1
|
Rojas MJ, Bastos RG, Navas J, Laughery JM, Lacy PA, Suarez CE. A conserved motif in the immune-subdominant RAP-1 related antigen of Babesia bovis contains a B-cell epitope recognized by antibodies from protected cattle. Front Immunol 2024; 15:1380660. [PMID: 38720894 PMCID: PMC11076753 DOI: 10.3389/fimmu.2024.1380660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction Babesia bovis, a tick-borne apicomplexan parasite causing bovine babesiosis, remains a significant threat worldwide, and improved and practical vaccines are needed. Previous studies defined the members of the rhoptry associated protein-1 (RAP-1), and the neutralization-sensitive rhoptry associated protein-1 related antigen (RRA) superfamily in B. bovis, as strong candidates for the development of subunit vaccines. Both RAP-1 and RRA share conservation of a group of 4 cysteines and amino acids motifs at the amino terminal end (NT) of these proteins. Methods and results Sequence comparisons among the RRA sequences of several B. bovis strains and other Babesia spp parasites indicate a high level of conservation of a 15-amino acid (15-mer) motif located at the NT of the protein. BlastP searches indicate that the 15-mer motif is also present in adenylate cyclase, dynein, and other ATP binding proteins. AlphaFold2 structure predictions suggest partial exposure of the 15-mer on the surface of RRA of three distinct Babesia species. Antibodies in protected cattle recognize a synthetic peptide representing the 15-mer motif sequence in iELISA, and rabbit antibodies against the 15-mer react with the surface of free merozoites in immunofluorescence. Discussion and conclusion The presence of the 15-mer-like regions in dynein and ATP-binding proteins provides a rationale for investigating possible functional roles for RRA. The demonstrated presence of a surface exposed B-cell epitope in the 15-mer motif of the B. bovis RRA, which is recognized by sera from protected bovines, supports its inclusion in future subunit epitope-based vaccines against B. bovis.
Collapse
Affiliation(s)
- Manuel J. Rojas
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Animal Health Department, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Reginaldo G. Bastos
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, United States
| | - Jinna Navas
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Jacob M. Laughery
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Paul A. Lacy
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, United States
| | - Carlos E. Suarez
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA, United States
| |
Collapse
|
2
|
Hötzel I, Suarez CE. Structural definition of babesial RAP-1 proteins identifies a novel protein superfamily across Apicomplexa. Sci Rep 2023; 13:22330. [PMID: 38102310 PMCID: PMC10724250 DOI: 10.1038/s41598-023-49532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Apicomplexan protozoa are intracellular parasites of medical and economic importance. These parasites contain specialized apical complex organelles, including rhoptries, that participate in the process of host cell invasion. Conserved antigens expressed in the rhoptries are rational vaccine targets, but whether conservation of protein structure is a functional requirement for invasion remains unknown. Novel protein structural modeling enables identification of structurally conserved protein families that are not evident by sequence analysis alone. Here we show by AlphaFold2 structural modeling that the rhoptry-associated protein 1 superfamily of the Piroplasmida hemoparasites Babesia and Theileria (pRAP-1) is structurally conserved, with the core conserved region being composed of a globin-like and a 4-helix bundle subdomain. Search for structurally related members of this protein family in other apicomplexan parasites revealed structural homologues of pRAP-1 in several species of Plasmodium, Toxoplasma gondii and other members of the Sarcocystidae family. Based on these structural findings, pRAP-1 is a conserved apical complex protein, but whether these proteins share functional features in different species remains unknown. Identification of widely conserved elements involved in infection in these parasites will enhance our knowledge of invasion mechanisms, and facilitate the design of methods for controlling diseases that affect humans and animals globally.
Collapse
Affiliation(s)
- Isidro Hötzel
- Department of Antibody Engineering, Genentech, South San Francisco, CA, 94080, USA
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
- Animal Disease Research Unit, United States Department of Agriculture - Agricultural Research Service, Pullman, WA, USA.
| |
Collapse
|
3
|
Brown WC, McElwain TF, Hötzel I, Ruef BJ, Rice-Ficht AC, Stich RW, Suarez CE, Estes DM, Palmer GH. Immunodominant T-cell antigens and epitopes ofBabesia bovisandBabesia bigemina. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1998.11813305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
4
|
Niu Q, Marchand J, Yang C, Bonsergent C, Guan G, Yin H, Malandrin L. Rhoptry-associated protein (rap-1) genes in the sheep pathogen Babesia sp. Xinjiang: Multiple transcribed copies differing by 3' end repeated sequences. Vet Parasitol 2015; 211:158-69. [PMID: 26026806 DOI: 10.1016/j.vetpar.2015.04.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 04/24/2015] [Accepted: 04/25/2015] [Indexed: 12/11/2022]
Abstract
Sheep babesiosis occurs mainly in tropical and subtropical areas. The sheep parasite Babesia sp. Xinjiang is widespread in China, and our goal is to characterize rap-1 (rhoptry-associated protein 1) gene diversity and expression as a first step of a long term goal aiming at developing a recombinant subunit vaccine. Seven different rap-1a genes were amplified in Babesia sp. Xinjiang, using degenerate primers designed from conserved motifs. Rap-1b and rap-1c gene types could not be identified. In all seven rap-1a genes, the 5' regions exhibited identical sequences over 936 nt, and the 3' regions differed at 28 positions over 147 nt, defining two types of genes designated α and β. The remaining 3' part varied from 72 to 360 nt in length, depending on the gene. This region consists of a succession of two to ten 36 nt repeats, which explains the size differences. Even if the nucleotide sequences varied, 6 repeats encoded the same stretch of amino acids. Transcription of at least four α and two β genes was demonstrated by standard RT-PCR.
Collapse
Affiliation(s)
- Qingli Niu
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France; State Key Laboratory of Veterinary Etiological Biology, LVRI, Lanzhou, China.
| | - Jordan Marchand
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| | - Congshan Yang
- State Key Laboratory of Veterinary Etiological Biology, LVRI, Lanzhou, China
| | - Claire Bonsergent
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, LVRI, Lanzhou, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, LVRI, Lanzhou, China
| | - Laurence Malandrin
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| |
Collapse
|
5
|
Niu Q, Valentin C, Bonsergent C, Malandrin L. Strong conservation of rhoptry-associated-protein-1 (RAP-1) locus organization and sequence among Babesia isolates infecting sheep from China (Babesia motasi-like phylogenetic group). INFECTION GENETICS AND EVOLUTION 2014; 28:21-32. [PMID: 25200723 DOI: 10.1016/j.meegid.2014.08.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 11/28/2022]
Abstract
Rhoptry-associated-protein 1 (RAP-1) is considered as a potential vaccine candidate due to its involvement in red blood cell invasion by parasites in the genus Babesia. We examined its value as a vaccine candidate by studying RAP-1 conservation in isolates of Babesia sp. BQ1 Ningxian, Babesia sp. Tianzhu and Babesia sp. Hebei, responsible for ovine babesiosis in different regions of China. The rap-1 locus in these isolates has very similar features to those described for Babesia sp. BQ1 Lintan, another Chinese isolate also in the B. motasi-like phylogenetic group, namely the presence of three types of rap-1 genes (rap-1a, rap-1b and rap-1c), multiple conserved rap-1b copies (5) interspaced with more or less variable rap-1a copies (6), and the 3' localization of one rap-1c. The isolates Babesia sp. Tianzhu, Babesia sp. BQ1 Lintan and Ningxian were almost identical (average nucleotide identity of 99.9%) over a putative locus of about 31 Kb, including the intergenic regions. Babesia sp. Hebei showed a similar locus organization but differed in the rap-1 locus sequence, for each gene and intergenic region, with an average nucleotide identity of 78%. Our results are in agreement with 18S rDNA phylogenetic studies performed on these isolates. However, in extremely closely related isolates the rap-1 locus seems more conserved (99.9%) than the 18S rDNA (98.7%), whereas in still closely related isolates the identities are much lower (78%) compared with the 18S rDNA (97.7%). The particularities of the rap-1 locus in terms of evolution, phylogeny, diagnosis and vaccine development are discussed.
Collapse
Affiliation(s)
- Qingli Niu
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| | - Charlotte Valentin
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| | - Claire Bonsergent
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| | - Laurence Malandrin
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France.
| |
Collapse
|
6
|
Yu Q, He L, Zhang WJ, Cheng JX, Hu JF, Miao XY, Huang Y, Fan LZ, Khan MK, Zhou YQ, Hu M, Zhao JL. Molecular cloning and characterization of Babesia orientalis rhoptry-associated protein 1. Vet Parasitol 2014; 205:499-505. [PMID: 25199690 DOI: 10.1016/j.vetpar.2014.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
The rhoptry-associated protein 1 (RAP-1) gene of Babesia orientalis was obtained from a cDNA expression library by immunoscreening with B. orientalis-infected water buffalo sera. The nucleotide sequence of the cDNA was 1732 bp with an open reading frame (ORF) of 1434 bp, encoding a polypeptide of 478 amino acid residues with a predicted size of 52.5 kDa. The ORF was cloned into a pGEX-KG plasmid and subsequently expressed as a GST-fusion protein. The recombinant RAP-1 of B. orientalis (rBoRAP-1) was purified and evaluated as an antigen using Western blotting. The native BoRAP-1 was recognized by the antibodies raised in rabbits against rBoRAP-1. Strong immunofluorescence signals were observed in erythrocytes infected with B. orientalis. Phylogentic analysis revealed that B. orientalis fell into a Babesia clade and most closely related to Babesia bovis and Babesia ovis, which was similar to the previous reported trees based on 18S rRNA and HSP70 genes. The present study suggests that the BoRAP-1 might be a potential diagnostic antigen, and the RAP-1 genes can aid in the classification of Babesia and Theileria species.
