1
|
Febrifugine dihydrochloride as a new oral chemotherapeutic agent against visceral leishmaniasis infection. Exp Parasitol 2022; 236-237:108250. [DOI: 10.1016/j.exppara.2022.108250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 11/19/2022]
|
2
|
Čėnas N, Nemeikaitė-Čėnienė A, Kosychova L. Single- and Two-Electron Reduction of Nitroaromatic Compounds by Flavoenzymes: Mechanisms and Implications for Cytotoxicity. Int J Mol Sci 2021; 22:ijms22168534. [PMID: 34445240 PMCID: PMC8395237 DOI: 10.3390/ijms22168534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Nitroaromatic compounds (ArNO2) maintain their importance in relation to industrial processes, environmental pollution, and pharmaceutical application. The manifestation of toxicity/therapeutic action of nitroaromatics may involve their single- or two-electron reduction performed by various flavoenzymes and/or their physiological redox partners, metalloproteins. The pivotal and still incompletely resolved questions in this area are the identification and characterization of the specific enzymes that are involved in the bioreduction of ArNO2 and the establishment of their contribution to cytotoxic/therapeutic action of nitroaromatics. This review addresses the following topics: (i) the intrinsic redox properties of ArNO2, in particular, the energetics of their single- and two-electron reduction in aqueous medium; (ii) the mechanisms and structure-activity relationships of reduction in ArNO2 by flavoenzymes of different groups, dehydrogenases-electrontransferases (NADPH:cytochrome P-450 reductase, ferredoxin:NADP(H) oxidoreductase and their analogs), mammalian NAD(P)H:quinone oxidoreductase, bacterial nitroreductases, and disulfide reductases of different origin (glutathione, trypanothione, and thioredoxin reductases, lipoamide dehydrogenase), and (iii) the relationships between the enzymatic reactivity of compounds and their activity in mammalian cells, bacteria, and parasites.
Collapse
Affiliation(s)
- Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
- Correspondence: ; Tel.: +370-5-223-4392
| | - Aušra Nemeikaitė-Čėnienė
- State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08406 Vilnius, Lithuania;
| | - Lidija Kosychova
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
3
|
Barbolla I, Hernández-Suárez L, Quevedo-Tumailli V, Nocedo-Mena D, Arrasate S, Dea-Ayuela MA, González-Díaz H, Sotomayor N, Lete E. Palladium-mediated synthesis and biological evaluation of C-10b substituted Dihydropyrrolo[1,2-b]isoquinolines as antileishmanial agents. Eur J Med Chem 2021; 220:113458. [PMID: 33901901 DOI: 10.1016/j.ejmech.2021.113458] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
The development of new molecules for the treatment of leishmaniasis is, a neglected parasitic disease, is urgent as current anti-leishmanial therapeutics are hampered by drug toxicity and resistance. The pyrrolo[1,2-b]isoquinoline core was selected as starting point, and palladium-catalyzed Heck-initiated cascade reactions were developed for the synthesis of a series of C-10 substituted derivatives. Their in vitro leishmanicidal activity against visceral (L. donovani) and cutaneous (L. amazonensis) leishmaniasis was evaluated. The best activity was found, in general, for the 10-arylmethyl substituted pyrroloisoquinolines. In particular, 2ad (IC50 = 3.30 μM, SI > 77.01) and 2bb (IC50 = 3.93 μM, SI > 58.77) were approximately 10-fold more potent and selective than the drug of reference (miltefosine), against L. amazonensis on in vitro promastigote assays, while 2ae was the more active compound in the in vitro amastigote assays (IC50 = 33.59 μM, SI > 8.93). Notably, almost all compounds showed low cytotoxicity, CC50 > 100 μg/mL in J774 cells, highest tested dose. In addition, we have developed the first Perturbation Theory Machine Learning (PTML) algorithm able to predict simultaneously multiple biological activity parameters (IC50, Ki, etc.) vs. any Leishmania species and target protein, with high values of specificity (>98%) and sensitivity (>90%) in both training and validation series. Therefore, this model may be useful to reduce time and assay costs (material and human resources) in the drug discovery process.
