in the elaboration of hypothalamically mediated panic-like behaviour. Behav Brain Res 2017; 319:135-147. [DOI: 10.1016/j.bbr.2016.11.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/08/2016] [Accepted: 11/13/2016] [Indexed: 01/20/2023]
|
7
|
Medeiros P, de Freitas RL, Silva MO, Coimbra NC, Melo-Thomas L. CB1 cannabinoid receptor-mediated anandamide signaling mechanisms of the inferior colliculus modulate the haloperidol-induced catalepsy. Neuroscience 2016; 337:17-26. [PMID: 27595886 DOI: 10.1016/j.neuroscience.2016.08.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 08/23/2016] [Accepted: 08/28/2016] [Indexed: 10/21/2022]
Abstract
The inferior colliculus (IC), a midbrain structure that processes acoustic information of aversive nature, is distinguished from other auditory nuclei in the brainstem by its connections with structures of the motor system. Previous evidence relating the IC to motor behavior shows that glutamatergic and GABAergic mechanisms in the IC exert influence on systemic haloperidol-induced catalepsy. There is substantial evidence supporting a role played by the endocannabinoid system as a modulator of the glutamatergic neurotransmission, as well as the dopaminergic activity in the basal nuclei and therefore it may be considered as a potential pharmacological target for the treatment of movement disorders. The present study evaluated if the endocannabinoid system in the IC plays a role in the elaboration of systemic haloperidol-induced catalepsy. Male Wistar rats received intracollicular microinjection of either the endogenous cannabinoid anandamide (AEA) at different concentrations (5, 50 or 100pmol/0.2μl), the CB1 cannabinoid receptor antagonist AM251 at 50, 100 or 200pmol/0.2μl or vehicle, followed by intraperitoneal (IP) administration of either haloperidol at 0.5 or 1mg/kg or physiological saline. Systemic injection of haloperidol at both doses (0.5 or 1mg/kg, IP) produced a cataleptic state, compared to vehicle/physiological saline-treated group, lasting 30 and 50min after systemic administration of the dopaminergic receptors non-selective antagonist. The midbrain microinjection of AEA at 50pmol/0.2μl increased the latency for stepping down from the horizontal bar after systemic administration of haloperidol. Moreover, the intracollicular administration of AEA at 50pmol/0.2μl was able to increase the duration of catalepsy as compared to AEA at 100pmol/0.2-μl-treated group. Intracollicular pretreatment with AM251 at the intermediate concentration (100pmol/0.2μl) was able to decrease the duration of catalepsy after systemic administration of haloperidol. However, neither the intracollicular microinjection of AM251 at the lowest (50pmol/0.2μl) nor at the highest (200pmol/0.2μl) concentration was able to block the systemic haloperidol-induced catalepsy. Furthermore, the intracollicular administration of AM251 at 100pmol/0.2μl was able to decrease the duration of catalepsy as compared to AM251 at 50pmol/0.2μl- and AM251 at 200pmol/0.2-μl-treated group. The latency for stepping down from the horizontal bar - induced by haloperidol administration - was decreased when microinjection of AEA at 50pmol/0.2μl was preceded with blockade of CB1 receptor with AM251 (100pmol/0.2μl). Our results strengthen the involvement of CB1-signaled endocannabinoid mechanisms of the IC in the neuromodulation of catalepsy induced by systemic administration of the dopaminergic receptors non-selective antagonist haloperidol.
Collapse
Affiliation(s)
- P Medeiros
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Department of Neurocience and Behavioral Sciences, Division of Neurology, Post-Graduation Section, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Neuroelectrophysiology Multiuser Center and Neurobiology of Pain and Emotions Laboratory, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Department of Biosciences, Federal University of São Paulo (UNIFESP), Av. D. Ana Costa, 95, Vila Mathias, Santos, São Paulo 11060-001, Brazil
| | - R L de Freitas
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Neurobiology of Emotions Research Center (NAP-USP-NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Neuroelectrophysiology Multiuser Center and Neurobiology of Pain and Emotions Laboratory, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - M O Silva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Neuroelectrophysiology Multiuser Center and Neurobiology of Pain and Emotions Laboratory, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - N C Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Neurobiology of Emotions Research Center (NAP-USP-NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, 14050-220 São Paulo, Brazil; Department of Neurocience and Behavioral Sciences, Division of Neurology, Post-Graduation Section, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Neuroelectrophysiology Multiuser Center and Neurobiology of Pain and Emotions Laboratory, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil.
| | - L Melo-Thomas
- Laboratory of Experimental and Physiological Psychology, Philipps-University of Marburg, Gutenbergstrasse 18, 35032 Marburg, Germany; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Ribeirão Preto, 14050-220 São Paulo, Brazil; Department of Biosciences, Federal University of São Paulo (UNIFESP), Av. D. Ana Costa, 95, Vila Mathias, Santos, São Paulo 11060-001, Brazil.
| |
Collapse
|
8
|
Ullah F, dos Anjos-Garcia T, dos Santos IR, Biagioni AF, Coimbra NC. Relevance of dorsomedial hypothalamus, dorsomedial division of the ventromedial hypothalamus and the dorsal periaqueductal gray matter in the organization of freezing or oriented and non-oriented escape emotional behaviors. Behav Brain Res 2015. [DOI: 10.1016/j.bbr.2015.07.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Koelsch S, Jacobs AM, Menninghaus W, Liebal K, Klann-Delius G, von Scheve C, Gebauer G. The quartet theory of human emotions: An integrative and neurofunctional model. Phys Life Rev 2015; 13:1-27. [DOI: 10.1016/j.plrev.2015.03.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/15/2015] [Accepted: 03/16/2015] [Indexed: 02/07/2023]
|
10
|
Dual role of dopamine D(2)-like receptors in the mediation of conditioned and unconditioned fear. FEBS Lett 2015; 589:3433-7. [PMID: 25783771 DOI: 10.1016/j.febslet.2015.02.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/19/2015] [Accepted: 02/26/2015] [Indexed: 11/20/2022]
Abstract
A reduction of dopamine release or D2 receptor blockade in the terminal fields of the mesolimbic system, particularly the amygdala, clearly reduces conditioned fear. Similar D2 receptor antagonism in the neural substrates of fear in the midbrain tectum attenuates the processing of unconditioned aversive information. However, the implications of the interplay between opposing actions of dopamine in the rostral and caudal segments of the dopaminergic system are still unclear. Previous studies from this laboratory have reported the effects of dopaminergic drugs on behavior in rats in the elevated plus maze, auditory-evoked potentials (AEPs) recorded from the midbrain tectum, fear-potentiated startle, and conditioned freezing. These findings led to an interesting framework on the functional roles of dopamine in both anxiety and fear states. Dopamine D2 receptor inhibition in the terminal fields of the mesolimbic dopamine system generally causes anxiolytic-like effects, whereas the activity of midbrain substrates of unconditioned fear are enhanced by D2 receptor antagonists, suggesting that D2 receptor-mediated mechanisms play opposing roles in fear/anxiety processes, depending on the brain region under study. Dopamine appears to mediate conditioned fear by acting at rostral levels of the brain and regulate unconditioned fear at the midbrain level, likely by reducing the sensorimotor gating of aversive events.
Collapse
|
11
|
Melo-Thomas L, Thomas U. Deep brain stimulation of the inferior colliculus: A possible animal model to study paradoxical kinesia observed in some parkinsonian patients? Behav Brain Res 2015; 279:1-8. [DOI: 10.1016/j.bbr.2014.10.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 11/16/2022]
|
12
|
de Oliveira AR, Colombo AC, Muthuraju S, Almada RC, Brandão ML. Dopamine D2-like receptors modulate unconditioned fear: role of the inferior colliculus. PLoS One 2014; 9:e104228. [PMID: 25133693 PMCID: PMC4136794 DOI: 10.1371/journal.pone.0104228] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/08/2014] [Indexed: 01/31/2023] Open
Abstract
Background A reduction of dopamine release or D2 receptor blockade in the terminal fields of the mesolimbic system clearly reduces conditioned fear. Injections of haloperidol, a preferential D2 receptor antagonist, into the inferior colliculus (IC) enhance the processing of unconditioned aversive information. However, a clear characterization of the interplay of D2 receptors in the mediation of unconditioned and conditioned fear is still lacking. Methods The present study investigated the effects of intra-IC injections of the D2 receptor-selective antagonist sulpiride on behavior in the elevated plus maze (EPM), auditory-evoked potentials (AEPs) to loud sounds recorded from the IC, fear-potentiated startle (FPS), and conditioned freezing. Results Intra-IC injections of sulpiride caused clear proaversive effects in the EPM and enhanced AEPs induced by loud auditory stimuli. Intra-IC sulpiride administration did not affect FPS or conditioned freezing. Conclusions Dopamine D2-like receptors of the inferior colliculus play a role in the modulation of unconditioned aversive information but not in the fear-potentiated startle response.