Collapse
Affiliation(s)
- Qian Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Animal Epidemical Diseases and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Animal Epidemical Diseases and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Wen-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Animal Epidemical Diseases and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jian-Xi Cheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Animal Epidemical Diseases and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jin-Fang Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Animal Epidemical Diseases and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiao-Yan Miao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Animal Epidemical Diseases and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yuan Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Animal Epidemical Diseases and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Li-Zhe Fan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Animal Epidemical Diseases and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Muhammad Kasib Khan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Animal Epidemical Diseases and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yan-Qin Zhou
- Key Laboratory of Animal Epidemical Diseases and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Animal Epidemical Diseases and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jun-Long Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Animal Epidemical Diseases and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
7
|
Niu Q, Bonsergent C, Guan G, Yin H, Malandrin L. Sequence and organization of the rhoptry-associated-protein-1 (rap-1) locus for the sheep hemoprotozoan Babesia sp. BQ1 Lintan (B. motasi phylogenetic group). Vet Parasitol 2013; 198:24-38. [PMID: 24075419 DOI: 10.1016/j.vetpar.2013.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
Abstract
Babesiosis is a frequent infection of animals worldwide by tick borne pathogen Babesia, and several species are responsible for ovine babesiosis. Recently, several Babesia motasi-like isolates were described in sheep in China. In this study, we sequenced the multigenic rap-1 gene locus of one of these isolates, Babesia sp. BQ1 Lintan. The RAP-1 proteins are involved in the process of red blood cells invasion and thus represent a potential target for vaccine development. A complex composition and organization of the rap-1 locus was discovered with: (1) the presence of 3 different types of rap-1 sequences (rap-1a, rap-1b and rap-1c); (2) the presence of multiple copies of rap-1a and rap-1b; (3) polymorphism among the rap-1a copies, with two classes (named rap-1a61 and rap-1a67) having a similarity of 95.7%, each class represented by two close variants; (4) polymorphism between rap-1a61-1 and rap-1a61-2 limited to three nucleotide positions; (5) a difference of eight nucleotides between rap-1a67-1 and rap-1a67-2 from position 1270 to the putative stop site of rap-1a67-1 which might produce two putative proteins of slightly different sizes; (6) the ratio of rap-1a copies corresponding to one rap-1a67, one rap-1a61-1 and one rap-1a61-2; (7) the presence of three different intergenic regions separating rap-1a, rap-1b and rap-1c; (8) interspacing of the rap-1a copies with rap-1b copies; and (9) the terminal position of rap-1c in the locus. A 31kb locus composed of 6 rap-1a sequences interspaced with 5 rap-1b sequences and with a terminal rap-1c copy was hypothesized. A strikingly similar sequence composition (rap-1a, rap-1b and rap-1c), as well as strong gene identities and similar locus organization with B. bigemina were found and highlight the conservation of synteny at this locus in this phylogenetic clade.
Collapse
Affiliation(s)
- Qingli Niu
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, BP 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR BioEpAR, F-44307 Nantes, France
| | | | | | | | | |
Collapse
|
8
|
A novel neutralization sensitive and subdominant RAP-1-related antigen (RRA) is expressed byBabesia bovismerozoites. Parasitology 2011; 138:809-18. [DOI: 10.1017/s0031182011000321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYObjective.TheBabesia bovisgenome encodes arap-1related gene denominated RAP-1 related antigen (RRA). In this study, we analysed the pattern of expression, immunogenicity and functional relevance of RRA.Methods.Phylogenetic analysis was performed using the program Phylip. Expression ofrrawas analysed by Northern blots, RT-PCR, immunoprecipitation, Western blots and immunofluorescence. RRA antigenicity was tested by T-cell proliferation and Western blot analysis, and functional relevance was determined in anin vitroneutralization assay.Results.RRA is more closely related to RAP-1b ofBabesia bigeminathan toB. bovisRAP-1, and it is highly conserved among distinct strains. Transcriptional analysis suggests lower numbers ofrratranscripts compared torap-1.Immunoprecipitation of metabolically labelledB. bovisproteins with antibodies against synthetic peptides representing predicted antigenic regions of RRA confirmed the expression of a ∼43 kDa RRA in cultured merozoites. Antibodies present inB. bovishyperimmune sera, but not in field-infected cattle sera, reacted weakly with recombinant RRA, and no significant stimulation was obtained using recombinant RRA as antigen in T-cell proliferation assays, indicating that RRA is a subdominant antigen. Antibodies against RRA synthetic peptides reacted with merozoites using immunofluorescence, and were able to significantly inhibit erythrocyte invasion inin vitroneutralization tests, suggesting functional relevance for parasite survival.Conclusion.B. bovisexpress a novel subdominant RAP-1-like molecule that may contribute to erythrocyte invasion and/or egression by the parasite.
Collapse
|
9
|
Molecular characterizations of three distinctBabesia gibsonirhoptry-associated protein-1s (RAP-1s). Parasitology 2009; 136:1147-60. [DOI: 10.1017/s003118200999045x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYThree cDNAs encoding rhoptry-associated protein 1 (RAP-1) homologues were found in theBabesia gibsoniEST database. Based on similarities to BgRAP-1a, which was identified previously by serological screening of a cDNA merozoite library, the two new genes were designatedBgRAP-1b(33·7%) andBgRAP-1c(57%). Mice antiserum raised against each recombinant protein reacted specifically withB. gibsoniparasites as determined by Western blotting, which showed native molecular sizes of the BgRAP-1a (51 kDa), BgRAP-1b (53 kDa) and BgRAP-1c (47 kDa) consistent with predictable molecular weights. Immunofluoresence using these antibodies revealed localization of all BgRAP-1s within the matrix of merozoites; however, BgRAP-1a appeared to diverge from the other two when it was found secreted into the cytoplasm of infected erythrocytes. Apical localization of all 3 BgRAP-1s during the extracellular stage of the parasite combined with their ability to bind a canine erythrocyte membrane fraction was suggestive of a role for these proteins in erythrocyte attachment. Lastly, the ability of these recombinant proteins to be used as diagnostic reagents was tested by ELISA and the sensitivities of BgRAP-1a and BgRAP-1c were found increased through N-terminal truncation. Taken together, our data suggest divergent roles for the 3 BgRAP-1s in the merozoite stage ofB. gibsoni.
Collapse
|
10
|
Efficiency of a recombinant MSA-2c-based ELISA to establish the persistence of antibodies in cattle vaccinated with Babesia bovis. Vet Parasitol 2008; 157:203-10. [PMID: 18783887 DOI: 10.1016/j.vetpar.2008.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 07/22/2008] [Accepted: 07/22/2008] [Indexed: 11/23/2022]
Abstract
Bovine babesiosis is caused by Babesia bovis and B. bigemina in Argentina. These protozoans are prevalent north of parallel 30 degrees S, where their natural vector Rhipicephalus (Boophilus) microplus is widespread. To prevent babesiosis outbreaks in endemic areas, an increasing population of 4-10-month-old calves are vaccinated with low virulence B. bovis R1A (BboR1A) and B. bigemina S1A (BbiS1A) strains. In non-endemic areas, an additional calf population is also vaccinated and boostered as adults, before they are relocated to R. microplus-endemic areas of the country. Serological tests are currently utilized not only to determine the status of natural Babesia spp. infections, but also to confirm the infection caused by vaccine strains. For this purpose, an indirect enzyme immunoassay (ELISA) based on the recombinant major surface antigen-2c (rMSA-2c) of B. bovis expressed in Escherichia coli, was standardized using sera from Babesia spp. experimentally infected cattle. ELISA(rMSA-2c) was validated using sera obtained weekly during 336 days from steers primed and boostered with BboR1A and/or BbiS1A on days 0 and 154, then compared with the immunofluorescent-antibody test (IFAT). Western blot (WB) protein analysis was used to confirm the specificity of the immune response to rMSA-2c. The sensitivity and specificity for ELISA(rMSA-2c) were 92 and 96% after the Babesia spp. priming and 88 and 73% after the boostering immunization, respectively. The sensitivity and specificity for IFAT were 99 and 90% after priming and 92 and 98% after boostering, respectively. Unlike IFAT, ELISA(rMSA-2c) detected a remarkable delayed booster response and a significant drop in specificity between 35 and 84 days after the booster immunization. Simultaneously, 87.5% of cattle boostered with B. bigemina showed cross-reactions in the ELISA(rMSA-2c), particularly between 63 and 77 days after the inoculation. A reaction against E. coli was observed, since bands of approximately 40 and/or 42kDa were detected using sera from cattle before and after Babesia spp. inoculations. ELISA(rMSA-2c) showed to be useful between 42 and 98 days after priming with Babesia spp. live vaccine to evaluate the success of infecting cattle. However, after boostering the test showed low specificity.
Collapse
|
11
|
Iseki H, Alhassan A, Ohta N, Thekisoe OMM, Yokoyama N, Inoue N, Nambota A, Yasuda J, Igarashi I. Development of a multiplex loop-mediated isothermal amplification (mLAMP) method for the simultaneous detection of bovine Babesia parasites. J Microbiol Methods 2007; 71:281-7. [PMID: 18029039 DOI: 10.1016/j.mimet.2007.09.019] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 09/15/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
Abstract
A loop-mediated isothermal amplification (LAMP) technique has been used as a novel nucleic acid detection method, whereby the target DNA can be amplified with high specificity and sensitivity under an isothermal condition using a set of four specific primers. In this study, we designed two sets of the LAMP primers for rhoptry-associated protein-1 genes of Babesia bovis and B. bigemina, in which a restriction enzyme cleavage site was inserted into two pairs of species-specific primers to construct a multiplex LAMP (mLAMP) method by combining these two sets totaling eight primers. The mLAMP method was distinguishable between B. bovis and B. bigemina, simultaneously, due to the subsequent restriction enzyme analysis. The sensitivities of the mLAMP method were 10(3) and 10(5) times higher on the detection limits for B. bovis and B. bigemina, respectively, than those of the classical PCR methods. Of 40 blood samples collected from cattle living in Ghana, 12 and 27% were positively detected by the mLAMP for B. bovis and B. bigemina, respectively. Furthermore, 14 and 23% of 90 blood samples from cattle in Zambia showed mLAMP-positive reactions to B. bovis and B. bigemina, respectively. These findings indicate that this mLAMP method is a new convenient tool for simultaneous detection of the bovine Babesia parasites.
Collapse
Affiliation(s)
- Hiroshi Iseki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhou J, Jia H, Nishikawa Y, Fujisaki K, Xuan X. Babesia gibsoni rhoptry-associated protein 1 and its potential use as a diagnostic antigen. Vet Parasitol 2007; 145:16-20. [PMID: 17127008 DOI: 10.1016/j.vetpar.2006.10.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 10/19/2006] [Accepted: 10/27/2006] [Indexed: 11/25/2022]
Abstract
A cDNA encoding the rhoptry-associated protein 1 (RAP-1) homologue was obtained by immunoscreening an expression library prepared from Babesia gibsoni merozoite mRNA. The complete nucleotide sequence of the gene was 1740bp. Computer analysis suggested that the sequence contains an open reading frame of 1425bp encoding an expected protein with a molecular weight of 52kDa. Based on the sequence similarity, this putative protein was designated as the B. gibsoni RAP-1 (BgRAP-1). The BgRAP-1 gene was expressed in the Escherichia coli BL21 strain, and the recombinant BgRAP-1 was used as the antigen in the enzyme-linked immunosorbent assay (ELISA). The results can differentiate between the B. gibsoni-infected dog sera and the Babesia canis infected dog sera or the normal dog sera. Furthermore, the antibody response against the recombinant protein was maintained during the chronic stage of infection, indicating that the recombinant BgRAP-1 protein might be a useful diagnostic antigen for the detection of antibodies to B. gibsoni infection in dogs.