Collapse
Affiliation(s)
- Iratxe Barbolla
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad Del País Vasco / Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080, Bilbao, Spain
| | - Leidi Hernández-Suárez
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad Del País Vasco / Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080, Bilbao, Spain
| | - Viviana Quevedo-Tumailli
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad Del País Vasco / Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080, Bilbao, Spain; RNASA-IMEDIR, Computer Science Faculty, University of A Coruña, 15071, A Coruña, Spain; Universidad Estatal Amazónica UEA, Puyo, 160150, Pastaza, Ecuador
| | - Deyani Nocedo-Mena
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad Del País Vasco / Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080, Bilbao, Spain
| | - Sonia Arrasate
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad Del País Vasco / Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080, Bilbao, Spain
| | - María Auxiliadora Dea-Ayuela
- Departamento de Farmacia, Facultad de Ciencias de La Salud, Universidad CEU Cardenal Herrera, Edificio Seminario S/n, 46113, Moncada, Valencia, Spain
| | - Humberto González-Díaz
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad Del País Vasco / Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080, Bilbao, Spain; Basque Center for Biophysics CSIC-UPV/EHU, University of the Basque Country UPV/EHU, 48940, Bilbao, Spain; IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Nuria Sotomayor
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad Del País Vasco / Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080, Bilbao, Spain.
| | - Esther Lete
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad Del País Vasco / Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080, Bilbao, Spain.
| |
Collapse
|
4
|
Development of Thiophene Compounds as Potent Chemotherapies for the Treatment of Cutaneous Leishmaniasis Caused by Leishmania major. Molecules 2018; 23:molecules23071626. [PMID: 29973498 PMCID: PMC6100043 DOI: 10.3390/molecules23071626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/01/2018] [Accepted: 07/03/2018] [Indexed: 12/30/2022] Open
Abstract
Leishmania major (L. major) is a protozoan parasite that causes cutaneous leishmaniasis. About 12 million people are currently infected with an annual incidence of 1.3 million cases. The purpose of this study was to synthesize a small library of novel thiophene derivatives, and evaluate its parasitic activity, and potential mechanism of action (MOA). We developed a structure–activity relationship (SAR) study of the thiophene molecule 5A. Overall, eight thiophene derivatives of 5A were synthesized and purified by silica gel column chromatography. Of these eight analogs, the molecule 5D showed the highest in vitro activity against Leishmania major promastigotes (EC50 0.09 ± 0.02 µM), with an inhibition of the proliferation of intracellular amastigotes higher than 75% at only 0.63 µM and an excellent selective index. Moreover, the effect of 5D on L. major promastigotes was associated with generation of reactive oxygen species (ROS), and in silico docking studies suggested that 5D may play a role in inhibiting trypanothione reductase. In summary, the combined SAR study and the in vitro evaluation of 5A derivatives allowed the identification of the novel molecule 5D, which exhibited potent in vitro anti-leishmanial activity resulting in ROS production leading to cell death with no significant cytotoxicity towards mammalian cells.
Collapse
|
5
|
Uliassi E, Fiorani G, Krauth-Siegel RL, Bergamini C, Fato R, Bianchini G, Carlos Menéndez J, Molina MT, López-Montero E, Falchi F, Cavalli A, Gul S, Kuzikov M, Ellinger B, Witt G, Moraes CB, Freitas-Junior LH, Borsari C, Costi MP, Bolognesi ML. Crassiflorone derivatives that inhibit Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase ( Tb GAPDH) and Trypanosoma cruzi trypanothione reductase ( Tc TR) and display trypanocidal activity. Eur J Med Chem 2017; 141:138-148. [DOI: 10.1016/j.ejmech.2017.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/18/2017] [Accepted: 10/02/2017] [Indexed: 01/23/2023]
|
6
|
Ghosh AK, Saini S, Das S, Mandal A, Sardar AH, Ansari MY, Abhishek K, Kumar A, Singh R, Verma S, Equbal A, Ali V, Das P. Glucose-6-phosphate dehydrogenase and Trypanothione reductase interaction protects Leishmania donovani from metalloid mediated oxidative stress. Free Radic Biol Med 2017; 106:10-23. [PMID: 28179112 DOI: 10.1016/j.freeradbiomed.2017.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 10/20/2022]