Collapse
Affiliation(s)
- Amanda Ribeiro de Oliveira
- Laboratório de Neuropsicofarmacologia, FFCLRP, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Instituto de Neurociências e Comportamento, INeC, Ribeirão Preto, São Paulo, Brazil
| | - Ana Caroline Colombo
- Laboratório de Neuropsicofarmacologia, FFCLRP, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Instituto de Neurociências e Comportamento, INeC, Ribeirão Preto, São Paulo, Brazil
| | - Sangu Muthuraju
- Laboratório de Neuropsicofarmacologia, FFCLRP, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Instituto de Neurociências e Comportamento, INeC, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Carvalho Almada
- Laboratório de Neuropsicofarmacologia, FFCLRP, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Instituto de Neurociências e Comportamento, INeC, Ribeirão Preto, São Paulo, Brazil
| | - Marcus Lira Brandão
- Laboratório de Neuropsicofarmacologia, FFCLRP, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Instituto de Neurociências e Comportamento, INeC, Ribeirão Preto, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
13
|
Medeiros P, Viana M, Barbosa-Silva R, Tonelli L, Melo-Thomas L. Glutamatergic neurotransmission in the inferior colliculus influences intrastriatal haloperidol-induced catalepsy. Behav Brain Res 2014; 268:8-13. [DOI: 10.1016/j.bbr.2014.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/13/2014] [Accepted: 03/15/2014] [Indexed: 12/23/2022]
|
14
|
Distinct effects of haloperidol in the mediation of conditioned fear in the mesolimbic system and processing of unconditioned aversive information in the inferior colliculus. Neuroscience 2014; 261:195-206. [DOI: 10.1016/j.neuroscience.2013.11.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 11/18/2022]
|
15
|
Wakefulness-promoting role of the inferior colliculus. Behav Brain Res 2013; 256:82-94. [DOI: 10.1016/j.bbr.2013.07.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 07/23/2013] [Accepted: 07/27/2013] [Indexed: 11/16/2022]
|
16
|
de Freitas RL, de Oliveira RC, de Oliveira R, Paschoalin-Maurin T, de Aguiar Corrêa FM, Coimbra NC. The role of dorsomedial and ventrolateral columns of the periaqueductal gray matter and in situ 5-HT₂A and 5-HT₂C serotonergic receptors in post-ictal antinociception. Synapse 2013; 68:16-30. [PMID: 23913301 DOI: 10.1002/syn.21697] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/08/2013] [Accepted: 06/25/2013] [Indexed: 12/22/2022]
Abstract
The periaqueductal gray matter (PAG) consists in a brainstem structure rich in 5-hydroxytryptamine (5-HT) inputs related to the modulation of pain. The involvement of each of the serotonergic receptor subtypes found in PAG columns, such as the dorsomedial (dmPAG) and the ventrolateral (vlPAG) columns, regarding post-ictal antinociception have not been elucidated. The present work investigated the participation of the dmPAG and vlPAG columns in seizure-induced antinociception. Specifically, we studied the involvement of serotonergic neurotransmission in these columns on antinociceptive responses that follow tonic-clonic epileptic reactions induced by pentylenetetrazole (PTZ), an ionophore GABA-mediated Cl(-) influx antagonist. Microinjections of cobalt chloride (1.0 mM CoCl2 /0.2 µL) into the dmPAG and vlPAG caused an intermittent local synaptic inhibition and decreased post-ictal antinociception that had been recorded at various time points after seizures. Pretreatments of the dmPAG or the vlPAG columns with the nonselective serotonergic receptors antagonist methysergide (5.0 µg/0.2 µL) or intramesencephalic microinjections of ketanserin (5.0 µg/0.2 µL), a serotonergic antagonist with more affinity to 5-HT2A/2C receptors, decreased tonic-clonic seizure-induced antinociception. Both dmPAG and vlPAG treatment with either the 5-HT2A receptor selective antagonist R-96544 (10 nM/0.2 µL), or the 5-HT2C receptors selective antagonist RS-102221 (0.15 µg/0.2 µL) also decrease post-ictal antinociception. These findings suggest that serotonergic neurotransmission, which recruits both 5-HT2A and 5-HT2C serotonergic receptors in dmPAG and vlPAG columns, plays a critical role in the elaboration of post-ictal antinociception.
Collapse
Affiliation(s)
- Renato Leonardo de Freitas
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (USP), Av. dos Bandeirantes, 3900, Ribeirão Preto (SP), 14049-900, Brazil; Institute for Neuroscience and Behavior (INeC), Av. do Café, S/N, Ribeirão Preto (SP), Brazil
| | | | | | | | | | | |
Collapse
|
17
|
da Silva JA, de Freitas RL, Eichenberger GCD, Maria Padovan C, Cysne Coimbra N. Chemical neuroanatomical and psychopharmacological evidence that κ receptor-mediated endogenous opioid peptide neurotransmission in the dorsal and ventral mesencephalon modulates panic-like behaviour. Eur J Pharmacol 2013; 698:235-45. [DOI: 10.1016/j.ejphar.2012.07.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
18
|
l-NOARG-induced catalepsy can be influenced by glutamatergic neurotransmission mediated by NMDA receptors in the inferior colliculus. Behav Brain Res 2012; 234:149-54. [DOI: 10.1016/j.bbr.2012.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/17/2012] [Accepted: 06/19/2012] [Indexed: 11/19/2022]
|
19
|
Iigaya K, Müller-Ribeiro FCDF, Horiuchi J, McDowall LM, Nalivaiko E, Fontes MAP, Dampney RAL. Synchronized activation of sympathetic vasomotor, cardiac, and respiratory outputs by neurons in the midbrain colliculi. Am J Physiol Regul Integr Comp Physiol 2012; 303:R599-610. [DOI: 10.1152/ajpregu.00205.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The superior and inferior colliculi are believed to generate immediate and highly coordinated defensive behavioral responses to threatening visual and auditory stimuli. Activation of neurons in the superior and inferior colliculi have been shown to evoke increases in cardiovascular and respiratory activity, which may be components of more generalized stereotyped behavioral responses. In this study, we examined the possibility that there are “command neurons” within the colliculi that can simultaneously drive sympathetic and respiratory outputs. In anesthetized rats, microinjections of bicuculline (a GABAA receptor antagonist) into sites within a circumscribed region in the deep layers of the superior colliculus and in the central and external nuclei of the inferior colliculus evoked a response characterized by intense and highly synchronized bursts of renal sympathetic nerve activity (RSNA) and phrenic nerve activity (PNA). Each burst of RSNA had a duration of ∼300–400 ms and occurred slightly later (peak to peak latency of 41 ± 8 ms) than the corresponding burst of PNA. The bursts of RSNA and PNA were also accompanied by transient increases in arterial pressure and, in most cases, heart rate. Synchronized bursts of RSNA and PNA were also evoked after neuromuscular blockade, artificial ventilation, and vagotomy and so were not dependent on afferent feedback from the lungs. We propose that the synchronized sympathetic-respiratory responses are driven by a common population of neurons, which may normally be activated by an acute threatening stimulus.
Collapse
Affiliation(s)
- Kamon Iigaya
- School of Medical Sciences (Physiology) and Bosch Institute for Biomedical Research, University of Sydney, Australia
| | - Flávia Camargos de Figueirêdo Müller-Ribeiro
- School of Medical Sciences (Physiology) and Bosch Institute for Biomedical Research, University of Sydney, Australia
- Laboratório de Hipertensão, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Jouji Horiuchi
- School of Medical Sciences (Physiology) and Bosch Institute for Biomedical Research, University of Sydney, Australia
- Department of Biomedical Engineering, Toyo University, Saitama, Japan; and
| | - Lachlan M. McDowall
- School of Medical Sciences (Physiology) and Bosch Institute for Biomedical Research, University of Sydney, Australia
| | - Eugene Nalivaiko
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia
| | - Marco A. P. Fontes
- Laboratório de Hipertensão, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Roger A. L. Dampney
- School of Medical Sciences (Physiology) and Bosch Institute for Biomedical Research, University of Sydney, Australia
| |
Collapse
|
20
|
Felippotti TT, de Freitas RL, Coimbra NC. Endogenous opioid peptide-mediated neurotransmission in central and pericentral nuclei of the inferior colliculus recruits μ1-opioid receptor to modulate post-ictal antinociception. Neuropeptides 2012; 46:39-47. [PMID: 22104092 DOI: 10.1016/j.npep.2011.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND The aim of the present work was to investigate the involvement of the μ1-endogenous opioid peptide receptor-mediated system in post-ictal antinociception. METHODS Antinociceptive responses were determined by the tail-flick test after pre-treatment with the selective μ1-opioid receptor antagonist naloxonazine, peripherally or centrally administered at different doses. RESULTS Peripheral subchronic (24 h) pre-treatment with naloxonazine antagonised the antinociception elicited by tonic-clonic seizures. Acute (10 min) pre-treatment, however, did not have the same effect. In addition, microinjections of naloxonazine into the central, dorsal cortical and external cortical nuclei of the inferior colliculus antagonised tonic-clonic seizure-induced antinociception. Neither acute (10-min) peripheral pre-treatment with naloxonazine nor subchronic intramesencephalic blockade of μ1-opioid receptors resulted in consistent statistically significant differences in the severity of tonic-clonic seizures shown by Racine's index (1972), although the intracollicular specific antagonism of μ1-opioid receptor decreased the duration of seizures. CONCLUSION μ1-Opioid receptors and the inferior colliculus have been implicated in several endogenous opioid peptide-mediated responses such as antinociception and convulsion. The present findings suggest the involvement of μ1-opiate receptors of central and pericentral nuclei of the inferior colliculus in the modulation of tonic-clonic seizures and in the organisation of post-ictal antinociception.