Collapse
Affiliation(s)
- Jinlin Zhou
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | | | | | | | | |
Collapse
|
13
|
Shkap V, Rasulov I, Abdurasulov S, Fish L, Leibovitz B, Krigel Y, Molad T, Mazuz ML, Savitsky I. Babesia bigemina: attenuation of an Uzbek isolate for immunization of cattle with live calf- or culture-derived parasites. Vet Parasitol 2007; 146:221-6. [PMID: 17368728 DOI: 10.1016/j.vetpar.2007.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Revised: 12/17/2006] [Accepted: 02/15/2007] [Indexed: 11/18/2022]
Abstract
The virulence of an Uzbek isolate of Babesia bigemina, obtained from infected Boophilus annulatus ticks from an endemic area in Uzbekistan, was attenuated for immunization of cattle with autochthonous calf- or culture-derived parasites in Uzbekistan. After four "slow passages" in vivo the virulence was reduced, as evidenced by the response of calves inoculated with an experimental live frozen vaccine produced from the following passage. The vaccine was safe and protective against homologous virulent challenge under laboratory conditions. The culture-derived experimental vaccine was produced from cultures initiated after 3 passages in vivo followed by 22 passages in vitro. The cultured parasites did not elicit any clinical sign, but inoculated calves seroconverted following vaccination and were protected against the virulent homologous challenge. Both calf- and culture-derived vaccines were safe for cattle grazing in an endemic area in Uzbekistan. Despite the high polymorphism of B. bigemina, as reported from various geographical regions, the Central Asian strain was attenuated similarly to those that form the basis of the existing live B. bigemina vaccines in other parts of the world.
Collapse
Affiliation(s)
- Varda Shkap
- Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yokoyama N, Okamura M, Igarashi I. Erythrocyte invasion by Babesia parasites: Current advances in the elucidation of the molecular interactions between the protozoan ligands and host receptors in the invasion stage. Vet Parasitol 2006; 138:22-32. [PMID: 16504403 DOI: 10.1016/j.vetpar.2006.01.037] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During an asexual growth cycle of Babesia parasites in a natural host, the extracellular merozoites invade (i.e., attach to, penetrate, and internalize) the host erythrocytes (RBC) via multiple adhesive interactions of several protozoan ligands with the target receptors on the host cell surface. After internalizing the host RBC, they asexually multiply, egress from the RBC by rupturing the host cells, and then invade the new RBC again. In the invasion stage, several surface-coating molecules of merozoites might be involved in the initial attachment to the RBC, while proteins secreted from apical organelles (rhoptry, microneme, and spherical body) are proposed to play roles mainly in erythrocyte penetration or internalization. On the other hand, several components located on the surface of the RBC, such as sialic acid residues, protease-sensitive proteins, or sulphated glycosaminoglycans, are identified or suspected as the host receptors of erythrocyte invasion by Babesia parasites. The detailed molecular interactions between Babesia merozoites and the host RBC are incompletely understood. In this review, these identified or suspected molecules (protozoan ligands/erythrocyte receptors) are described by especially focusing on Babesia bovis.
Collapse
Affiliation(s)
- Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | |
Collapse
|
15
|
Boonchit S, Alhassan A, Chan B, Xuan X, Yokoyama N, Ooshiro M, Goff WL, Waghela SD, Wagner G, Igarashi I. Expression of C-terminal truncated and full-length Babesia bigemina rhoptry-associated protein 1 and their potential use in enzyme-linked immunosorbent assay. Vet Parasitol 2006; 137:28-35. [PMID: 16442735 DOI: 10.1016/j.vetpar.2005.12.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2005] [Revised: 12/07/2005] [Accepted: 12/07/2005] [Indexed: 11/25/2022]
Abstract
Recombinant antigen-based enzyme-linked immunosorbent assay (ELISA) was developed for the serological diagnosis of Babesia bigemina infection by using a full-length B. bigemina rhoptry-associated protein 1 (rRAP-1) and the truncated C-terminal RAP-1 (rRAP-1/CT). While the rRAP-1 showed cross reactivity between B. bigemina- and Babesia bovis-infected bovine sera, the rRAP-1/CT was highly specific to B. bigemina-infected bovine sera and proved useful in the detection of sequential sera collected from an experimentally infected cow during the acute and latent infection. The high yield of soluble rRAP-1/CT and its diagnostic specificity demonstrate its potential in the diagnosis of B. bigemina infection. Its usefulness for epidemiological investigation is currently being evaluated.
Collapse
Affiliation(s)
- Suthisak Boonchit
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shkap V, Leibovitz B, Krigel Y, Hammerschlag J, Marcovics A, Fish L, Molad T, Savitsky I, Mazuz M. Vaccination of older Bos taurus bulls against bovine babesiosis. Vet Parasitol 2005; 129:235-42. [PMID: 15845278 DOI: 10.1016/j.vetpar.2005.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 01/11/2005] [Accepted: 01/16/2005] [Indexed: 11/23/2022]
Abstract
Two separate groups of Bos taurus bulls, one of 106 and the second of 27 animals, imported to Israel from areas free of Babesia bovis and Babesia bigemina, were vaccinated against babesiosis with a bivalent live attenuated vaccine. In light of the fact that routine vaccination is recommended at the weaning age, these bulls--of highly susceptible breeds--were kept under close surveillance to prevent losses that might be caused by severe clinical reactions to their vaccination at the age of 16-18 months. Seven days after vaccination, about one-third of the 106 bulls in the first group developed clinical signs of B. bigemina infection, which peaked at day 9, and then diminished from day 11, when the patent period known for B. bovis infection was observed. Because of the severe clinical responses a total of 36% of the bulls required babesicidal treatment. Despite the treatment Babesia were not sterilized: 33 and 68% of the animals remained PCR positive for B. bigemina and B. bovis, respectively. To mitigate the severe responses to vaccination, the 27 bulls of the second group were vaccinated in two-steps: they were inoculated initially with avirulent culture-derived parasites and then vaccinated with the conventional donor-derived vaccine a month later. None of the bulls in the latter group developed clinical babesiosis, all were serologically positive to B. bigemina, and 67% showed seroconversion to B. bovis. In light of the experience described here, it is suggested that sensitive older cattle be vaccinated against babesiosis by priming them with avirulent in vitro-cultured parasites and then inoculating them with the conventional donor-derived vaccines.
Collapse
Affiliation(s)
- Varda Shkap
- Division of Parasitology, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Boonchit S, Xuan X, Yokoyama N, Goff WL, Waghela SD, Wagner G, Igarashi I. Improved enzyme-linked immunosorbent assay using C-terminal truncated recombinant antigens of Babesia bovis rhoptry-associated protein-1 for detection of specific antibodies. J Clin Microbiol 2004; 42:1601-4. [PMID: 15071011 PMCID: PMC387535 DOI: 10.1128/jcm.42.4.1601-1604.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An enzyme-linked immunosorbent assay (ELISA) based on a recombinant rhoptry-associated protein-1 (RAP-1) of Babesia bovis has been previously developed, but it was imperfect because some cross-reactions were still present in Babesia bigemina-infected bovine sera. To improve its accuracy for the specific detection of the antibodies to B. bovis, we constructed three C-terminal truncated recombinant antigens of the RAP-1-rCT1 (amino acids [aa] 301 to 408), rCT2 (aa 388 to 490), and rCT3 (aa 466 to 565)-by using a baculovirus expression system and evaluated their diagnostic potentials using ELISA. rCT1 and rCT2 were better diagnostic antigens in their sensitivities and diagnostic efficiencies than rCT3, although none of the recombinant antigens showed any cross-reactivity to B. bigemina-infected bovine sera. These results confirmed that the N-terminal 300-aa region caused cross-reactivity of the entire RAP-1 antigen, and the C-terminal truncated recombinant antigens were shown to be useful reagents for species-specific serodiagnosis.
Collapse
Affiliation(s)
- Suthisak Boonchit
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Norimine J, Mosqueda J, Palmer GH, Lewin HA, Brown WC. Conservation of Babesia bovis small heat shock protein (Hsp20) among strains and definition of T helper cell epitopes recognized by cattle with diverse major histocompatibility complex class II haplotypes. Infect Immun 2004; 72:1096-106. [PMID: 14742557 PMCID: PMC321645 DOI: 10.1128/iai.72.2.1096-1106.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Babesia bovis small heat shock protein (Hsp20) is recognized by CD4+ T lymphocytes from cattle that have recovered from infection and are immune to challenge. This candidate vaccine antigen is related to a protective antigen of Toxoplasma gondii, Hsp30/bag1, and both are members of the alpha-crystallin family of proteins that can serve as molecular chaperones. In the present study, immunofluorescence microscopy determined that Hsp20 is expressed intracellularly in all merozoites. Importantly, Hsp20 is also expressed by tick larval stages, including sporozoites, so that natural tick-transmitted infection could boost a vaccine-induced response. The predicted amino acid sequence of Hsp20 from merozoites is completely conserved among different B. bovis strains. To define the location of CD4+ T-cell epitopes for inclusion in a multiepitope peptide or minigene vaccine construct, truncated recombinant Hsp20 proteins and overlapping peptides were tested for their ability to stimulate T cells from immune cattle. Both amino-terminal (amino acids [aa] 1 to 105) and carboxy-terminal (aa 48 to 177) regions were immunogenic for the majority of cattle in the study, stimulating strong proliferation and IFN-gamma production. T-cell lines from all individuals with distinct DRB3 haplotypes responded to aa 11 to 62 of Hsp20, which contained one or more immunodominant epitopes for each animal. One epitope, DEQTGLPIKS (aa 17 to 26), was identified by T-cell clones. The presence of strain-conserved T helper cell epitopes in aa 11 to 62 of the ubiquitously expressed Hsp20 that are presented by major histocompatibility complex class II molecules represented broadly in the Holstein breed supports the inclusion of this region in vaccine constructs to be tested in cattle.