Abstract
Exploration of metabolons as viable drug target is rare in kinetoplastid biology. Here we present a novel protein-protein interaction among Glucose-6-phosphate dehydrogenase (LdG6PDH) and Trypanothione reductase (LdTryR) of Leishmania donovani displaying interconnection between central glucose metabolism and thiol metabolism of this parasite. Digitonin fractionation patterns observed through immunoblotting indicated localisation of both LdG6PDH and LdTryR in cytosol. In-silico and in-vitro interaction observed by size exclusion chromatography, co-purification, pull-down assay and spectrofluorimetric analysis revealed LdG6PDH and LdTryR physically interact with each other in a NADPH dependent manner. Coupled enzymatic assay displayed that NADPH generation was severely impaired by addition of SbIII, AsIII and TeIV extraneously, which hint towards metalloid driven structural changes of the interacting proteins. Co-purification patterns and pull-down assays also depicted that metalloids (SbIII, AsIII and TeIV) hinder the in-vitro interaction of these two enzymes. Surprisingly, metalloids at sub-lethal concentrations induced the in-vivo interaction of LdG6PDH and LdTryR, as analyzed by pull-down assays and fluorescence microscopy signifying protection against metalloid mediated ROS. Inhibition of LdTryR by thioridazine in LdG6PDH-/- parasites resulted in metalloid induced apoptotic death of the parasites due to abrupt fall in reduced thiol content, disrupted NADPH/NADP+ homeostasis and lethal oxidative stress. Interestingly, clinical isolates of L.donovani resistant to SAG exhibited enhanced interaction between LdG6PDH and LdTryR and showed cross resistivity towards AsIII and TeIV. Thus, our findings propose the metabolon of LdG6PDH and LdTryR as an alternate therapeutic target and provide mechanistic insight about metalloid resistance in Visceral Leishmaniasis.
Collapse
Affiliation(s)
- Ayan Kumar Ghosh
- Division of Molecular Biology, Bioinformatics and Molecular Biochemistry & Cell Biology, Rajendra Memorial Research Institute of Medical Sciences (I.C.M.R.), Agamkuan, Patna 800007, Bihar, India
| | - Savita Saini
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotion Industrial Park, Hajipur, Vaishali 844101, Bihar, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna 801505, Bihar, India
| | - Abhishek Mandal
- Division of Molecular Biology, Bioinformatics and Molecular Biochemistry & Cell Biology, Rajendra Memorial Research Institute of Medical Sciences (I.C.M.R.), Agamkuan, Patna 800007, Bihar, India
| | - Abul Hasan Sardar
- Division of Molecular Biology, Bioinformatics and Molecular Biochemistry & Cell Biology, Rajendra Memorial Research Institute of Medical Sciences (I.C.M.R.), Agamkuan, Patna 800007, Bihar, India
| | - Md Yousuf Ansari
- Division of Molecular Biology, Bioinformatics and Molecular Biochemistry & Cell Biology, Rajendra Memorial Research Institute of Medical Sciences (I.C.M.R.), Agamkuan, Patna 800007, Bihar, India
| | - Kumar Abhishek
- Division of Molecular Biology, Bioinformatics and Molecular Biochemistry & Cell Biology, Rajendra Memorial Research Institute of Medical Sciences (I.C.M.R.), Agamkuan, Patna 800007, Bihar, India
| | - Ajay Kumar
- Division of Molecular Biology, Bioinformatics and Molecular Biochemistry & Cell Biology, Rajendra Memorial Research Institute of Medical Sciences (I.C.M.R.), Agamkuan, Patna 800007, Bihar, India
| | - Ruby Singh
- Division of Molecular Biology, Bioinformatics and Molecular Biochemistry & Cell Biology, Rajendra Memorial Research Institute of Medical Sciences (I.C.M.R.), Agamkuan, Patna 800007, Bihar, India
| | - Sudha Verma
- Division of Molecular Biology, Bioinformatics and Molecular Biochemistry & Cell Biology, Rajendra Memorial Research Institute of Medical Sciences (I.C.M.R.), Agamkuan, Patna 800007, Bihar, India
| | - Asif Equbal
- Division of Molecular Biology, Bioinformatics and Molecular Biochemistry & Cell Biology, Rajendra Memorial Research Institute of Medical Sciences (I.C.M.R.), Agamkuan, Patna 800007, Bihar, India
| | - Vahab Ali
- Division of Molecular Biology, Bioinformatics and Molecular Biochemistry & Cell Biology, Rajendra Memorial Research Institute of Medical Sciences (I.C.M.R.), Agamkuan, Patna 800007, Bihar, India
| | - Pradeep Das
- Division of Molecular Biology, Bioinformatics and Molecular Biochemistry & Cell Biology, Rajendra Memorial Research Institute of Medical Sciences (I.C.M.R.), Agamkuan, Patna 800007, Bihar, India.