Collapse
Affiliation(s)
- Tatiana Tocchini Felippotti
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Av. dos Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil
| | | | | |
Collapse
|
21
|
Koelsch S. Toward a neural basis of music perception - a review and updated model. Front Psychol 2011; 2:110. [PMID: 21713060 PMCID: PMC3114071 DOI: 10.3389/fpsyg.2011.00110] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 05/13/2011] [Indexed: 12/11/2022] Open
Abstract
Music perception involves acoustic analysis, auditory memory, auditory scene analysis, processing of interval relations, of musical syntax and semantics, and activation of (pre)motor representations of actions. Moreover, music perception potentially elicits emotions, thus giving rise to the modulation of emotional effector systems such as the subjective feeling system, the autonomic nervous system, the hormonal, and the immune system. Building on a previous article (Koelsch and Siebel, 2005), this review presents an updated model of music perception and its neural correlates. The article describes processes involved in music perception, and reports EEG and fMRI studies that inform about the time course of these processes, as well as about where in the brain these processes might be located.
Collapse
Affiliation(s)
- Stefan Koelsch
- Cluster of Excellence "Languages of Emotion", Freie Universität Berlin Berlin, Germany
| |
Collapse
|
22
|
Glutamatergic neurotransmission mediated by NMDA receptors in the inferior colliculus can modulate haloperidol-induced catalepsy. Brain Res 2010; 1349:41-7. [DOI: 10.1016/j.brainres.2010.06.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 06/08/2010] [Accepted: 06/08/2010] [Indexed: 11/22/2022]
|
23
|
Macedo CE, Martinez RCR, Brandão ML. Conditioned and unconditioned fear organized in the inferior colliculus are differentially sensitive to injections of muscimol into the basolateral nucleus of the amygdala. Behav Neurosci 2009; 120:625-31. [PMID: 16768614 DOI: 10.1037/0735-7044.120.3.625] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chemical stimulation of the inferior colliculus (IC) with semicarbazide--an inhibitor of the gamma aminobutyric acid synthesizing enzyme--functions as an unconditioned stimulus in the conditioned place aversion test (CPA), and electrolytic lesions of the basolateral amygdala (BLA) enhance the aversiveness of the IC stimulation. This study examined the effects of inactivation of the BLA with muscimol on the conditioned and unconditioned fear using semicarbazide injections into the IC of rats subjected to conditioned (CPA) or unconditioned (open field) fear tests. In both tests, the rats were injected with semicarbazide or saline into the IC and muscimol or saline into the BLA. Muscimol decreased the CPA and increased the unconditioned fear elicited by IC injections of semicarbazide. These findings indicate that distinct modulatory mechanisms in the BLA are recruited during the conditioned and unconditioned fear triggered by IC activation.
Collapse
Affiliation(s)
- Carlos Eduardo Macedo
- Laboratório de Psicobiologia, Faculdade Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
24
|
Glutamate receptor antagonism in inferior colliculus attenuates elevated startle response of high anxiety diazepam-withdrawn rats. Neuroscience 2009; 161:707-17. [DOI: 10.1016/j.neuroscience.2009.03.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/25/2009] [Accepted: 03/30/2009] [Indexed: 11/20/2022]
|
25
|
Effects of microinjections of apomorphine and haloperidol into the inferior colliculus on the latent inhibition of the conditioned emotional response. Exp Neurol 2009; 216:16-21. [DOI: 10.1016/j.expneurol.2008.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 10/28/2008] [Accepted: 10/30/2008] [Indexed: 11/20/2022]
|
26
|
Serotonergic neurotransmission in the dorsal raphe nucleus recruits in situ 5-HT2A/2C receptors to modulate the post-ictal antinociception. Exp Neurol 2008; 213:410-8. [DOI: 10.1016/j.expneurol.2008.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 07/02/2008] [Accepted: 07/03/2008] [Indexed: 12/28/2022]
|
27
|
Borelli KG, Brandão ML. Effects of ovine CRF injections into the dorsomedial, dorsolateral and lateral columns of the periaqueductal gray: a functional role for the dorsomedial column. Horm Behav 2008; 53:40-50. [PMID: 17920596 DOI: 10.1016/j.yhbeh.2007.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 08/16/2007] [Accepted: 08/17/2007] [Indexed: 10/22/2022]
Abstract
Corticotropin-releasing factor (CRF) and its receptor subtypes have been implicated in the regulation of endocrine, behavioral and autonomic responses to stress, fear and anxiety. Ovine CRF (oCRF) is a nonspecific CRF receptor agonist that produces anxiogenic-like effects when injected locally into the dorsal aspects of the periaqueductal gray (PAG). This structure is subdivided into four distinct longitudinal columns but their exact functional role is not fully understood. The purpose of the present study was to characterize the effects of oCRF (0.25, 0.5 and 1 microg/0.2 microL) injections into the dorsomedial (dmPAG), dorsolateral (dlPAG) and lateral (lPAG) columns of the PAG using an analysis of the exploratory behavior of rats in the elevated plus-maze (EPM) test. The results showed that microinjections of oCRF intra-dmPAG reduced entries and time spent in the open arms and decreased end-arm exploration and head-dipping. In contrast, oCRF intra-dlPAG or lPAG did not affect the exploratory behavior of the animals in the EPM. These findings point to a columnar specificity for the oCRF effects in the PAG, that is, it increased spatial avoidance measures of the EPM test only in the dmPAG. The proaversive effects of oCRF in the dmPAG gain further relevance when combined with previous immunohistochemical studies showing that CRF-containing projections from the periventricular hypothalamic system arch dorsomedially to the PAG, which could function as an important relay station in the midbrain tectum for avoidance behaviors.
Collapse
Affiliation(s)
- Karina G Borelli
- Instituto de Neurociências & Comportamento-INeC, Campus USP, 14040-901, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
28
|
Litvin Y, Pentkowski NS, Blanchard DC, Blanchard RJ. CRF type 1 receptors in the dorsal periaqueductal gray modulate anxiety-induced defensive behaviors. Horm Behav 2007; 52:244-51. [PMID: 17540371 PMCID: PMC1986744 DOI: 10.1016/j.yhbeh.2007.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/19/2007] [Accepted: 04/23/2007] [Indexed: 10/23/2022]
Abstract
The dorsal periaqueductal gray (dPAG) is involved in defensive coping reactions to threatening stimuli. Corticotropin releasing factor (CRF) is substantially implicated as a direct modulator of physiological, endocrine and behavioral responses to a stressor. Previous findings demonstrate a direct role of the central CRF system in dPAG-mediated defensive reactions toward a threatening stimulus. These include anxiogenic behaviors in the elevated plus maze (EPM) in rats and defensive reactions in both the mouse defense test battery (MDTB) and rat exposure test (RET) paradigms in mice. Furthermore, CRF was shown to directly and dose-dependently excite PAG neurons in vitro. The aim of the present series of experiments was to directly evaluate the role of the CRF1 receptor (CRF1) in dPAG-induced defensive behaviors in the MDTB and the RET paradigms. For this purpose, cortagine, a novel CRF1-selective agonist, was directly infused into the dPAG. In the RET the high dose of cortagine (100 ng) significantly affected spatial avoidance measures and robustly increased burying behavior, an established avoidance activity, while having no effects on behaviors in the MDTB. Collectively, these results implicate CRF1 in the dPAG as a mediator of temporally and spatially dependent avoidance in response to controllable and constant stimuli.