Collapse
Affiliation(s)
- Junzo Norimine
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | |
Collapse
|
19
|
Norimine J, Mosqueda J, Suarez C, Palmer GH, McElwain TF, Mbassa G, Brown WC. Stimulation of T-helper cell gamma interferon and immunoglobulin G responses specific for Babesia bovis rhoptry-associated protein 1 (RAP-1) or a RAP-1 protein lacking the carboxy-terminal repeat region is insufficient to provide protective immunity against virulent B. bovis challenge. Infect Immun 2003; 71:5021-32. [PMID: 12933845 PMCID: PMC187345 DOI: 10.1128/iai.71.9.5021-5032.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rhoptry-associated protein 1 (RAP-1) is a targeted vaccine antigen for Babesia bovis and Babesia bigemina infections of cattle. The 60-kDa B. bovis RAP-1 is recognized by antibodies and T lymphocytes from cattle that recovered from infection and were immune to subsequent challenge. Immunization with native or recombinant protein was reported to reduce parasitemias in challenged animals. We recently reported that the NT domain of B. bovis RAP-1 contained immunodominant T-cell epitopes, whereas the repeat-rich CT domain was less immunostimulatory for T lymphocytes from cattle immune to B. bovis. The present study was therefore designed to test the hypothesis that the NT region of RAP-1, used as a vaccine with interleukin-12 and RIBI (catalog no. R-730; RIBI Immunochem Research, Inc., Hamilton, Mont. [now Corixa, Seattle, Wash.]) adjuvant to induce a type 1 response, would prime calves for antibody and T-helper cell responses comparable to or greater than those induced by full-length RAP-1 containing the C-terminal repeats. Furthermore, a type 1 immune response to RAP-1 was hypothesized to induce protection against challenge. Following four inoculations of either recombinant full-length RAP-1 or RAP-1 NT protein, RAP-1-specific immunoglobulin G (IgG) titers, T-lymphocyte proliferation, and gamma interferon production were similar. Similar numbers of NT region peptides were recognized. However, in spite of the presence of strong RAP-1-specific IgG and CD4(+)-T-lymphocyte responses that were recalled upon challenge, neither antigen stimulated a protective immune response. We conclude that successful priming of calves with recombinant RAP-1 and adjuvants that elicit strong Th1 cell and IgG responses is insufficient to protect calves against virulent B. bovis challenge.
Collapse
Affiliation(s)
- Junzo Norimine
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Wilkowsky SE, Farber M, Echaide I, Torioni de Echaide S, Zamorano PI, Dominguez M, Suarez CE, Florin-Christensen M. Babesia bovis merozoite surface protein-2c (MSA-2c) contains highly immunogenic, conserved B-cell epitopes that elicit neutralization-sensitive antibodies in cattle. Mol Biochem Parasitol 2003; 127:133-41. [PMID: 12672522 DOI: 10.1016/s0166-6851(02)00329-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The search for vaccine candidates against bovine babesiosis caused by Babesia bovis is greatly focused on the identification of merozoite surface-exposed antigens that are widely conserved, functionally relevant and immunodominant in cattle protected against B. bovis infections. We have recently identified msa-2c, a member of the B. bovis variable merozoite surface antigen (VMSA) gene family, which in contrast to other members, appears to be highly conserved among geographically distant B. bovis strains. In this study, we further investigated the potential of the msa-2c gene product as diagnostic and vaccine candidate for bovine babesiosis. RT-PCR studies demonstrated that MSA-2c is transcribed in merozoites of the Argentine R1A strain. In addition, antibodies against R1A recombinant MSA-2c reacted in immunoblots with a single protein of approximately 30kDa in B. bovis merozoite extracts from both R1A and Australian "S" strains, demonstrating translation of this protein in these two strains and conservation of B-cell epitopes between them. These antibodies reacted with the cell surface of R1A merozoites in fixed immunofluorescence assays, indicating the surface localization of MSA-2c. This localization was confirmed by live immunofluorescence studies in two different strains, R1A and S2P. These results also demonstrate the conservation of MSA-2c surface-exposed B-cell epitopes between these two strains. Sera from cattle either naturally or experimentally infected with Argentine strains of B. bovis specifically recognized rMSA-2c in immunoblots, reinforcing the idea that B-cell epitopes in rMSA-2c are widely conserved among field strains of B. bovis. Furthermore, our results show that these B-cell epitopes are highly immunogenic, suggesting that MSA-2c may be a useful diagnostic tool for the detection of bovine babesiosis by B. bovis. Experimental vaccination of five bovines with rMSA-2c resulted in elicitation of high specific anti-rMSA-2c IgG titers, with similar amounts of IgG(1) and IgG(2) produced. Importantly, bovine anti-rMSA-2c antibodies were able to neutralize in vitro bovine erythrocyte invasion by R1A merozoites suggesting a significant functional role for MSA-2c. Taken together these results postulate MSA-2c as a candidate for the development of novel tools for improved control of bovine babesiosis.
Collapse
Affiliation(s)
- S E Wilkowsky
- CICVyA, INTA-Castelar, Los Reseros y Las Cabañas, 1712, Castelar, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Suarez CE, Palmer GH, Florin-Christensen M, Hines SA, Hötzel I, McElwain TF. Organization, transcription, and expression of rhoptry associated protein genes in the Babesia bigemina rap-1 locus. Mol Biochem Parasitol 2003; 127:101-12. [PMID: 12672519 DOI: 10.1016/s0166-6851(02)00311-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Babesia bigemina rap-1 gene locus contains five tandemly arranged copies of rap-1a genes. However, the size of the locus, as defined by conserved, unrelated orfs at the 5' and 3' ends, suggests that additional genes may be present. In this study, we identified all additional genes in the locus and characterized their pattern of expression in merozoites. The rap-1a genes are separated by 3.38-kbp intergenic (IG) regions, each of which contains an identical copy of a related gene designated rap-1b. One additional copy of rap-1b and one copy of another related gene designated rap-1c is present in the 3' end of the locus. Common sequence features that define the Babesia rap-1 family are present in rap-1b and rap-1c, but otherwise these genes average only 27% identity to rap-1a. Homologues of the rap-1b and rap-1c genes identified in diverse B. bigemina strains have a high degree of predicted amino acid sequence conservation (averaging >90%), with the largest number of changes in the carboxyl end of RAP-1c. We tested whether all rap-1 genes in the locus are co-transcribed in merozoites using RT-PCR, Northern blots, and quantitative real-time PCR. Rap-1a genes produce the most abundant transcripts of the family, while rap-1b transcripts are the least abundant despite the large number of gene copies. Similar patterns of transcription were observed whether merozoites were obtained from in vitro cultures or in vivo infection. Immunoblot analysis of merozoites revealed the expected RAP-1a expression but failed to detect expressed RAP-1b and RAP-1c, indicating that expression of the rap-1 genes is regulated both at the transcriptional and translational levels.
Collapse
Affiliation(s)
- Carlos E Suarez
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Boonchit S, Xuan X, Yokoyama N, Goff WL, Wagner G, Igarashi I. Evaluation of an enzyme-linked immunosorbent assay with recombinant rhoptry-associated protein 1 antigen against Babesia bovis for the detection of specific antibodies in cattle. J Clin Microbiol 2002; 40:3771-5. [PMID: 12354879 PMCID: PMC130890 DOI: 10.1128/jcm.40.10.3771-3775.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding Babesia bovis rhoptry-associated protein 1 (RAP-1) was used to develop an enzyme-linked immunosorbent assay (ELISA) to measure specific antibodies against B. bovis. The B. bovis RAP-1 gene was subcloned into a baculovirus transfer vector, and the RAP-1 protein was expressed in insect cells infected with a recombinant baculovirus. The recombinant B. bovis RAP-1 of 65 kDa was detected with anti-RAP-1 mouse serum by Western blotting, and this recombinant RAP-1 was used as an antigen in the ELISA. The ELISA was able to differentiate between B. bovis-infected sera and B. bigemina-infected sera or noninfected normal bovine sera. The results demonstrate that the recombinant RAP-1 expressed in insect cells might be a useful antigen for the detection of antibodies to B. bovis.
Collapse
Affiliation(s)
- Suthisak Boonchit
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Madruga CR, Leal CR, Ferreira AM, Araújo FR, Bonato AL, Kessler RH, Schenk MA, Soares CO. Genetic and antigenic analysis of Babesia bigemina isolates from five geographical regions of Brazil. PESQUISA VETERINÁRIA BRASILEIRA 2002. [DOI: 10.1590/s0100-736x2002000400005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A molecular epidemiological study was performed with Babesia bigemina isolates from five geographical regions of Brazil. The genetic analysis was done with random amplification of polymorphic DNA (RAPD), repetitive extragenic palindromic elements-polymerase chain reaction (REP-PCR) and enterobacterial repetitive intergenic consensus sequences-polymerase chain reaction (ERIC-PCR) that showed genetic polymorphism between these isolates and generated fingerprinting. In RAPD, ILO872 and ILO876 primers were able to detect at least one fingerprinting for each B. bigemina isolate. The amplification of B. bigemina DNA fragments by REP-PCR and ERIC-PCR gave evidence for the presence in this haemoprotozoan of the sequences described previously in microorganisms of the bacterial kingdom. For the first time it was demonstrated that both techniques can be used for genetic analysis of a protozoan parasite, although the ERIC-PCR was more discriminatory than REP-PCR. The dendogram with similarity coefficient among isolates showed two clusters and one subcluster. The Northeastern and Mid-Western isolates showed the greatest genetic diversity, while the Southeastern and Southern isolates were the closest. The antigenic analysis was done through indirect fluorescent antibody technique and Western blotting using a panel of monoclonal antibodies directed against epitopes on the merozoite membrane surface, rhoptries and membrane of infected erythrocytes. As expected, the merozoite variable surface antigens, major surface antigen (MSA)-1 and MSA-2 showed antigenic diversity. However, B cell epitopes on rhoptries and infected erythrocytes were conserved among all isolates studied. In this study it was possible to identify variable and conserved antigens, which had already been described as potential immunogens. Considering that an attenuated Babesia clone used as immunogen selected populations capable of evading the immunity induced by this vaccine, it is necessary to evaluate more deeply the cross-protection conferred by genetically more distant Brazilian B. bigemina isolates and make an evaluation of the polymorphism degree of variable antigens such as MSA-1 and MSA-2.
Collapse
|
24
|
Norimine J, Suarez CE, McElwain TF, Florin-Christensen M, Brown WC. Immunodominant epitopes in Babesia bovis rhoptry-associated protein 1 that elicit memory CD4(+)-T-lymphocyte responses in B. bovis-immune individuals are located in the amino-terminal domain. Infect Immun 2002; 70:2039-48. [PMID: 11895969 PMCID: PMC127881 DOI: 10.1128/iai.70.4.2039-2048.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Babesia bovis rhoptry-associated protein 1 (RAP-1), which confers partial protection against B. bovis challenge, is recognized by antibodies and T lymphocytes from cattle that have recovered from infection and are immune to subsequent challenge. RAP-1 is a 60-kDa protein with an N-terminal (NT) region that contains four cysteine residues conserved among all Babesia RAP-1 family members and a C-terminal (CT) region that contains multiple, degenerate, tandem 23-amino-acid (aa) repeats. To define the location of CD4(+)-T-cell epitopes for vaccine development using a recombinant protein or minigene construct, a series of truncated recombinant RAP-1 proteins and peptides were tested for stimulation of T-cell lines derived from B. bovis-immune cattle. CD4(+)-T-cell lines from three B. bovis-immune cattle with different DRB3 haplotypes responded to the NT region of RAP-1, whereas T cells from only one animal responded weakly to the CT region. T-cell lines from the three individuals recognized two to six NT-region peptides spanning aa 134 to 316 and representing at least four dominant epitopes. Using RAP-1-specific CD4(+)-T-cell clones, two NT-region epitopes, EYLVNKVLYMATMNYKT (aa 187 to 203) and EAPWYKRWIKKFR (aa 295 to 307), and one CT-region repeat epitope, FREAPQATKHFL, which is present twice at aa positions 391 to 402 and 414 to 425, were identified. Several peptides representing degenerate repeats of the agonist CT-region peptide FREAPQATKHFL neither stimulated responses of T-cell clones specific for this peptide nor inhibited responses to the agonist peptide. Upon stimulation with specific antigen, T-cell clones specific for NT or CT epitopes produced gamma interferon. The presence of T-helper-cell epitopes in the NT domain of RAP-1, which is highly conserved among otherwise antigenically different strains of B. bovis, supports the inclusion of this region in vaccine constructs to be tested in cattle.