| |
Collapse
|
7
|
Stiles JK, Hicock PI, Shah PH, Meade JC. Genomic organization, transcription, splicing and gene regulation inLeishmania. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1999.11813485] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Pandey RK, Verma P, Sharma D, Bhatt TK, Sundar S, Prajapati VK. High-throughput virtual screening and quantum mechanics approach to develop imipramine analogues as leads against trypanothione reductase of leishmania. Biomed Pharmacother 2016; 83:141-152. [DOI: 10.1016/j.biopha.2016.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 12/17/2022] Open
|
9
|
Font M, Baquedano Y, Plano D, Moreno E, Espuelas S, Sanmartín C, Palop JA. Molecular descriptors calculation as a tool in the analysis of the antileishmanial activity achieved by two series of diselenide derivatives. An insight into its potential action mechanism. J Mol Graph Model 2015; 60:63-78. [PMID: 26119983 DOI: 10.1016/j.jmgm.2015.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/07/2015] [Accepted: 06/09/2015] [Indexed: 01/02/2023]
Abstract
A molecular modeling study has been carried out on two previously reported series of symmetric diselenide derivatives that show remarkable antileishmanial in vitro activity against Leishmania infantum intracellular amastigotes and in infected macrophages (THP-1 cells), in addition to showing favorable selectivity indices. Series 1 consists of compounds that can be considered as central scaffold constructed with a diaryl/dialkylaryl diselenide central nucleus, decorated with different substituents located on the aryl rings. Series 2 consists of compounds constructed over a diaryl diselenide central nucleus, decorated in 4 and 4' positions with an aryl or heteroaryl sulfonamide fragment, thus forming the diselenosulfonamide derivatives. With regard to the diselenosulfonamide derivatives (2 series), the activity can be related, as a first approximation, with (a) the ability to release bis(4-aminophenyl) diselenide, the common fragment which can be ultimately responsible for the activity of the compounds. (b) the anti-parasitic activity achieved by the sulfonamide pharmacophore present in the analyzed derivatives. The data that support this connection include the topography of the molecules, the conformational behavior of the compounds, which influences the bond order, as well as the accessibility of the hydrolysis point, and possibly the hydrophobicity and polarizability of the compounds.
Collapse
Affiliation(s)
- María Font
- Sección de Modelización Molecular, Departamento de Química Orgánica y Farmacéutica, Spain; Instituto de Salud Tropical, Spain.
| | - Ylenia Baquedano
- Instituto de Salud Tropical, Spain; Sección de Síntesis, Departamento de Química Orgánica y Farmacéutica,University of Navarra, Irunlarrea, 1. E-31008 Pamplona, Spain
| | - Daniel Plano
- Instituto de Salud Tropical, Spain; Sección de Síntesis, Departamento de Química Orgánica y Farmacéutica,University of Navarra, Irunlarrea, 1. E-31008 Pamplona, Spain
| | - Esther Moreno
- Instituto de Salud Tropical, Spain; Sección de Síntesis, Departamento de Química Orgánica y Farmacéutica,University of Navarra, Irunlarrea, 1. E-31008 Pamplona, Spain
| | | | - Carmen Sanmartín
- Instituto de Salud Tropical, Spain; Sección de Síntesis, Departamento de Química Orgánica y Farmacéutica,University of Navarra, Irunlarrea, 1. E-31008 Pamplona, Spain
| | - Juan Antonio Palop
- Instituto de Salud Tropical, Spain; Sección de Síntesis, Departamento de Química Orgánica y Farmacéutica,University of Navarra, Irunlarrea, 1. E-31008 Pamplona, Spain
| |
Collapse
|
10
|
Angiulli G, Lantella A, Forte E, Angelucci F, Colotti G, Ilari A, Malatesta F. Leishmania infantum trypanothione reductase is a promiscuous enzyme carrying an NADPH:O2 oxidoreductase activity shared by glutathione reductase. Biochim Biophys Acta Gen Subj 2015; 1850:1891-7. [PMID: 26033467 DOI: 10.1016/j.bbagen.2015.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/05/2015] [Accepted: 05/27/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Leishmania infantum is a protozoan of the trypanosomatid family causing visceral leishmaniasis. Leishmania parasites are transmitted by the bite of phlebotomine sand flies to the human host and are phagocyted by macrophages. The parasites synthesize N1-N8-bis(glutationyl)-spermidine (trypanothione, TS2), which furnishes electrons to the tryparedoxin-tryparedoxin peroxidase couple to reduce the reactive oxygen species produced by macrophages. Trypanothione is kept reduced by trypanothione reductase (TR), a FAD-containing enzyme essential for parasite survival. METHODS The enzymatic