Collapse
Affiliation(s)
- Yoav Litvin
- Department of Psychology, University of Hawaii at Manoa, 2430 Campus Rd., Honolulu, HI 96822, USA.
| | | | | | | |
Collapse
|
29
|
Governo RJM, Prior MJW, Morris PG, Marsden CA, Chapman V. Validation of an automated punctate mechanical stimuli delivery system designed for fMRI studies in rodents. J Neurosci Methods 2007; 163:31-7. [PMID: 17368787 DOI: 10.1016/j.jneumeth.2007.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 02/11/2007] [Indexed: 10/23/2022]
Abstract
Functional magnetic resonance imaging (fMRI) is increasingly being used for animal studies studying the transmission of nociceptive information. Application of noxious mechanical stimuli is widely used for animal and human assessment of pain processing. Any accessory hardware used in animal imaging studies must, however, be sufficiently small to fit in the magnet bore diameter and be non-magnetic. We have developed a system that can apply mechanical stimuli simultaneously with fMRI. This system consists of a standardized instrument to deliver mechanical stimuli (VonFrey monofilament) and a gas-pressured mechanical transducer. These components were integrated with a computer console that controlled the period of stimuli to match acquisition scans. Preliminary experiments demonstrated that the force-stimulus transducer did not influence MRI signal to noise ratio. Mechanical stimulation of the hindpaw significantly increased blood oxygen level dependent (BOLD) signal intensity in several midbrain regions involved in the processing of nociceptive information in the rat (p<0.001, uncorrected for multiple comparisons). This system can be applied to both animal and human imaging studies and has a wide range of applications for studies of nociceptive processing.
Collapse
|
30
|
García Del Caño G, Gerrikagoitia I, Alonso-Cabria A, Martínez-Millán L. Organization and origin of the connection from the inferior to the superior colliculi in the rat. J Comp Neurol 2007; 499:716-31. [PMID: 17048224 DOI: 10.1002/cne.21107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The inferior colliculus (IC) is the main ascending auditory relay station prior to the superior colliculus (SC). The morphology and origin of the connection from inferior to superior colliculus (I-SC) was analyzed both by anterograde and retrograde tracing. Irrespective of the subregion of the IC in which they originate, the terminal fields of these connections formed two main tiers in the SC. While the dorsal one primarily involved the stratum opticum and the stratum griseum intermediale, the ventral one innervated the deep strata, although some fibers did connect these tiers. While the dorsal tier occupied almost the whole extension of the SC, the ventral one was mostly confined to its caudomedial quadrant. The fiber density in these tiers decreased gradually in a rostral gradient and the terminal fields became denser as the anterograde tracer at the injection site was distributed more externally in the cortex of the IC. Retrograde tracing confirmed this result, although it did not reveal any topographic ordering for the I-SC pathway. Most presynaptic boutons of the I-SC terminal field were located either inside or close to the patches of acetylcholinesterase activity. Together with previous anatomical and physiological studies, our results indicate that the I-SC connection relays behaviorally relevant information for sensory-motor processing. Our observation that this pathway terminates in regions of the superior colliculus, where neurons involved in fear-like responses are located, reinforce previous suggestions of a role for the IC in generating motor stereotypes that occur during audiogenic seizures.
Collapse
Affiliation(s)
- Gontzal García Del Caño
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country, 01006-Vitoria-Gasteiz, Araba, Spain
| | | | | | | |
Collapse
|
31
|
Ferreira-Netto C, Borelli KG, Brandão ML. Distinct Fos expression in the brain following freezing behavior elicited by stimulation with NMDA of the ventral or dorsal inferior colliculus. Exp Neurol 2007; 204:693-704. [PMID: 17289027 DOI: 10.1016/j.expneurol.2006.12.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 12/22/2006] [Accepted: 12/28/2006] [Indexed: 10/23/2022]
Abstract
The inferior colliculus (IC) is an important relay station for ascending auditory information to the medial geniculate nucleus (MGN) and temporal cortex. It has been reported that the ventral (ICv) and dorsal (ICd) regions of the IC are involved with the defensive reaction and audiogenic seizures, respectively. As freezing is the first response induced by stimulation of these IC nuclei with increasing doses of N-methyl-d-aspartate (NMDA), a question that arises is whether or not fear and audiogenic seizures generated at the IC level are interrelated processes. To address this issue, the Fos distribution in selected limbic structures following injections of NMDA into the ICv or ICd at freezing (7 nmol)- and escape (20 nmol)-producing doses was examined. Freezing behavior induced by intra-ICd NMDA caused an increase of Fos expression in the MGN, superior colliculus, dorsal columns of the periaqueductal gray and locus coeruleus while freezing induced by intra-ICv NMDA caused a significant Fos immunoreactivity in the prelimbic (PrL) and cingulate (Cg) cortices, basolateral and medial nuclei of the amygdala, ventrolateral periaqueductal gray, cuneiform nucleus and locus coeruleus. Escape behavior induced by NMDA injections into both nuclei caused a widespread Fos labeling in all limbic structures examined in this study. These results suggest that distinct circuits underlie the freezing behavior generated at the level of ICd and ICv. This is the first study to map Fos distribution associated with the stimulation of the ICv and ICd, regions supposed to be involved with fear and audiogenic seizures, respectively.
Collapse
Affiliation(s)
- Cristina Ferreira-Netto
- Instituto de Neurociências & Comportamento-INeC, Campus USP, 14040-901 Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
32
|
Matrov D, Kolts I, Harro J. Cerebral oxidative metabolism in rats with high and low exploratory activity. Neurosci Lett 2007; 413:154-8. [PMID: 17234343 DOI: 10.1016/j.neulet.2006.11.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 11/16/2006] [Accepted: 11/22/2006] [Indexed: 11/30/2022]
Abstract
To reveal brain regions most significantly related to individual differences in exploratory behaviour, oxidative metabolism was measured by cytochrome c oxidase histochemistry in 2 months old Wistar rats with persistently high (HE) or low (LE) exploratory activity in a novel environment. LE-rats had significantly higher levels of oxidative metabolism in dorsal raphe and inferior colliculi. In contrast, HE-rats had higher metabolic activity in entorhinal cortex. In conclusion, rats with different exploratory styles differ in underlying cerebral activity as measured via oxidative metabolism in regions implicated in defensive behaviours and cognitive processing of sensory stimuli.
Collapse
Affiliation(s)
- Denis Matrov
- Department of Psychology, Centre of Behavioural and Health Sciences, University of Tartu, Tiigi 78, EE-50410 Tartu, Estonia
| | | | | |
Collapse
|
33
|
Macedo CE, Martinez RCR, Albrechet-Souza L, Molina VA, Brandão ML. 5-HT2- and D1-mechanisms of the basolateral nucleus of the amygdala enhance conditioned fear and impair unconditioned fear. Behav Brain Res 2007; 177:100-8. [PMID: 17126419 DOI: 10.1016/j.bbr.2006.10.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 10/30/2006] [Indexed: 02/04/2023]
Abstract
The inferior colliculus (IC) is involved in processing of auditory information, but also integrates acoustic information of aversive nature. In fact, chemical stimulation of the IC with semicarbazide (SMC) - an inhibitor of the GABA synthesizing enzyme glutamic acid decarboxylase - has been found to cause defensive behavior in an open-field test and functions as an unconditioned stimulus in the place conditioned aversion test (PCA). A question has arisen regarding whether the basolateral nucleus of the amygdala (BLA) is involved in the acquisition of the aversive information ascending from the IC and whether dopaminergic and serotoninergic mechanisms of the BLA regulate this process. Recent evidence has shown that inactivation of the BLA with muscimol inhibits the PCA and causes an increase in the aversiveness of the chemical stimulation of the IC. Based on this, we examined the effects of ketanserin and SCH-23390, antagonists of the 5HT(2) and D(1) receptors, respectively, on the conditioned and unconditioned fear elicited by IC stimulation with SMC. The results obtained confirm the crucial role of 5-HT(2)- and D(1)-mechanisms of the BLA on conditioned fear in that ketanserin and SCH-23390 injections into the BLA caused a reduction in the PCA. On the other hand, ketanserin and SCH-23390 injections into the BLA enhanced the aversiveness of the IC injections of SMC. These findings suggest that while 5-HT(2) and DA(1) mechanisms in the BLA appear to facilitate the conditioned fear they inhibit the unconditioned fear triggered by IC activation.