Collapse
Affiliation(s)
- Junzo Norimine
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology Animal Disease Research Unit, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
Many intraerythrocytic hemoparasites survive the host immune system through rapid antigenic variation. Among babesial parasites antigenic variation has been demonstrated convincingly only for Babesia bovis and Babesia rodhaini. The molecular basis for antigenic variation in babesial parasites and its possible connection with cytoadherence and sequestration are discussed.
Collapse
Affiliation(s)
- D R Allred
- Department of Pathobiology, University of Florida, Gainesville, FL 32611-0880, USA.
| |
Collapse
|
26
|
Hehl AB, Lekutis C, Grigg ME, Bradley PJ, Dubremetz JF, Ortega-Barria E, Boothroyd JC. Toxoplasma gondii homologue of plasmodium apical membrane antigen 1 is involved in invasion of host cells. Infect Immun 2000; 68:7078-86. [PMID: 11083833 PMCID: PMC97818 DOI: 10.1128/iai.68.12.7078-7086.2000] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2000] [Accepted: 09/09/2000] [Indexed: 11/20/2022] Open
Abstract
Proteins with constitutive or transient localization on the surface of Apicomplexa parasites are of particular interest for their potential role in the invasion of host cells. We describe the identification and characterization of TgAMA1, the Toxoplasma gondii homolog of the Plasmodium apical membrane antigen 1 (AMA1), which has been shown to elicit a protective immune response against merozoites dependent on the correct pairing of its numerous disulfide bonds. TgAMA1 shows between 19% (Plasmodium berghei) and 26% (Plasmodium yoelii) overall identity to the different Plasmodium AMA1 homologs and has a conserved arrangement of 16 cysteine residues and a putative transmembrane domain, indicating a similar architecture. The single-copy TgAMA1 gene is interrupted by seven introns and is transcribed into an mRNA of approximately 3.3 kb. The TgAMA1 protein is produced during intracellular tachyzoite replication and initially localizes to the micronemes, as determined by immunofluorescence assay and immunoelectron microscopy. Upon release of mature tachyzoites, TgAMA1 is found distributed predominantly on the apical end of the parasite surface. A approximately 54-kDa cleavage product of the large ectodomain is continuously released into the medium by extracellular parasites. Mouse antiserum against recombinant TgAMA1 blocked invasion of new host cells by approximately 40%. This and our inability to produce a viable TgAMA1 knock-out mutant indicate that this phylogenetically conserved protein fulfills a key function in the invasion of host cells by extracellular T. gondii tachyzoites.
Collapse
Affiliation(s)
- A B Hehl
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5124, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Bischoff E, Guillotte M, Mercereau-Puijalon O, Bonnefoy S. A member of the Plasmodium falciparum Pf60 multigene family codes for a nuclear protein expressed by readthrough of an internal stop codon. Mol Microbiol 2000; 35:1005-16. [PMID: 10712683 DOI: 10.1046/j.1365-2958.2000.01788.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Four large multigene families have been described in Plasmodium falciparum malaria parasites (var, rif, stevor and Pf60). var and rif genes code for erythrocyte surface proteins and undergo clonal antigenic variation. We report here the characterization of the first Pf60 gene. The 6.1 gene is constitutively expressed by all mature blood stages and codes for a protein located within the nucleus. It has a single copy, 7-exon, 5' domain, separated by an internal stop codon from a 3' domain that presents a high homology with var exon II. Double-site immunoassay and P. falciparum transient transfection using the reporter luciferase gene demonstrated translation through the internal ochre codon. The 6.1 N-terminal domain has no homology with any protein described to date. Sequence analysis identified a leucine zipper and a putative nuclear localization signal and showed a high probability for coiled coils. Evidence for N-terminal coiled coil-mediated protein interactions was obtained. This identifies the 6.1 protein as a novel nuclear protein. These data show that the Pf60 and var genes form a superfamily with a common 3' domain, possibly involved in regulating homo- or heteromeric interactions.
Collapse
Affiliation(s)
- E Bischoff
- Unité d'Immunologie Moléculaire des Parasites, CNRS URA 1960, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
28
|
Suarez CE, Palmer GH, Hötzel I, Hines SA, McElwain TF. Sequence and functional analysis of the intergenic regions separating babesial rhoptry-associated protein-1 (rap-1) genes. Exp Parasitol 1998; 90:189-94. [PMID: 9769249 DOI: 10.1006/expr.1998.4321] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The rhoptry-associated protein 1 (RAP-1) expressed by all babesial parasites is encoded by tandemly arranged genes separated by discrete intergenic (IG) regions. We hypothesize that these IG regions regulate rap-1 gene expression. In Babesia bovis two identical rap-1 gene copies are separated by a 1.0-kb noncoding region which is also exactly conserved 5' to the rap-1 gene 1. In contrast, the complex B. bigemina rap-1 locus contains at least 5 polymorphic rap-1a genes separated by uncharacterized 3.38-kb regions. A genomic clone encoding the 3' sequence of rap-1 gene copy 1, the 1 kb IG region, and the 5' sequence of gene copy 2 was obtained by PCR amplification of DNA from the Mo7 biological clone of B. bovis and sequenced. This was follow by amplification and sequence analysis of the 3.38-kb region separating two B. bigemina rap-1a genes, revealing the presence of two different IG regions denominated IG-1 (0.7 kb) and IG-2 (1.3 kb), flanking a newly identified rap-1b orf. Sequence analysis and comparison among babesial rap-1 IG regions from B. bovis, B. bigemina, B. canis, and B. ovis revealed conservation of at least three putative regulatory boxes consistently positioned 5' of the start of the rap-1 orfs. To determine whether rap-1 IG regions contained a functional promoter, the entire 1-kb IG region from B. bovis was cloned into pCAT, a promoterless plasmid containing the cat gene. The IG region in the 5' --> 3' orientation strongly promoted transcription in vitro by homologous B. bovis RNA polymerases. The presence of conserved regions 5' to each rap-1 gene copy and among other babesial rap-1 IG regions and the in vitro promoter function in the 5' --> 3' orientation support a role for the IG region in rap-1 gene regulation.
Collapse
Affiliation(s)
- C E Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, 99164-7040, USA.
| | | | | | | | | |
Collapse
|
29
|
Suarez CE, Palmer GH, Hötzel I, McElwain TF. Structure, sequence, and transcriptional analysis of the Babesia bovis rap-1 multigene locus. Mol Biochem Parasitol 1998; 93:215-24. [PMID: 9662706 DOI: 10.1016/s0166-6851(98)00032-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The complexity of multigene families encoding rhoptry proteins and the generation of new variants in these families are constraints to development of vaccines incorporating rhoptry proteins. For example, the Babesia bigemina rhoptry associated protein (rap)-1 locus is composed of tandemly arranged genes including four polymorphic rap-1a genes and two classes of divergent genes, rap-1b and rap-1c. B. bigemina rap-1 polymorphism reflects recombination and gene conversion and results in multiple RAP-1 proteins with unique B- and T-cell epitopes. Is this complex locus structure and recombination a required feature of the rap-1 gene family among Babesia species? We addressed this question by analysis of the rap-1 locus in B. bovis. Sequence analysis of an 11 kb genomic clone representing the B. burn rap-1 locus revealed only two identical and continuous rap-1a gene copies, rap 1a-1 and rap-1a-2, located in a similar head to tail orientation. Using the conserved ig gene as a marker for the 3' boundary of the rap-1 locus, we conclude that divergent rap-1b and rap-1c genes, present in B. bigemina, are not similarly cis-linked to the B. bovis rap-1 locus. Analysis of the rap-1a genes 1 and 2 from each of multiple B. bovis strains from North and South America demonstrated RAP-1 size conservation with very limited amino acid sequence variation. The results suggest that the simple two gene arrangement in the B. bovis rap-1 gene family was generated by gene duplication and, in contrast to the B. bigemina rap-1 locus, both genes evolved together using homogenization mechanisms with point mutation as the single mechanism for gene variation. Three discontinuous non-rap-1 genes are closely cis-linked to the B. bovis rap-1 locus and the presence of multiple introns in these genes may limit rap-1 gene variation due to unequal crossing over. The different mechanisms likely involved in the evolution of the rap-1 family in B. bigemina versus B. bovis are reflected in the marked structural and antigenic polymorphism in the B. bigemina RAP-1 molecules as compared with the essentially monomorphic RAP-1 in B. bovis.
Collapse
Affiliation(s)
- C E Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman 99164-7040, USA.
| | | | | | | |
Collapse
|
30
|
Brown WC, McElwain TF, Hötzel I, Suarez CE, Palmer GH. Helper T-cell epitopes encoded by the Babesia bigemina rap-1 gene family in the constant and variant domains are conserved among parasite strains. Infect Immun 1998; 66:1561-9. [PMID: 9529082 PMCID: PMC108089 DOI: 10.1128/iai.66.4.1561-1569.1998] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Among important candidates for babesial vaccines are apical complex proteins, including rhoptry-associated protein 1 (RAP-1) from Babesia bovis and B. bigemina, which have been shown to induce partial immunity. Four variant B. bigemina rap-1 transcripts identified in a clone of the Mexico strain have highly conserved sequence in the central region but vary in sequence at the amino and carboxy termini (NT and CT) of the predicted proteins, resulting in different combinations of NT and CT domains in the individual gene products. Cattle were immunized with native protein consisting of the RAP-alpha1 variant, which contains NT-1 and CT-1 domains, and T-cell responses were characterized. We previously reported the identification of two T helper (Th) cell epitopes in B. bigemina RAP-1alpha1 protein (I. Hötzel, W. C. Brown, T. F. McElwain, S. D. Rodriguez, and G. H. Palmer, Mol. Biochem. Parasitol. 81:89-99, 1996). One epitope mapped to the constant domain of RAP-1 (amino acids [aa] 144 to 187), and one mapped to the CT-1 variable domain (aa 386 to 480). Th1-like clones responding to these epitopes proliferated differentially to different strains of B. bigemina, raising the possibilities that the T-cell epitopes may vary antigenically and that CT-1 may be differentially expressed with respect to the other RAP-1 CT domains in the different strains. In this report, we definitively map the T-cell epitope identified in the constant domain of RAP-1 to aa 159 to 187 (FVVSLLKKNVVRDPESNDVENFASQYFYM) and show that the predicted amino acid sequence is completely conserved among seven strains. The T-cell epitope in the CT-1 domain was mapped to aa 436 to 465 (VNSEKVDADDAGNAETQQLPDAENEVRADD), which is also completely conserved among eight strains of B. bigemina. We further show that the RAP-1alpha1-immunized cattle were protected against homologous B. bigemina challenge, thus suggesting an association between protective immunity and the helper T-cell response against the two epitopes. The immunogenic and highly conserved nature of these T-cell epitopes and their ability to stimulate functionally relevant Th cells that express gamma interferon support their inclusion in a vaccine.