activity has been studied by stopped-flow, absorption spectroscopy, and amperometric measurements. RESULTS The study reported here demonstrates that the steady-state parameters change as a function of the order of substrates addition to the TR-containing solution. In particular, when the reaction is carried out by adding NADPH to a solution containing the enzyme and trypanothione, the KM for NADPH decreases six times compared to the value obtained by adding TS2 as last reagent to start the reaction (1.9 vs. 12μM). More importantly, we demonstrate that TR is able to catalyze the oxidation of NADPH also in the absence of trypanothione. Thus, TR catalyzes the reduction of O2 to water through the sequential formation of C(4a)-(hydro)peroxyflavin and sulfenic acid intermediates. This NADPH:O2 oxidoreductase activity is shared by Saccharomyces cerevisiae glutathione reductase (GR). CONCLUSIONS TR and GR, in the absence of their physiological substrates, may catalyze the electron transfer reaction from NADPH to molecular oxygen to yield water. GENERAL SIGNIFICANCE TR and GR are promiscuous enzymes.
Collapse
Affiliation(s)
- Gabriella Angiulli
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome Italy
| | - Antonella Lantella
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome Italy
| | - Elena Forte
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome Italy
| | - Francesco Angelucci
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, University of L'Aquila, L'Aquila, Italy
| | - Gianni Colotti
- CNR-Institute of Molecular Biology and Pathology, c/o Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- CNR-Institute of Molecular Biology and Pathology, c/o Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Francesco Malatesta
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome Italy.
| |
Collapse
|
11
|
Braga SFP, Alves ÉVP, Ferreira RS, Fradico JRB, Lage PS, Duarte MC, Ribeiro TG, Júnior PAS, Romanha AJ, Tonini ML, Steindel M, Coelho EF, de Oliveira RB. Synthesis and evaluation of the antiparasitic activity of bis-(arylmethylidene) cycloalkanones. Eur J Med Chem 2013; 71:282-9. [PMID: 24321832 DOI: 10.1016/j.ejmech.2013.11.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/02/2013] [Accepted: 11/07/2013] [Indexed: 11/27/2022]
Abstract
A series of bis-(arylmethylidene)-cycloalkanones was synthesized by cross-aldol condensation. The activity of the compounds was evaluated against amastigotes forms of Trypanosoma cruzi and promastigotes forms of Leishmania amazonensis. The cytotoxicity of the active compounds on uninfected fibroblasts or macrophages was established in vitro to evaluate the selectivity of their antiparasitic effects. Six compounds displayed trypanocidal activity against amastigotes intracellular forms of T. cruzi with IC₅₀ values ranging from 7.0 to 249 μM. Besides these six compounds, eight other molecules exhibited significant leishmanicidal activity (IC₅₀ values ranging from 0.6 to 110.4 μM). Two compounds can be considered as promising antiparasitic lead molecules because they showed IC₅₀ values in the low-micromolar range (≤1.2 μM) with an adequate SI (≥19.9). To understand the mechanism of action of these compounds, two possible molecular targets were investigated: trypanothione reductase (TR) and cruzain.
Collapse
Affiliation(s)
- Saulo F P Braga
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte 31.270-901, MG, Brazil
| | - Érika V P Alves
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte 31.270-901, MG, Brazil
| | - Rafaela S Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte 31.270-901, MG, Brazil
| | - Jordana R B Fradico
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte 31.270-901, MG, Brazil
| | - Paula S Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana C Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiana G Ribeiro
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte 31.270-901, MG, Brazil
| | - Policarpo A S Júnior
- Centro de Pesquisas René Rachou, FIOCRUZ, Avenida Augusto de Lima, 1.715, Barro Preto, Belo Horizonte 30.190-002, MG, Brazil
| | - Alvaro J Romanha
- Centro de Pesquisas René Rachou, FIOCRUZ, Avenida Augusto de Lima, 1.715, Barro Preto, Belo Horizonte 30.190-002, MG, Brazil
| | - Maiko L Tonini
- Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Setor F, Bloco A, Florianópolis 88.040-970, SC, Brazil
| | - Mário Steindel
- Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Setor F, Bloco A, Florianópolis 88.040-970, SC, Brazil
| | - Eduardo F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renata B de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte 31.270-901, MG, Brazil.