Collapse
Affiliation(s)
- Carlos Eduardo Macedo
- Laboratório de Psicobiologia, Faculdade Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brasil
| | | | | | | | | |
Collapse
|
34
|
Castellan-Baldan L, da Costa Kawasaki M, Ribeiro SJ, Calvo F, Corrêa VMA, Coimbra NC. Topographic and functional neuroanatomical study of GABAergic disinhibitory striatum–nigral inputs and inhibitory nigrocollicular pathways: Neural hodology recruiting the substantia nigra, pars reticulata, for the modulation of the neural activity in the inferior colliculus involved with panic-like emotions. J Chem Neuroanat 2006; 32:1-27. [PMID: 16820278 DOI: 10.1016/j.jchemneu.2006.05.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 03/17/2006] [Accepted: 05/01/2006] [Indexed: 10/24/2022]
Abstract
Considering the influence of the substantia nigra on mesencephalic neurons involved with fear-induced reactions organized in rostral aspects of the dorsal midbrain, the present work investigated the topographical and functional neuroanatomy of similar influence on caudal division of the corpora quadrigemina, addressing: (a) the neural hodology connecting the neostriatum, the substantia nigra, periaqueductal gray matter and inferior colliculus (IC) neural networks; (b) the influence of the inhibitory neostriatonigral-nigrocollicular GABAergic links on the control of the defensive behavior organized in the IC. The effects of the increase or decrease of activity of nigrocollicular inputs on defensive responses elicited by either electrical or chemical stimulation of the IC were also determined. Electrolytic or chemical lesions of the substantia nigra, pars reticulata (SNpr), decreased the freezing and escape behaviors thresholds elicited by electrical stimulation of the IC, and increased the behavioral responses evoked by the GABAA blockade in the same sites of the mesencephalic tectum (MT) electrically stimulated. These findings were corroborated by similar effects caused by microinjections of the GABAA-receptor agonist muscimol in the SNpr, followed by electrical and chemical stimulations of the IC. The GABAA blockade in the SNpr caused a significant increase in the defensive behavior thresholds elicited by electrical stimulation of the IC and a decrease in the mean incidence of panic-like responses induced by microinjections of bicuculline in the mesencephalic tectum (inferior colliculus). These findings suggest that the substantia nigra receives GABAergic inputs that modulate local and also inhibitory GABAergic outputs toward the IC. In fact, neurotracing experiments with fast blue and iontophoretic microinjections of biotinylated dextran amine either into the inferior colliculus or in the reticular division of the substantia nigra demonstrated a neural link between these structures, as well as between the neostriatum and SNpr.
Collapse
Affiliation(s)
- Lissandra Castellan-Baldan
- Laboratory of Neuroanatomy & Neuropsychobiology, Department of Morphology, School of Medicine of Ribeirão Preto of the University of São Paulo (USP), Ribeirão Preto 14049-900, SP, Brazil
| | | | | | | | | | | |
Collapse
|
35
|
Calvo F, Coimbra NC. Interactions between opioid-peptides-containing pathways and GABAA-receptors-mediated systems modulate panic-like-induced behaviors elicited by electric and chemical stimulation of the inferior colliculus. Brain Res 2006; 1104:92-102. [PMID: 16797498 DOI: 10.1016/j.brainres.2006.05.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 05/09/2006] [Accepted: 05/19/2006] [Indexed: 10/24/2022]
Abstract
Aiming to clarify the effect of interactive interconnections between the endogenous opioid peptides-neural links and GABAergic pathways on panic-like responses, in the present work, the effect of the peripheral and central administration of morphine or the non-specific opioid receptors antagonist naloxone was evaluated on the fear-induced responses (defensive attention, defensive immobility and escape behavior) elicited by electric and chemical stimulation of the inferior colliculus. Central microinjections of opioid drugs in the inferior colliculus were also performed followed by local administration of the GABA(A)-receptor antagonist bicuculline. The defensive behavior elicited by the blockade of GABAergic receptors in the inferior colliculus had been quantitatively analyzed, recording the number of crossing, jump, rotation and rearing, in each minute, during 30 min, in the open-field test. The opioid receptors stimulation with morphine decreased the defensive attention, the defensive immobility and escape behavior thresholds, and the non-specific opioid receptors blockade caused opposite effects, enhancing the defensive behavior thresholds. These effects were corroborated by either the stimulation or the inhibition of opioid receptors followed by the GABA(A) receptor blockade with bicuculline, microinjected into the inferior colliculus. There was a significant increase in the diverse fear-induced responses caused by bicuculline with the pretreatment of the inferior colliculus with morphine, and the opposite effect was recorded after the pretreatment of the inferior colliculus nuclei with naloxone followed by bicuculline local administration. These findings suggest an interaction between endogenous opioid-peptides-containing connections and GABA(A)-receptor-mediated system with direct influence on the organization of the panic-like or fear-induced responses elaborated in the inferior colliculus during critical emotional states.
Collapse
Affiliation(s)
- Fabrício Calvo
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Av. dos Bandeirantes, 3900, Ribeirão Preto (SP), 1049-900, Brazil
| | | |
Collapse
|
36
|
de Oliveira RC, de Oliveira R, Ferreira CMDR, Coimbra NC. Involvement of 5-HT(2) serotonergic receptors of the nucleus raphe magnus and nucleus reticularis gigantocellularis/paragigantocellularis complex neural networks in the antinociceptive phenomenon that follows the post-ictal immobility syndrome. Exp Neurol 2006; 201:144-53. [PMID: 16842781 DOI: 10.1016/j.expneurol.2006.03.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 03/17/2006] [Accepted: 03/31/2006] [Indexed: 12/30/2022]
Abstract
The post-ictal immobility syndrome is followed by a significant increase in the nociceptive thresholds in animals and men. In this interesting post-ictal behavioral response, endogenous opioid peptides-mediated mechanisms, as well as cholinergic-mediated antinociceptive processes, have been suggested. However, considering that many serotonergic descending pathways have been implicated in antinociceptive reactions, the aim of the present work is to investigate the involvement of 5-HT(2)-serotonergic receptor subfamily in the post-ictal antinociception. The analgesia was measured by the tail-flick test in seven or eight Wistar rats per group. Convulsions were followed by statistically significant increase in the tail-flick latencies (TFL), at least for 120 min of the post-ictal period. Male Wistar rats were submitted to stereotaxic surgery for introduction of a guide-cannula in the rhombencephalon, aiming either the nucleus raphe magnus (NRM) or the gigantocellularis complex. In independent groups of animals, these nuclei were neurochemically lesioned with a unilateral microinjection of ibotenic acid (1.0 microg/0.2 microL). The neuronal damage of either the NRM or nucleus reticularis gigantocellularis/paragigantocellularis complex decreased the post-ictal analgesia. Also, in other independent groups, central administration of ritanserin (5.0 microg/0.2 microL) or physiological saline into each of the reticular formation nuclei studied caused a statistically significant decrease in the TFL of seizing animals, as compared to controls, in all post-ictal periods studied. These results indicate that serotonin input-connected neurons of the pontine and medullarly reticular nuclei may be involved in the post-ictal analgesia.
Collapse
Affiliation(s)
- Rithiele Cristina de Oliveira
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (USP), Av. dos Bandeirantes 3900, Ribeirão Preto (SP) 14049-900, Brazil
| | | | | | | |
Collapse
|
37
|
Duarte TT, Corrêa SAL, Santana UJ, Pereira ASF, Hoffmann A. Agonistic-like responses from the torus semicircularis dorsalis elicited by GABA A blockade in the weakly electric fish Gymnotus carapo. Braz J Med Biol Res 2006; 39:945-55. [PMID: 16862286 DOI: 10.1590/s0100-879x2006000700013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 03/30/2006] [Indexed: 11/22/2022] Open
Abstract
Findings by our group have shown that the dorsolateral telencephalon of Gymnotus carapo sends efferents to the mesencephalic torus semicircularis dorsalis (TSd) and that presumably this connection is involved in the changes in electric organ discharge (EOD) and in skeletomotor responses observed following microinjections of GABA A antagonist bicuculline into this telencephalic region. Other studies have implicated the TSd or its mammalian homologue, the inferior colliculus, in defensive responses. In the present study, we explore the possible involvement of the TSd and of the GABA-ergic system in the modulation of the electric and skeletomotor displays. For this purpose, different doses of bicuculline (0.98, 0.49, 0.245, and 0.015 mM) and muscimol (15.35 mM) were microinjected (0.1 microL) in the TSd of the awake G. carapo. Microinjection of bicuculline induced dose-dependent interruptions of EOD and increased skeletomotor activity resembling defense displays. The effects of the two highest doses showed maximum values at 5 min (4.3 +/- 2.7 and 3.8 +/- 2.0 Hz, P < 0.05) and persisted until 10 min (11 +/- 5.7 and 8.7 +/- 5.2 Hz, P < 0.05). Microinjections of muscimol were ineffective. During the interruptions of EOD, the novelty response (increased frequency in response to sensory novelties) induced by an electric stimulus delivered by a pair of electrodes placed in the water of the experimental cuvette was reduced or abolished. These data suggest that the GABA-ergic mechanisms of the TSd inhibit the neural substrate of the defense reaction at this midbrain level.