Collapse
Affiliation(s)
- W C Brown
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman 99164-7040, USA.
| | | | | | | | | |
Collapse
|
31
|
Hötzel I, Suarez CE, McElwain TF, Palmer GH. Genetic variation in the dimorphic regions of RAP-1 genes and rap-1 loci of Babesia bigemina. Mol Biochem Parasitol 1997; 90:479-89. [PMID: 9476795 DOI: 10.1016/s0166-6851(97)00182-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The rhoptry-associated protein-1 (RAP-1) of Babesia bigemina induces protective immune responses in cattle. RAP-1 has two regions of sequence dimorphism at the carboxy and amino terminal ends, respectively. Neutralization-sensitive, surface-exposed B-cell epitopes are present in the amino terminal variant type 1 (NT-1), and CD4+ T-cell epitopes in the carboxy terminal variant type 1 (CT-1). Importantly, antibodies recognizing NT-1 epitopes do not cross react with NT-2 and CD4+ T-cells recognizing epitopes in CT-1 do not cross react with CT-2, suggesting that variation in dimorphic regions of RAP-1 is immunologically significant. We evaluated rap-1 locus structure and the extent of sequence variation in the dimorphic regions of rap-1 genes from geographically diverse strains of B. bigemina. All strains contained NT-1 and NT-2 the encoding sequences were highly conserved, with at least 99%, nucleotide identity among strains. However, the Puerto Rico strain encoded a hybrid NT-1/NT-2 sequence which appears to have originated by a gene conversion event. The 3' ends of rap-1 genes, which include the carboxy terminal variants, are conserved among strains. A new and conserved CT variant (CT-3), with a region of sequence identity to CT-2 and a sequence not related to either CT-1 or CT-2, was identified in all strains of B. bigemina. All but one strain encode both NTs and the three CT variants. The S1A strain, an attenuated strain from Argentina, does not encode CT-2. While NT-1 is associated only with CT-1, NT-2 can be associated with all three CT variants in RAP-1. Within the genome, rap-1 genes are arranged in tandem repeats but with different gene copy number and arrangements among strains. Collectively, the data suggest that gene conversion and unequal recombination events contribute to overall rap-1 sequence conservation among gene variants and strains but may also generate new rap-1 variants.
Collapse
Affiliation(s)
- I Hötzel
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman 99164-7040, USA.
| | | | | | | |
Collapse
|
32
|
Bonnefoy S, Bischoff E, Guillotte M, Mercereau-Puijalon O. Evidence for distinct prototype sequences within the Plasmodium falciparum Pf60 multigene family. Mol Biochem Parasitol 1997; 87:1-11. [PMID: 9233669 DOI: 10.1016/s0166-6851(97)00033-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Using oligonucleotides derived from Pf60.1, a member of the Plasmodium falciparum Pf60 multigene family, numerous fragments were amplified from genomic and cDNA from the 3D7 P. falciparum clone. DNA sequencing showed that the various fragments presented considerable diversity, indicating that the 3D7 repertoire contains at least 20 distinct versions of the region analysed. The various sequences aligned with either of two prototype sequences. Characteristic of the A-type was the presence of a 21 bp motif, present in variable copy number, as well as a sequence homologous to the Babesia sp. RAP-1 consensus. The B prototype sequence did not present such features and substantially differed from the A-type, due to accumulation of point mutations and numerous triplet deletions. Consistent with the marked differences between both sub-families, individual members from each sub-family did not cross-hybridise, produced distinct multiple band patterns on Southern blots and distinct chromosome profiles. Numerous hybrid sequences were observed. Interestingly, most var genes and var-related unspliced cDNAs described so far are of A/B hybrid type. These data suggest that the family has evolved by successive amplifications from two ancestral copies, with accumulation of mutations, as well as recombination and/or gene conversion events.
Collapse
Affiliation(s)
- S Bonnefoy
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Paris, France
| | | | | | | |
Collapse
|
33
|
Musoke AJ, Palmer GH, McElwain TF, Nene V, McKeever D. Prospects for subunit vaccines against tick-borne diseases. THE BRITISH VETERINARY JOURNAL 1996; 152:621-39. [PMID: 8979421 DOI: 10.1016/s0007-1935(96)80117-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tick-borne parasites are a serious impediment to the improvement of live-stock production in the developing world. The major parasites affecting cattle include Theileria parva, T. annulata, Babesia bigemina, B. bovis, Anaplasma marginale and Cowdria ruminantium. The control of these infections is dependent on the use of acaricides to decrease transmission by the tick vectors, and immunization of susceptible animals with live vaccines. The use of acaricide is hampered by the development of resistance, and live vaccines require cold chain facilities, which are generally unreliable in developing countries. There is therefore a need for improved vaccines that can circumvent these problems. There is a subunit vaccine being developed for T. parva based on the major surface antigen of the sporozoite (p67). A similar antigen, SPAG 1, has been identified as a candidate for T. annulata. Although several candidate antigens have been identified for Babesia spp., progress towards development of a subunit vaccine based on these antigens has been hampered by polymorphism among isolates and between species, and lack of knowledge of the immune effector mechanisms responsible for protection. The search for protective antigens of A. marginale has focused on outer membrane proteins; immunization with a variety of these antigens alone or in combination, has yielded promising results. As with Babesia, further definition of immune effector mechanisms is needed to optimize immunization strategies. The work on identifying the protective antigens of C. ruminantium is in its embryonic stages; however, two antigens have been identified and are currently being evaluated. There is high expectancy for subunit vaccines for all these diseases; however there is need for further work to elucidate the immune mechanisms in order to select appropriate antigen delivery systems.
Collapse
Affiliation(s)
- A J Musoke
- International Livestock Research Institute, Nairobi, Kenya
| | | | | | | | | |
Collapse
|
34
|
Hötzel I, Brown WC, McElwain TF, Rodríguez SD, Palmer GH. Dimorphic sequences of rap-1 genes encode B and CD4+ T helper lymphocyte epitopes in the Babesia bigemina rhoptry associated protein-1. Mol Biochem Parasitol 1996; 81:89-99. [PMID: 8892308 DOI: 10.1016/0166-6851(96)02686-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The rhoptry-associated protein-1 (RAP-1) of Babesia bigemina induces protective immune responses in cattle and contains neutralization-sensitive B cell epitopes. RAP-1 variants containing blocks of sequence dimorphism in the amino and carboxy terminal ends are encoded by four nonallelic genes in B. bigemina. Epitopes recognized by RAP-1 specific monoclonal antibodies (MAbs) and bovine CD4+ T cell clones were mapped to determine whether these epitopes are localized in the amino and carboxy terminal dimorphic regions. Four B cell epitopes, including a neutralization-sensitive epitope, required both the amino terminal variant type 1 (NT-1) and non-dimorphic sequences for conformation. Intrachain disulfide bonds were required for at least one of these epitopes, since reduction and alkylation of cysteine residues abolished MAb binding. A fifth B cell epitope was mapped to the carboxy terminal variant type 1 (CT-1). As expected, the neutralizing MAb and two other MAbs requiring NT-1 for epitope binding recognized only the two RAP-1 variants with the NT-1 sequence, while the MAb binding an epitope in CT-1 did not bind RAP-1 variants with CT-2. In contrast, the fourth MAb requiring NT-1 for binding recognized all rap-1 gene products, indicating that dimorphic residues are not part of the epitope recognized by this MAb. Bovine CD4+ T cell clones characterized previously as responding in a strain dependent fashion recognized at least one epitope in CT-1, and did not cross-react with CT-2. A second group of bovine CD4+ T cell clones that responded to multiple parasite strains recognized an epitope in a non-dimorphic region of RAP-1. These data indicate that dimorphic regions of RAP-1 encode unique B and T helper lymphocyte epitopes and may be required for enhanced protective immune responses in cattle.
Collapse
Affiliation(s)
- I Hötzel
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman 99164-7040, USA.
| | | | | | | | | |
Collapse
|
35
|
Brown WC, McElwain TF, Ruef BJ, Suarez CE, Shkap V, Chitko-McKown CG, Tuo W, Rice-Ficht AC, Palmer GH. Babesia bovis rhoptry-associated protein 1 is immunodominant for T helper cells of immune cattle and contains T-cell epitopes conserved among geographically distant B. bovis strains. Infect Immun 1996; 64:3341-50. [PMID: 8757873 PMCID: PMC174227 DOI: 10.1128/iai.64.8.3341-3350.1996] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ability of rhoptry-associated protein 1 (RAP-1) of Babesia bovis and Babesia bigemina to confer partial protective immunity in cattle has stimulated interest in characterizing both B-cell and T-cell epitopes of these proteins. It was previously shown that B. bovis RAP-1 associates with the merozoite surface as well as rhoptries and expresses B-cell epitopes conserved among otherwise antigenically different B. bovis strains. An amino-terminal 307-amino-acid domain of the molecule that is highly conserved in the B. bigemina RAP-1 homolog did not contain cross-reactive B-cell epitopes. The studies reported here demonstrate that B. bovis RAP-1 is strongly immunogenic for T helper (Th) cells from B. bovis-immune cattle and that like B-cell epitopes, Th-cell epitopes are conserved in different B. bovis strains but not in B. bigemina RAP-1. Lymphocytes from cattle immune to challenge with the Mexico strain of B. bovis proliferated against recombinant B. bovis RAP-1 protein derived from the Mexico strain. T-cell lines established by stimulating lymphocytes with recombinant RAP-1 protein responded against B. bovis, but not B. bigemina, merozoites. T-cell lines established by repeated stimulation of lymphocytes with B. bovis membrane antigen proliferated strongly against RAP-1, demonstrating the immunodominant nature of this protein. RAP-1-specific CD4+ T cell clones recognized Mexico, Texas, Australia, and Israel strains of B. bovis but neither B. bigemina merozoites nor recombinant B. bigemina RAP- 1. Analysis of cytokine mRNA in RAP-1-specific Th cell clones revealed strong expression of gamma interferon but little or no expression of interleukin-2 (IL-2), IL-4, or IL-10. Gamma interferon production was confirmed by enzyme-linked imunosorbent assay. These results indicate the potential to use selected B. bovis RAP-1 peptides as immunogens to prime for strong, anamnestic, strain-cross-reactive type 1 immune responses upon exposure to B. bovis.