| |
Collapse
|
12
|
Teixeira SM, El-Sayed NM, Araújo PR. The genome and its implications. ADVANCES IN PARASITOLOGY 2011; 75:209-30. [PMID: 21820558 DOI: 10.1016/b978-0-12-385863-4.00010-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Trypanosoma cruzi has a heterogeneous population composed of a pool of strains that circulate in the domestic and sylvatic cycles. Genome sequencing of the clone CL Brener revealed a highly repetitive genome of about 110Mb containing an estimated 22,570 genes. Because of its hybrid nature, sequences representing the two haplotypes have been generated. In addition, a repeat content close to 50% made the assembly of the estimated 41 pairs of chromosomes quite challenging. Similar to other trypanosomatids, the organization of T. cruzi chromosomes was found to be very peculiar, with protein-coding genes organized in long polycistronic transcription units encoding 20 or more proteins in one strand separated by strand switch regions. Another remarkable feature of the T. cruzi genome is the massive expansion of surface protein gene families. Because of the high genetic diversity of the T. cruzi population, sequencing of additional strains and comparative genomic and transcriptome analyses are in progress. Five years after its publication, the genome data have proven to be an essential tool for the study of T. cruzi and increasing efforts to translate this knowledge into the development of new modes of intervention to control Chagas disease are underway.
Collapse
Affiliation(s)
- Santuza M Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | |
Collapse
|
13
|
Castro-Pinto DB, Echevarria A, Genestra MS, Cysne-Finkelstein L, Leon LL. Trypanothione Reductase Activity is Prominent in Metacyclic Promastigotes and Axenic Amastigotes of Leishmania amazonesis. Evaluation of its Potential as a Therapeutic Target. J Enzyme Inhib Med Chem 2008; 19:57-63. [PMID: 15202494 DOI: 10.1080/14756360310001624966] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The activity of trypanothione reductase in Leishmania amazonensis was evaluated and it was demonstrated that TR is expressed in the soluble fractions of infective promastigotes and amastigotes, while non-infective promastigotes expressed the enzyme at basal levels. This data allows an association of enzyme activity and the infective capacity of the parasite. We have also previously demonstrated that amidine compounds (N, N'-diphenyl-4-methoxy-benzamidine and pentamidine) were active against this parasite. Here, experiments concerning the effect of these compounds on TR activity, showed that both compounds significantly inhibited the enzyme. However, against glutathione reductase, only pentamidine showed a significant inhibitory action, suggesting an association with the toxic effects of this drug used in the clinic for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Denise B Castro-Pinto
- Department of Immunology, Oswaldo Cruz Institute, FIOCRUZ, Av. Brasil, 4365-Manguinhos CEP 21042-900, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
14
|
Krauth-Siegel RL, Comini MA. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta Gen Subj 2008; 1780:1236-48. [PMID: 18395526 DOI: 10.1016/j.bbagen.2008.03.006] [Citation(s) in RCA: 294] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 02/26/2008] [Accepted: 03/11/2008] [Indexed: 01/09/2023]
Abstract
Trypanosomes and leishmania, the causative agents of several tropical diseases, possess a unique redox metabolism which is based on trypanothione. The bis(glutathionyl)spermidine is the central thiol that delivers electrons for the synthesis of DNA precursors, the detoxification of hydroperoxides and other trypanothione-dependent pathways. Many of the reactions are mediated by tryparedoxin, a distant member of the thioredoxin protein family. Trypanothione is kept reduced by the parasite-specific flavoenzyme trypanothione reductase. Since glutathione reductases and thioredoxin reductases are missing, the reaction catalyzed by trypanothione reductase represents the only connection between the NADPH- and the thiol-based redox metabolisms. Thus, cellular thiol redox homeostasis is maintained by the biosynthesis and reduction of trypanothione. Nearly all proteins of the parasite-specific trypanothione metabolism have proved to be essential.