Collapse
Affiliation(s)
- T T Duarte
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.
| | | | | | | | | |
Collapse
|
38
|
Ferreira-Netto C, Borelli KG, Brandão ML. Neural segregation of Fos-protein distribution in the brain following freezing and escape behaviors induced by injections of either glutamate or NMDA into the dorsal periaqueductal gray of rats. Brain Res 2005; 1031:151-63. [PMID: 15649440 DOI: 10.1016/j.brainres.2004.10.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2004] [Indexed: 10/26/2022]
Abstract
Freezing and escape responses induced by gradual increases in the intensity of the electrical current applied to dorsal regions of the periaqueductal gray (dPAG) cause a distinct pattern of Fos distribution in the brain. From these studies, it has been suggested that a pathway involving the dPAG itself, dorsomedial hypothalamus and the cuneiform nucleus (CnF) would mediate responses to immediate danger and another one involving the amygdala and ventrolateral periaqueductal gray (vlPAG) would mediate cue-elicited responses. As electrical stimulation activates body cells and fibers of passage the need of studies with chemical stimulation of only post-synaptic fibers of the dPAG is obvious. To examine further this issue we measured Fos protein expression in brain areas activated by stimulation of the dPAG with glutamate (5 nmol/0.2 microL) and N-methyl-D-aspartate (NMDA) at doses that provoke either freezing (4 nmol/0.2 microL) or escape (7 nmol/0.2 microL) responses, respectively. The results showed that glutamate-induced freezing caused a selective increase in Fos expression in the superior and inferior colliculi as well as in the laterodorsal nucleus of the thalamus. On the other hand, NMDA-induced escape led to widespread increases in Fos labeling in almost all structures studied. Differently from glutamate, NMDA at doses provoking freezing caused significant increase of Fos labeling in the dPAG and CnF. Therefore, the present data support the notion that freezing behavior induced by activation of either non-NMDA or NMDA receptors in the dorsolateral periaqueductal gray (dlPAG) is neurally segregated: glutamate activates only structures that are mainly involved in the sensorial processing and NMDA-induced freezing structures involved in the motor output of defensive behavior. Therefore, the freezing elicited by the activation of non-NMDA receptors seem to be related to the acquisition of aversive information, whereas that resulting from the activation of NMDA receptors could serve as a preparatory response for flight.
Collapse
Affiliation(s)
- Cristina Ferreira-Netto
- Laboratório de Psicobiologia, FFCLRP, Campus USP, Av. Bandeirantes 3900, 14049-901, Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
39
|
Macedo CE, Martinez RCR, de Souza Silva MA, Brandão ML. Increases in extracellular levels of 5-HT and dopamine in the basolateral, but not in the central, nucleus of amygdala induced by aversive stimulation of the inferior colliculus. Eur J Neurosci 2005; 21:1131-8. [PMID: 15787718 DOI: 10.1111/j.1460-9568.2005.03939.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Consistent evidence has shown that dopamine release in the prefrontal cortex is increased by electrical stimulation of the inferior colliculus (IC) as unconditioned stimulus. Recent reports have also demonstrated that inactivation of the basolateral nucleus of the amygdala (BLA) with muscimol enhances the behavioural consequences of the aversive stimulation of the IC and reduces the dopamine release in the prefrontal cortex. Moreover, neurotoxic lesions of the BLA enhance whereas those of the central nucleus of the amygdala (CeA) reduce the aversiveness of the electrical stimulation of the IC. Based on these findings the present study examined the effects of the electrical stimulation of the IC on the extracellular levels of serotonin and dopamine in the BLA and CeA. To this end, rats implanted with a stimulation electrode in the IC also bore a microdialysis probe in the BLA or CeA for determination of the release of dopamine and serotonin. IC electrical stimulation at the freezing and escape thresholds increased the levels of serotonin ( approximately 70%) and dopamine ( approximately 60%) in the BLA related to the basal values. Similarly, the metabolites DOPAC and 5-HIAA increased in a parallel fashion in BLA. No significant changes could be detected in these biogenic amines and metabolites in CeA following IC aversive stimulation. These findings point to a differential role of serotonergic and dopaminergic mechanisms of the BLA and CeA in the setting up of adaptive responses to fear states generated at the inferior colliculus level.
Collapse
Affiliation(s)
- Carlos Eduardo Macedo
- Laboratório de Psicobiologia, Faculdade Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP) 14040-901, Ribeirão Preto, SP Brazil
| | | | | | | |
Collapse
|
40
|
Macedo CE, Cuadra G, Molina V, Brandão ML. Aversive stimulation of the inferior colliculus changes dopamine and serotonin extracellular levels in the frontal cortex: modulation by the basolateral nucleus of amygdala. Synapse 2005; 55:58-66. [PMID: 15515004 DOI: 10.1002/syn.20094] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have shown that stimulation of the neural substrates in the inferior colliculus (IC) causes a significant increase in the extracellular levels of dopamine (DA) in frontal cortex (FC). Also, it has been reported that the basolateral complex of the amygdala (BLA) serves as a filter for unconditioned and conditioned aversive information that ascend to higher structures from the brainstem. Linking these two kinds of information, this work examines whether inactivation of BLA interferes with the activation of cortical dopaminergic outputs produced by aversive stimulation of the IC. To this end, rats were implanted with an electrode in the IC for the determination of the threshold of escape responses. Each rat also bore a cannula implanted in the BLA for injections of lidocaine (10 microg/0.5 microL), muscimol (0.5 microg/0.5 microL), or its vehicle and a microdialysis probe in the FC for determination of the amount of DA and serotonin (5-HT). The data obtained show that IC electrical stimulation caused an increase in the DA release while it reduced the 5-HT release in the FC. BLA inactivation with both lidocaine or muscimol enhanced the aversiveness of the electrical stimulation of the IC and attenuated the increase in DA, while the reduction in 5-HT release in the FC remained unaffected. These findings suggest that ascending aversive information from IC on their way up to higher structures in the SNC courses with opposite modulation by DA/5-HT mechanisms in the FC. These processes are regulated by filters located in the BLA. It is proposed that the loss of these BLA regulatory mechanisms prevents the expression of these modulatory mechanisms in the FC that are adaptive responses in order to cope with unconditioned aversive stimulus triggered at the brainstem level.
Collapse
Affiliation(s)
- Carlos Eduardo Macedo
- Laboratório de Psicobiologia, Faculdade Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP) 14040-901, Ribeirão Preto, SP Brasil
| | | | | | | |
Collapse
|
41
|
Menard JL, Champagne DL, Meaney MJP. Variations of maternal care differentially influence 'fear' reactivity and regional patterns of cFos immunoreactivity in response to the shock-probe burying test. Neuroscience 2005; 129:297-308. [PMID: 15501588 DOI: 10.1016/j.neuroscience.2004.08.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2004] [Indexed: 11/27/2022]
Abstract
Natural variations in maternal care in the rat influence the development of neuronal systems that regulate endocrine and behavioral responses to stress. Thus, as adults, rats that received higher levels of maternal licking/grooming (LG) in infancy are less 'fearful' in response to novelty, compared with adult offspring of Low LG mothers. The present study examined the influence of maternal care on behavioral and neuronal responses to a more specific, localizable form of threat using an electrified probe in the shock-probe burying test. Even under these conditions, adult offspring of High LG mothers displayed lower levels of fear reactivity (i.e. less shock-induced freezing and probe burying) throughout the test than did offspring of Low LG mothers. These differences in fearfulness were associated with differential patterns of cFos immunoreactivity (cFos-IR), 120 min following test exposure. Relative to control rats exposed to a non-electrified probe, cFos-IR was increased in the offspring of High LG mothers exposed to an electrified probe in the dentate gyrus, ventral subiculum, lateral and medial septum, nucleus accumbens and the dorsal periaqueductal gray. Shock-exposed offspring of Low LG dams displayed a very different pattern of neuronal activation characterized by both increases (area CA1 of the ventral hippocampus and the inferior colliculus) and decreases (paraventricular nucleus of the hypothalamus and the ventrolateral periaqueductal gray) in cFos-IR compared with the no-shock controls. Together these results suggest that maternal care serves to 'program' neuronal circuits that modulate fear-related responding in the rat resulting in qualitatively different neuronal responses to stress.
Collapse
Affiliation(s)
- J L Menard
- Department of Psychology, Queen's University, Humphrey Hall, 69 Arch Street, Kingston, Ontario, Canada K7L 3N6.
| | | | | |
Collapse
|
42
|
Beleboni RO, Carolino ROG, Pizzo AB, Castellan-Baldan L, Coutinho-Netto J, dos Santos WF, Coimbra NC. Pharmacological and biochemical aspects of GABAergic neurotransmission: pathological and neuropsychobiological relationships. Cell Mol Neurobiol 2004; 24:707-28. [PMID: 15672674 DOI: 10.1007/s10571-004-6913-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
1. The GABAergic neurotransmission has been implicated in the modulation of many neural networks in forebrain, midbrain and hindbrain, as well as, in several neurological disorders. 2. The complete comprehension of GABA system neurochemical properties and the search for approaches in identifying new targets for the treatment of neural diseases related to GABAergic pathway are of the extreme relevance. 3. The present review will be focused on the pharmacology and biochemistry of the GABA metabolism, GABA receptors and transporters. In addition, the pathological and psychobiological implications related to GABAergic neurotransmission will be considered.