Collapse
Affiliation(s)
- W C Brown
- Department of Veterinary Pathiobiology, Texas A & M University, College Station 77843, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Brown WC, Rodriguez SD, Hotzel I, Ruef BJ, Chitko-McKown CG, McElwain TF, Palmer GH. Characterization of helper T cell responses against rhoptry-associated protein 1 (RAP-1) of babesial parasites. Ann N Y Acad Sci 1996; 791:128-35. [PMID: 8784494 DOI: 10.1111/j.1749-6632.1996.tb53519.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- W C Brown
- Department of Veterinary Pathobiology, Texas A & M University College Station 77843-4467, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Rodríguez SD, Palmer GH, McElwain TF, McGuire TC, Ruef BJ, Chitko-McKown MG, Brown WC. CD4+ T-helper lymphocyte responses against Babesia bigemina rhoptry-associated protein I. Infect Immun 1996; 64:2079-87. [PMID: 8675310 PMCID: PMC174039 DOI: 10.1128/iai.64.6.2079-2087.1996] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A multigene family of 58- to 60-kDa proteins, which are designated rhoptry-associated protein 1 (RAP-1) and which come from the parasites Babesia bigemina and Babesia bovis, is a target for vaccine development. The presence of multiple gene copies and conserved sequences and epitopes of RAP-1 implies that these proteins are functionally important for the survival of these parasites. Furthermore, it was previously shown that B. bigemina RAP-1 induced partial protection against challenge infection. However, the lack of correlation between protective immunity to B. bigemina infection and antibody titers against a merozoite surface-exposed, neutralization-sensitive epitope of B. bigemina RAP-1 indicated the potential importance of RAP-1-specific T helper (Th) cells in the observed protection. To begin to understand the mechanism of RAP-1-induced protective immunity, RAP-1-specific T-cell responses were characterized in cattle. Vigorous and sustained proliferative responses of peripheral blood mononuclear cells from native RAP-1-immunized cattle were observed. The anamnestic response in immunized cattle was specific for B. bigemina RAP-1 and predominantly comprised CD4+ T cells, which upon cloning expressed type 1 cytokine mRNA profiles and high levels of gamma interferon protein. The T cells responded to both native and recombinant forms of RAP-1, indicating the potential to use recombinant protein or epitopes derived therefrom as a vaccine that could evoke specific recall responses after exposure to natural infection. The differential responses of peripheral blood mononuclear cells and seven Th-cell clones derived from RAP-1-immunized cattle to different Central American strains of B. bigemina indicated the presence of at least one conserved and one variable Th-cell epitope. The lack of response to B. bovis RAP-1 indicated that a strictly conserved 14-amino-acid peptide shared by the two babesial species was not immunogenic for Th cells in these experiments. However, the Th-cell epitope conserved among strains of B. bigemina may be a useful component of a RAP-1 subunit vaccine.
Collapse
Affiliation(s)
- S D Rodríguez
- Department of Veterinary Pathobiology, Texas A&M University, College Station 77843, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Shompole S, Perryman LE, Rurangirwa FR, McElwain TF, Jasmer DP, Musoke AJ, Wells CW, McGuire TC. Monoclonal antibody to a conserved epitope on proteins encoded by Babesia bigemina and present on the surface of intact infected erythrocytes. Infect Immun 1995; 63:3507-13. [PMID: 7543884 PMCID: PMC173485 DOI: 10.1128/iai.63.9.3507-3513.1995] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To define Babesia bigemina-specific antigens on the surface of infected erythrocytes, monoclonal antibodies (MAbs) were identified by live-cell immunofluorescence. As determined by live-cell immunofluorescence, two MAbs made to the Mexico strain reacted with the Mexico strain and three Kenya strains, while three MAbs made to the Kenya-Ngong strain reacted with the Kenya strains but not the Mexico strain. Binding of MAb 44.18 (made to the Mexico strain) to a strain-common epitope was confirmed by immunoelectron microscopy and by surface-specific immunoprecipitation of [35S]methionine-labeled proteins (200, 28, and 16 kDa in size), which also demonstrated that the MAb recognized an epitope on proteins encoded by B. bigemina. In immunoblots, the MAb bound to predominant antigens with sizes of 200 and 220 kDa in erythrocyte lysates infected with strains from Puerto Rico, St. Croix, Texcoco (Mexico), Kenya, and Mexico. Major antigens with sizes of 200 and 220 kDa were isolated from a MAb 44.18 affinity matrix. Calf serum antibodies to these isolated antigens bound to erythrocytes infected with either the Mexico or Kenya strains as determined by live-cell immunofluorescence, allowing the conclusion that at least one conserved surface epitope was recognized. Calf serum antibodies identified major labeled proteins with sizes of 200 and 72 kDa by surface-specific immunoprecipitation, and infected erythrocytes sensitized with these antibodies were phagocytized by cultured bovine peripheral blood monocytes. These results provide a rationale for evaluating antigens identified by MAb 44.18 individually and as components of subunit vaccines.
Collapse
Affiliation(s)
- S Shompole
- Biotechnology and Immunology Section, National Veterinary Research Laboratory, Kenya Agricultural Research Institute, Kabete
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Development in and transmission of hemoparasites by tick vectors are phenomena closely synchronized with the tick feeding cycle. In all known life cycles, initial infection of tick tissues occurs in midgut epithelial cells and transmission is effected as ticks feed after parasites have developed and multiplied in salivary glands. Many factors reviewed affect development and transmission of hemoparasites by ticks including age of ticks, artificial temperature, climate and/or season, tick stage or sex, hemoparasite variation, concurrent infection of ticks with other pathogens, host cell susceptibility, transovarial transmission, effect of hemoparasites on tick biology, and the effect of infecting parasitemia level in cattle on infection rates in ticks. Four hemoparasites of cattle, Anaplasma marginale, Cowdria ruminantium, Theileria parva, and Babesia spp., are all dependent on ticks for biological transmission. Babesia is transmitted transovarially whereas the other three are transmitted transstadially. Mechanical transfer of infective blood via fomites and mouthparts of biting arthropods is also a major means of transmission for Anaplasma marginale but not of the others. Potential control methods for hemoparasites that target parasites as they are developing in their respective tick hosts include tick control, vaccines (against ticks and parasites), and drugs (against ticks and parasites). Successful application of control strategies will be dependent upon thorough understanding of parasite developmental cycles, biology of the tick vectors and the immune response of cattle to ticks and to hemoparasites. The most effective control measures will be those that are targeted against both ticks and the hemoparasites they vector.
Collapse
Affiliation(s)
- K M Kocan
- Department of Veterinary Pathology, College of Veterinary Medicine, Oklahoma State University, Stillwater 74078, USA
| |
Collapse
|
40
|
Palmer GH, McElwain TF. Molecular basis for vaccine development against anaplasmosis and babesiosis. Vet Parasitol 1995; 57:233-53. [PMID: 7597787 DOI: 10.1016/0304-4017(94)03123-e] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Immunization of livestock against the erythroparasitic pathogens Anaplasma marginale, Babesia bigemina, and Babesia bovis with safe and effective killed vaccines is not yet feasible on a practical basis. However, the immune protection afforded by recovery from natural infection and premunition indicates that microbial epitopes capable of inducing immunity exist and that the bovine immune system can be primed appropriately. Induction of protection by immunization with killed parasite fractions, enriched for polypeptides with surface exposed epitopes, supports a focus on surface epitopes, including apical complex organellar epitopes in Babesia, for vaccine development. Cloning, sequencing, and expression of genes encoding these key surface polypeptides has allowed examination of polypeptide function and detailed analysis of epitope conservation in light of genetic polymorphism. In this paper, the characterization of these polypeptides at the epitope level and their roles in inducing protective immunity are reviewed. Definition of these epitopes, in combination with improved understanding of immune mechanisms, provides the basis for development of effective recombinant vaccines against anaplasmosis and babesiosis.
Collapse
Affiliation(s)
- G H Palmer
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman 99164, USA
| | | |
Collapse
|
41
|
Hines SA, Palmer GH, Jasmer DP, Goff WL, McElwain TF. Immunization of cattle with recombinant Babesia bovis merozoite surface antigen-1. Infect Immun 1995; 63:349-52. [PMID: 7806376 PMCID: PMC172999 DOI: 10.1128/iai.63.1.349-352.1995] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cattle immunized with a recombinant merozoite surface antigen-1 molecule (MSA-1) produced high-titered antibody that reacted with the surface of the parasite and neutralized merozoite infectivity in vitro. However, recombinant MSA-1 immunization did not confer protection against challenge with virulent Babesia bovis. These results indicate that antibody-mediated neutralization of merozoite infectivity in vitro, at least for MSA-1-specific antibody, does not reflect in vivo protective immunity to babesiosis.
Collapse
Affiliation(s)
- S A Hines
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman 99164-7040
| | | | | | | | | |
Collapse
|
42
|
Carcy B, Bonnefoy S, Guillotte M, Le Scanf C, Grellier P, Schrevel J, Fandeur T, Mercereau-Puijalon O. A large multigene family expressed during the erythrocytic schizogony of Plasmodium falciparum. Mol Biochem Parasitol 1994; 68:221-33. [PMID: 7739668 DOI: 10.1016/0166-6851(94)90167-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report the identification of a large multigene family of Plasmodium falciparum using a clone isolated with a polyclonal antiserum raised to a Babesia divergens merozoite protein. The recombinant antigen reacted with human sera collected from individuals exposed to malaria. The deduced protein sequence contains a motif homologous to the consensus sequence of merozoite rhoptry proteins encoded by multigene families in several Babesia species. Antibodies raised to the recombinant protein reacted with a 60-kDa merozoite protein both on B. divergens and on P. falciparum immunoblots. The insert hybridized to a large number of fragments on P. falciparum Southern blots and to most chromosomes of the parasite. Specifically, approx. 3-kb RNAs were detected in 4-16-nucleus schizonts. Ten distinct cDNAs were isolated that differed in the size, position and number of restriction sites in the region homologous to the original genomic clone. With about 140 copies per haploid genome, this is the first large multigene family described in malaria parasites. The existence of a multigene family encoding proteins present in the invasive stage of malaria parasites suggests an important role in invasion and denotes a significant potential for generating diversity.