Collapse
Affiliation(s)
- Renê Oliveira Beleboni
- Departament of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
43
|
Borelli KG, Nobre MJ, Brandão ML, Coimbra NC. Effects of acute and chronic fluoxetine and diazepam on freezing behavior induced by electrical stimulation of dorsolateral and lateral columns of the periaqueductal gray matter. Pharmacol Biochem Behav 2004; 77:557-66. [PMID: 15006467 DOI: 10.1016/j.pbb.2003.12.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 12/10/2003] [Accepted: 12/16/2003] [Indexed: 10/26/2022]
Abstract
The defensive responses induced by electrical stimulation of the dorsal periaqueductal gray matter (dPAG) of the rat have been proposed as a model of panic attacks in humans. In the present study we investigated the acute and chronic effects of fluoxetine and diazepam on freezing and escape reactions elicited by electrical stimulation of the dorsolateral (dlPAG) and lateral (lPAG) columns of the periaqueductal gray matter (PAG). The frequencies of crossing, rearing, bouts of micturition and fecal boli were also recorded. Electrodes were unilaterally implanted in the brainstem aimed at the PAG. Drug treatments were given daily for 2 weeks with fluoxetine (5, 10 and 20 mg/kg ip), a selective inhibitor of serotonin reuptake, diazepam (1, 2 and 4 mg/kg ip), or saline. Drug effects were assessed acutely (15 min after the first injection) and chronically (15 min after the 14th injection). Chronic, but not acute, administration of fluoxetine caused a significant increase in the threshold of freezing without affecting the escape response elicited by dlPAG/lPAG stimulation. This characteristic pattern of effects could not be attributed to motor deficit, since this drug did not change the number of crossings and rearings. In contrast, no significant threshold changes were observed following acute and chronic treatment with diazepam. These data give further evidence for (a) an antiaversive effect of chronic treatment with fluoxetine, which caused a selective reduction in freezing behavior and neurovegetative responses associated with fearlike reaction elicited by dlPAG/lPAG electrical stimulation; (b) the involvement of the dlPAG and lPAG in the generation and organization of defensive responses and that freezing may probably be associated with panic attacks; and (c) the lack of effect of diazepam in this model is in line with its inefficacy as a panicolytic drug. The study of the unconditioned freezing behavior evoked by dlPAG/lPAG stimulation may constitute a new and interesting model for the study of panic disorder.
Collapse
Affiliation(s)
- Karina Genaro Borelli
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto-USP, Avenida dos Bandeirantes, 3900, 14049-900 Ribeirão Preto, Brazil
| | | | | | | |
Collapse
|
44
|
Nobre MJ, Lopes MG, Brandão ML. Defense reaction mediated by NMDA mechanisms in the inferior colliculus is modulated by GABAergic nigro-collicular pathways. Brain Res 2004; 999:124-31. [PMID: 14746929 DOI: 10.1016/j.brainres.2003.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrical stimulation of the inferior colliculus (IC) causes a behavioral activation together with autonomic responses similar to fear reactions to threatening situations. GABAergic mechanisms exert a tonic inhibitory control on the neural substrates of aversion in the IC insofar as local injections of GABA agonists or antagonists inhibit or mimic these defensive behaviors, respectively. Recently, we have shown that systemic injections of the GABA-A receptor agonist muscimol unexpectedly enhanced the freezing and escape responses provoked by gradual increases in the intensity of the electrical stimulation of the IC. Taking into account that the neural circuits mediated by excitatory amino acids (EAA) in the IC may be responsible for the integration of fear states, in the present study we examined whether the defensive behavior induced by local injections of NMDA into the IC is influenced by prior treatment with systemic muscimol and also whether this GABAergic control could be exerted by GABAergic fibers that project to the inferior colliculus from the substantia nigra pars reticulata (SNpr). Rats were implanted with two guide-cannulae aimed at the IC and SNpr through which drug microinfusions with glass micropipette could be made with reduced brain damage. One week after surgery, the animals received either NMDA (7 nmol/0.2 microl) or saline into the IC and were placed into the middle of an enclosure where behavioral responses such as freezing, crossings, jumping, rearing, and turnings could be measured as an indirect index of unconditioned fear. These animals were pretreated either with saline or muscimol (0.5 mg/kg, IP) or with brain injections of saline or muscimol (1 nmol/0.2 ìl into SNpr). NMDA applied into the IC produced a behavioral activation with significant increases in all behavioral measures. IP injections of muscimol or into the SNpr enhanced the defense reaction caused by microinjections of NMDA into the IC. These findings give support to the idea that unconditioned defensive responses generated in the IC may be mediated by NMDA mechanisms. Additionally, a reduction of the inhibitory control exerted by nigrocollicular GABAergic neurons seems to be responsible for the unexpected pro-aversive action of systemic injections of muscimol on the neural substrates of aversion mediated by NMDA in the IC.
Collapse
Affiliation(s)
- Manoel J Nobre
- Laboratório de Psicobiologia, Faculdade Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), Av Bandeirantes, 3900, 14040-901 Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
45
|
Nobre MJ, Brandão ML. Analysis of freezing behavior and ultrasonic vocalization in response to foot-shocks, ultrasound signals and GABAergic inhibition in the inferior colliculus: effects of muscimol and midazolam. Eur Neuropsychopharmacol 2004; 14:45-52. [PMID: 14659986 DOI: 10.1016/s0924-977x(03)00073-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Freezing behavior is a common response to distal threatening stimuli. It has been reported that experimenter-presented 20-kHz tones produce freezing in Wistar rats. The present studies were designed to determine the acoustic specificity for induction of the emission of ultrasound vocalizations (USV) and freezing of rats to either ultrasound tones or to a standard stressor, foot-shocks. We also examined whether GABA-benzodiazepine mechanisms, known for modulating anxiety-related processes, are involved in the regulation of defensive responses to these two aversive unconditioned stimuli. It was found that emission of USV was only observed with foot-shocks. Moreover, rats exhibited freezing when they were exposed to foot-shocks and 20-25-kHz ultrasound signals. Likewise, removal of the GABAergic inhibitory control on the neural substrates of aversion in the inferior colliculus by local microinjections of semicarbazide, a blocker of the glutamic acid decarboxylase, caused freezing behavior without emission of USV. All these responses were significantly reduced by midazolam and muscimol. It is suggested that the neural substrates of aversion in the inferior colliculus are under inhibitory control of GABAergic mechanisms and are different from those triggered by foot-shocks.
Collapse
Affiliation(s)
- Manoel Jorge Nobre
- Laboratório de Psicobiologia, FFCLRP, campus USP, Av. Bandeirantes 3900, Ribeirão Preto, 14049-901, SP, Brazil
| | | |
Collapse
|
46
|
Osaki MY, Castellan-Baldan L, Calvo F, Carvalho AD, Felippotti TT, de Oliveira R, Ubiali WA, Paschoalin-Maurin T, Elias-Filho DH, Motta V, da Silva LA, Coimbra NC. Neuroanatomical and neuropharmacological study of opioid pathways in the mesencephalic tectum: effect of μ1- and κ-opioid receptor blockade on escape behavior induced by electrical stimulation of the inferior colliculus. Brain Res 2003; 992:179-92. [PMID: 14625057 DOI: 10.1016/j.brainres.2003.08.040] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Deep layers of the superior colliculus (DLSC), the dorsal and ventral periaqueductal gray matter (PAG), and inferior colliculus (IC) are midbrain structures involved in the generation of defensive behavior. beta-Endorphin and Leu-enkephalin are some neurotransmitters that may modulate such behavior in mammals. Light microscopy immunocytochemistry with streptavidin method was used for the localization of the putative cells of defensive behavior with antibodies for endogenous opioids in rat brainstem. Midbrain structures showed positive neurons to beta-endorphin and Leu-enkephalin in similar distributions in the experimental animals, but we also noted the presence of varicose fibers positive to endogenous opioids in the PAG. Neuroanatomical techniques showed varicose fibers from the central nucleus of the inferior colliculus to ventral aspects of the PAG, at more caudal levels. Naloxonazine and nor-binaltorphimine, competitive antagonists that block mu(1)- and kappa-opioid receptors, were then used in the present work to investigate the involvement of opioid peptide neural system in the control of the fear-induced reactions evoked by electrical stimulation of the neural substrates of the inferior colliculus. The fear-like responses were measured by electrical stimulation of the central nucleus of the inferior colliculus, eliciting the escape behavior, which is characterized by vigorous running and jumping. Central administration of opioid antagonists (2.5 microg/0.2 microl and 5.0 microg/0.2 microl) was performed in non-anesthetized animals (Rattus norvegicus), and the behavioral manifestations of fear were registered after 10 min, 2 h, and 24 h of the pretreatment. Naloxonazine caused an increase of the defensive threshold, as compared to control, suggesting an antiaversive effect of the antagonism on mu(1)-opioid receptor. This finding was corroborated with central administration of nor-binaltorphimine, which also induced a decrease of the fear-like responses evoked by electrical stimulation of the inferior colliculus, since the threshold of the escape behavior was increased 2 and 24 h after the blockade of kappa-opioid receptor. These results indicate that endogenous opioids may be involved in the modulation of fear in the central nucleus of the inferior colliculus. Although the acute treatment (after 10 min) of both naloxonazine and nor-binaltorphimine causes nonspecific effect on opioid receptors, we must consider the involvement of mu(1)- and kappa-opioid receptors in the antiaversive influence of the opioidergic interneurons in the dorsal mesencephalon, at caudal level, after chronic (2-24 h) treatment of these opioid antagonists. The neuroanatomical study of the connections between the central nucleus of the inferior colliculus and the periaqueductal gray matter showed neuronal fibers with varicosities and with terminal bottons, both in the pericentral nucleus of the inferior colliculus and in ventral and dorsal parts of caudal aspects of the periaqueductal gray matter.
Collapse
MESH Headings
- Animals
- Biotin/analogs & derivatives
- Biotin/pharmacology
- Dextrans/pharmacology
- Dose-Response Relationship, Drug
- Electric Stimulation
- Escape Reaction/drug effects
- Escape Reaction/physiology
- Fear/drug effects
- Fear/physiology
- Inferior Colliculi/drug effects
- Inferior Colliculi/physiology
- Male
- Naloxone/analogs & derivatives
- Naloxone/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Neural Pathways/drug effects
- Neural Pathways/physiology
- Opioid Peptides/metabolism
- Periaqueductal Gray/drug effects
- Periaqueductal Gray/physiology
- Presynaptic Terminals/metabolism
- Presynaptic Terminals/ultrastructure
- Rats
- Rats, Wistar
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- M Y Osaki
- Laboratório de Neuroanatomia e Neuropsicobiologia, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), 14049-900, Avenida dos Bandeirantes, 3900, SP, Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Santos NR, Huston JP, Brandão ML. Blockade of histamine H2 receptors of the periaqueductal gray and inferior colliculus induces fear-like behaviors. Pharmacol Biochem Behav 2003; 75:25-33. [PMID: 12759110 DOI: 10.1016/s0091-3057(03)00033-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Electrical and chemical stimulation of the dorsal periaqueductal gray matter (dPAG) and the inferior colliculus (IC) induces escape behavior, usually accompanied by autonomic responses and antinociception. Recently, we presented evidence for a tonic inhibitory control exerted by H(2) histamine receptors on defensive behaviors generated in these midbrain tectum sites. Since treatments of these areas that elicit the defensive behavior repertoire frequently also have anxiogenic effects, we here used the elevated plus-maze (EPM) test for assessing the effects of microinjections of histamine (5-40 nmol), dimaprit (5-10 nmol) and ranitidine (10-30 nmol) into either dPAG or IC, which have a relative abundance of histamine-containing cells and histaminergic receptors. Dimaprit is an agonist and ranitidine is an antagonist of H(2) histamine receptors. Immediately after the injections, the animals were submitted to the EPM test. Whereas dPAG injections of dimaprit had no behavioral effects, histamine (40 nmol) caused a significant reduction in exploratory activity. On the other hand, ranitidine alone or following saline had aversive-like effects in both structures, i.e. reduced open arm, but not closed arm, entries. This pattern is usually interpreted as representing an anxiogenic effect. These effects were more pronounced after injection into dPAG than into IC. Freezing, the most prominent effect produced by ranitidine, was significantly inhibited by histamine as well as dimaprit. Thus, H(2) receptor blockade has fear-like action in the midbrain tectum with predominance in the dPAG. Such an action can be understood as a concomitant of defensive behavior, which has been shown to be a consequence of H(2) receptor antagonism in both dPAG and IC. The functional significance of the different effects of H(2) receptor blockade in dPAG and IC is discussed in the light of the probable distinct roles of these structures in the organization of defensive behavior.
Collapse
Affiliation(s)
- N R Santos
- Laboratório de Psicobiologia, FFCLRP, Campus USP, Av. Bandeirantes 3900, 14049-901 Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
48
|
Brandão ML, Troncoso AC, de Souza Silva MA, Huston JP. The relevance of neuronal substrates of defense in the midbrain tectum to anxiety and stress: empirical and conceptual considerations. Eur J Pharmacol 2003; 463:225-33. [PMID: 12600713 DOI: 10.1016/s0014-2999(03)01284-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The medial hypothalamus, amygdala, and dorsal periaqueductal gray constitute the main neural substrates for the integration of aversive states in the brain. More recently, some regions of the mesencephalon, such as the superior and inferior colliculi have also been proposed as part of this system. In fact, fear-like behaviors often result when these sites are electrically or chemically stimulated. Both the behavioral and autonomic consequences of electrical stimulation of the mesencephalic tectum have been shown to be attenuated by minor tranquilizers, probably through enhancement of gamma-aminobutyric acid (GABA)-mediated neurotransmission, which exerts a tonic inhibitory control on the neural circuits responsible for the so-called defense behavior repertoire. Besides GABA, also 5-hydroxy tryptamine serotonin (5-HT), opioids, neuropeptides, histaminergic and excitatory amino acids have all been implicated in the regulation of anxiety-related behaviors induced by stimulation of midbrain tectum. Efforts have been made to characterize how these neurotransmitters interact with each other in the organization of these reactions to aversive stimulation. In this review, we summarize the evidence linking the brain's defense response systems to the concept of fear-anxiety. Furthermore, a case is made for the consideration of the relevance of this body of data to the search for the physiological underpinnings of depression and its consequences.
Collapse
Affiliation(s)
- Marcus L Brandão
- Laboratório de Psicobiologia, FFCLRP, campus USP, av Bandeirantes 3900, 14049-901, Ribeirão Preto, SP, Brazil.
| | | | | | | |
Collapse
|
49
|
Troncoso AC, Osaki MY, Mason S, Borelli KG, Brandão ML. Apomorphine enhances conditioned responses induced by aversive stimulation of the inferior colliculus. Neuropsychopharmacology 2003; 28:284-91. [PMID: 12589381 DOI: 10.1038/sj.npp.1300034] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2001] [Revised: 03/19/2002] [Accepted: 06/21/2002] [Indexed: 11/08/2022]
Abstract
Consistent evidence has shown that learning may be produced in paradigms using electrical stimulation of the inferior colliculus (IC) as unconditioned stimulus (UCS). Recent reports have also demonstrated that aversive stimulation of the IC, at the escape threshold, enhances dopamine (DA) release in the prefrontal cortex. The purpose of the present study was to determine whether dopaminergic mechanisms are involved in the Pavlovian conditioning and latent inhibition using IC stimulation as UCS and light as conditioned stimulus (CS). Rats were placed inside a shuttle box and subjected to a two-way avoidance paradigm. IC aversive electrical stimulation was used as UCS and shuttle box illumination as CS. The rats quickly learned to avoid or interrupt the IC stimulation. Apomorphine injections produced a dose-dependent increase in the number of avoidance responses. On the other hand, chlorpromazine administration promoted a dose-dependent reduction of the avoidance responses. Previous injections of chlorpromazine inhibited the effects of apomorphine. Also, previous exposure to unreinforced light weakened the strength of the conditioning. Apomorphine blocked this latent inhibition effect, which was antagonized by previous injections of chlorpromazine. These findings bring evidence for the involvement of DA in the setting up of adaptive responses to aversive states generated at the IC level, which may underlie stressful situations present in anxiety.
Collapse
|
50
|
Macedo CE, Castilho VM, de Souza e Silva MA, Brandão ML. Dual 5-HT mechanisms in basolateral and central nuclei of amygdala in the regulation of the defensive behavior induced by electrical stimulation of the inferior colliculus. Brain Res Bull 2002; 59:189-95. [PMID: 12431748 DOI: 10.1016/s0361-9230(02)00862-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Regulatory mechanisms in the basolateral nucleus of the amygdala (BLA) serves as a filter for unconditioned and conditioned aversive information that ascend to higher structures from the brainstem whereas the central nucleus (CeA) is the main output for the resultant defense reaction. We have shown that neural substrates in the inferior colliculus are activated by threatening stimuli of acoustic nature and have important functional links with the amygdala. In this work, we examined the influence of lesions with 5,7-dihydroxytryptamine (5,7-DHT) of these nuclei of amygdala on the aversive responses induced by electrical stimulation of the inferior colliculus. Thus, rats were implanted with an electrode in the CeA of the inferior colliculus for the determination of the thresholds of alertness, freezing and escape responses. Each rat also bore a cannula implanted in the BLA or CeA for injection of 5,7-DHT (8.0 microg/0.8 microl) or its vehicle. The data obtained show that CeA lesions increase the thresholds of aversive responses whereas BLA lesions decrease the thresholds of these responses. From this evidence it is suggested that defensive behavior induced by activation of the neural substrates of aversion in the inferior colliculus seems to depend on the integrity of the amygdala. BLA regulates the input and CeA functions as the output for these aversive states generated at brainstem level. It is likely that aversive information ascending from the inferior colliculus may receive either inhibitory or excitatory influences of 5-HT mechanisms in the BLA or CeA, respectively.
Collapse
Affiliation(s)
- Carlos Eduardo Macedo
- Laboratório de Psicobiologia, Faculdade Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | | | | | | |
Collapse
|