Collapse
Affiliation(s)
- B Carcy
- Unité de Parasitologie Expérimentale, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Suarez CE, McElwain TF, Echaide I, Torioni de Echaide S, Palmer GH. Interstrain conservation of babesial RAP-1 surface-exposed B-cell epitopes despite rap-1 genomic polymorphism. Infect Immun 1994; 62:3576-9. [PMID: 7518810 PMCID: PMC302997 DOI: 10.1128/iai.62.8.3576-3579.1994] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Members of the babesial rhoptry-associated protein 1 (RAP-1) family express surface-exposed B-cell epitopes and are candidate antigens for vaccine development. The relationship between rap-1 genomic polymorphism and surface-exposed B-cell epitope expression was analyzed by comparison of biological clones of Mexico strain Babesia bigemina and Babesia bovis with strains isolated in Argentina. Despite genomic polymorphism between strains, including sequences located within the open reading frame, defined RAP-1 B-cell surface epitopes and RAP-1 molecular size were conserved in both B. bovis and B. bigemina.
Collapse
Affiliation(s)
- C E Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman 99164-7040
| | | | | | | | | |
Collapse
|
44
|
Abstract
In a previous study diagnostic B. caballi antigens with apparent molecular mass of 50 and 48 kDa were identified. Another antigen of 141 kDa was recognized by most but not all B. caballi sera tested. Here a further characterization of the three antigens is reported. Rabbits were vaccinated with gel-purified antigens and monospecific antibodies were obtained for the 141 and 48 kDa antigens. Antibodies raised against the 50 kDa antigen cross-reacted with the 48 kDa antigen, suggesting that these two antigens bear unique as well as common epitopes. After two-dimensional electrophoresis the 50 and 48 kDa antigens were present as horizontal bands over a pH range from approximately 5.0-7.0 with focused spots at a pH of 5.5 and 5.9, respectively. The 141 kDa antigen was not present after two-dimensional electrophoresis. None of the three antigens could be identified as a glycoprotein. Judging from the immunofluorescence antibody test staining pattern obtained with the rabbit sera the 141 kDa antigen is present on the surface of infected erythrocytes. The 50 and 48 kDa antigens are located in the parasite itself and probably not on the surface of infected erythrocytes. The punctate staining pattern observed with the 48 kDa antiserum suggests that this antigen might be located in or associated with the apical complex of the parasite.
Collapse
Affiliation(s)
- R Böse
- Institute of Parasitology, School of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
45
|
Shompole S, McElwain TF, Jasmer DP, Hines SA, Katende J, Musoke AJ, Rurangirwa FR, McGuire TC. Identification of Babesia bigemina infected erythrocyte surface antigens containing epitopes conserved among strains. Parasite Immunol 1994; 16:119-27. [PMID: 8208585 DOI: 10.1111/j.1365-3024.1994.tb00331.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The presence of previously uncharacterized antigens (new antigens) on the surface of intact erythrocytes infected with three strains of Babesia bigemina from Kenya and one each from Puerto Rico, Mexico, St. Croix, and Texcoco-Mexico was demonstrated by indirect immunofluorescent antibody (IFA) reactions. These antigens were not strain specific because antibodies in bovine immune serum to either the Mexico or Kenya isolates reacted with all seven strains tested. Homologous and heterologous immune serum antibodies bound a maximum of 83% and 55%, respectively, of intact erythrocytes infected with the Kenya-Ngong strain but not uninfected erythrocytes. Both sera caused agglutination of only infected erythrocytes. Antibodies eluted from the surface of glutaraldehyde (0.25%) fixed infected erythrocytes had IFA reaction patterns among strains similar to those of immune sera before elution. Eluted antibodies were used to determine if these antigens were protein and encoded by B. bigemina. Eluted antibodies bound seven parasite-encoded proteins of 240, 220, 66, 62, 58, 52 and 38 kDa in an erythrocyte surface-specific immunoprecipitation reaction of 35S-methionine labelled proteins. It was concluded that the surface of B. bigemina infected erythrocytes had parasite-encoded proteins and that these proteins had surface exposed epitopes that were conserved among the seven strains examined which were from two continents.
Collapse
Affiliation(s)
- S Shompole
- Biotechnology and Immunology Section, Kenya Agricultural Research Institute, Kabete
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Suarez CE, Palmer GH, Hines SA, McElwain TF. Immunogenic B-cell epitopes of Babesia bovis rhoptry-associated protein 1 are distinct from sequences conserved between species. Infect Immun 1993; 61:3511-7. [PMID: 7687587 PMCID: PMC281030 DOI: 10.1128/iai.61.8.3511-3517.1993] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Babesia bovis merozoite apical membrane polypeptide Bv60 was found to be rhoptry associated by immuno-electron microscopy and was redesignated rhoptry-associated protein 1 (RAP-1). The N-terminal 300 amino acids of RAP-1 have a high level of sequence similarity to the same N-terminal region of p58, its homolog from Babesia bigemina. However, the interspecies conserved sequences did not include RAP-1 surface-exposed B-cell epitopes as defined by monoclonal antibodies. Furthermore, neither heterologous B. bigemina immune nor monospecific anti-p58 bovine serum binds to whole RAP-1, indicating that the major B-cell epitopes recognized by these sera are also not encoded by the conserved sequences. Truncated RAP-1, expressed by a subclone encoding the N-terminal 235 amino acids, is weakly bound by antibodies in heterologous sera. A peptide representing the longest conserved amino acid sequence (amino acids 121 to 134) in this region is also weakly bound by antibodies in immune bovine sera, and rabbit antibodies induced by and strongly reactive with the peptide alone fail to bind native or denatured RAP-1. Thus, although the conserved region may contain one or more poorly immunogenic B-cell epitopes, these epitopes are inaccessible to antibody in whole RAP-1. The results indicate that the major immunogenic B-cell epitopes of RAP-1, including surface-accessible epitopes bound by monoclonal antibodies, are distinct from the conserved sequences representing putative functional domains.
Collapse
Affiliation(s)
- C E Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman 99164-7040
| | | | | | | |
Collapse
|
47
|
Abstract
Recombinant vaccines are being developed against a number of species of protozoan parasites in the genus Babesia. Protozoan parasites are notorious for their diversity of strains and their ability to express families of equivalent, but antigenically distinct, surface proteins. In order to reduce the likelihood of evasion of the immune response induced by a recombinant vaccine, ideal components should be essential proteins encoded by single copy genes. The proteins should also have a limited ability to tolerate polymorphism in amino acid sequence, especially in critical epitopes. While little is known about the function of the candidate protective antigens, there is now considerable information concerning the variation of a number of candidate vaccine antigens from several species of Babesia. Four of the well studied antigens are all members of multi-gene families. The members of the VMSA gene family of Babesia bovis are also highly polymorphic in sequence. The members of the Bv60/p58 family of rhoptry protein homologues exhibit more limited polymorphism within a single species of Babesia. However, comparison of the sequences of the equivalent proteins and the organisation of the corresponding genes from B. bovis, Babesia bigemina, Babesia canis and Babesia ovis suggests that members of this family have the potential to acquire and to tolerate substantial polymorphism in amino acid sequence. The choice of protein, and particular region of the protein, suitable for incorporation in a recombinant vaccine may require extensive analysis of the genetic systems encoding the candidate antigens.
Collapse
Affiliation(s)
- B P Dalrymple
- Division of Tropical Animal Production, Commonwealth Scientific and Industrial Research Organisation, Indooroopilly, Australia
| |
Collapse
|
48
|
Dalrymple BP, Casu RE, Peters JM, Dimmock CM, Gale KR, Boese R, Wright IG. Characterisation of a family of multi-copy genes encoding rhoptry protein homologues in Babesia bovis, Babesia ovis and Babesia canis. Mol Biochem Parasitol 1993; 57:181-92. [PMID: 8433711 DOI: 10.1016/0166-6851(93)90194-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A monoclonal antibody that had been raised against a protease-containing fraction of Babesia bovis, and shown to bind to a protein located in the rhoptries, was used to screen a B. bovis cDNA expression library. The sequence of the protein encoded by a positive clone was almost identical to the equivalent region of a previously described B. bovis 60-kDa rhoptry protein (Bv60). A tandem repeat of the gene encoding Bv60 was identified in all Australian isolates of B. bovis examined. Genes encoding homologous of Bv60 were cloned from Babesia ovis and Babesia canis. In B. ovis, 5 closely linked genes were identified. Four of these genes appeared to encode very similar proteins (Bo60.1-4). The protein (Bo60.5) encoded by the fifth B. ovis gene had 72% amino acid identity to Bo60.1-4 in the amino-terminal 306 amino acids, but no significant similarities in the carboxy-terminal region. In B. canis one gene (Bc60.2) was sequenced and a second closely linked gene was identified. A further member of the family, p58, has also been described previously from Babesia bigemina. Tandemly repeated genes subject to extensive gene conversion appear to be a feature of this family of babesial rhoptry protein homologous. No proteins significantly related to any members of the gene family were identified in a search of translated DNA and protein sequence databases. Thus the function of this family of proteins remains a matter for speculation.
Collapse
Affiliation(s)
- B P Dalrymple
- Commonwealth Scientific and Industrial Research Organisation, Division of Tropical Animal Production, Indooroopilly, QLD, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Mishra VS, McElwain TF, Dame JB, Stephens EB. Isolation, sequence and differential expression of the p58 gene family of Babesia bigemina. Mol Biochem Parasitol 1992; 53:149-58. [PMID: 1501634 DOI: 10.1016/0166-6851(92)90017-e] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Four copies of the gene encoding the merozoite surface protein p58 from the protozoan hemoparasite Babesia bigemina were amplified from genomic DNA by polymerase chain reaction (PCR) techniques, molecularly cloned and subjected to DNA sequence analysis. The amplified DNA (Bbg7, Bbg9, Bbg13, Bbg14) could be placed into 2 classes with respect to its size and the length of the open reading frame (ORF). With the exception of a single base substitution, the sequence of Bbg13 is identical to the cDNA sequence published earlier [1]. The Bbg7 and Bbg14 copies of p58 diverged from Bbg13 sequence at regions towards the 3' and 5' ends, respectively. In contrast, Bbg9 has incorporated both regions of divergence within its sequence. Using a cloned strain of B. bigemina, RNA-PCR and Northern blot analyses demonstrate the in vivo transcription of 3 of the 4 copies, although one of the 3 expressed copies is present in very low abundance. The relative abundance and size of the two p58 mRNA species detected are consistent with the 58- and 55-kDa proteins detected by in vitro translation of B. bigemina poly(A)+ mRNA by immunoprecipitation with an anti-p58 monospecific antibodies. These results indicate that the gene encoding p58 exists as a multigene family that appears to be differentially expressed in the blood stage of the parasite's life cycle.
Collapse
Affiliation(s)
- V S Mishra
- Department of Infectious Diseases, College of Veterinary Medicine, University of Florida, Gainesville 32610
| | | | | | | |
Collapse
|