Collapse
|
15
|
Cloning and expression of trypanothione reductase from a New World Leishmania species. Arch Microbiol 2007; 189:375-84. [DOI: 10.1007/s00203-007-0328-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 09/27/2007] [Accepted: 11/09/2007] [Indexed: 10/22/2022]
|
16
|
Mittal MK, Misra S, Owais M, Goyal N. Expression, purification, and characterization of Leishmania donovani trypanothione reductase in Escherichia coli. Protein Expr Purif 2005; 40:279-86. [PMID: 15766869 DOI: 10.1016/j.pep.2004.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2004] [Revised: 12/08/2004] [Indexed: 11/22/2022]
Abstract
Trypanothione reductase (TR) is an NADPH-dependent flavoprotein oxidoreductase central to thiol metabolism in all the trypanosomatids including Leishmania. The unique presence of this enzyme in trypanosomatids and absence in mammalian host make this enzyme an attractive target for the development of the antileishmanials. Complete open reading frame encoding trypanothione reductase from Leishmania donovani (Dd8 strain, causative agent of Indian visceral leishmaniasis) was cloned, sequenced, and expressed in Escherichia coli strain BL21 (DE3) as glutathione S-transferase fusion protein. The conditions were developed for overexpression of fusion protein in soluble form and purification of the recombinant protein to homogeneity. The recombinant LdTR was 54.68 kDa in size, dimeric in nature, and reduces oxidized trypanothione to reduced form. The kinetic parameters for trypanothione disulfide are K(m), 50 microM; k(cat), 18,181 min(-1); and k(cat)/K(m), 6.06x10(6) M(-1) s(-1). The yield of recombinant LdTR was approximately 16 mg/L bacterial culture and accounted for 6% of the total soluble proteins. The expressed protein was inhibited by known TR inhibitors as well as by SbIII, the known antileishmanial compound. This is the first report of large-scale production of any leishmanial TR in E. coli.
Collapse
Affiliation(s)
- Mukul K Mittal
- Division of Biochemistry, Central Drug Research Institute, Lucknow, India
| | | | | | | |
Collapse
|
17
|
Machado CA, Ayala FJ. Sequence variation in the dihydrofolate reductase-thymidylate synthase (DHFR-TS) and trypanothione reductase (TR) genes of Trypanosoma cruzi. Mol Biochem Parasitol 2002; 121:33-47. [PMID: 11985861 DOI: 10.1016/s0166-6851(02)00019-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dihydrofolate reductase-thymidylate synthase (DHFR-TS) and trypanothione reductase (TR) are important enzymes for the metabolism of protozoan parasites from the family Trypanosomatidae (e.g. Trypanosoma spp., Leishmania spp.) that are targets of current drug-design studies. Very limited information exists on the levels of genetic polymorphism of these enzymes in natural populations of any trypanosomatid parasite. We present results of a survey of nucleotide variation in the genes coding for those enzymes in a large sample of strains from Trypanosoma cruzi, the agent of Chagas' disease. We discuss the results from an evolutionary perspective. A sample of 31 strains show 39 silent and five amino acid polymorphisms in DHFR-TS, and 35 silent and 11 amino acid polymorphisms in TR. No amino acid replacements occur in regions that are important for the enzymatic activity of these proteins, but some polymorphisms occur in sites previously assumed to be invariant. The sequences from both genes cluster in four major groups, a result that is not fully consistent with the current classification of T. cruzi in two major groups of strains. Most polymorphisms correspond to fixed differences among the four sequence groups. Two tests of neutrality show that there is no evidence of adaptive divergence or of selective events having shaped the distribution of polymorphisms and fixed differences in these genes in T. cruzi. However, one nearly significant reduction of variation in the TR sequences from one sequence group suggests a recent selective event at, or close to, that locus.
Collapse
Affiliation(s)
- Carlos A Machado
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525, USA.
| | | |
Collapse
|
18
|
Montrichard F, Le Guen F, Laval-Martin DL, Davioud-Charvet E. Evidence for the co-existence of glutathione reductase and trypanothione reductase in the non-trypanosomatid Euglenozoa: Euglena gracilis Z. FEBS Lett 1999; 442:29-33. [PMID: 9923598 DOI: 10.1016/s0014-5793(98)01606-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two NADPH-dependent disulfide reductases, glutathione reductase and trypanothione reductase, were shown to be present in Euglena gracilis, purified to homogeneity and characterized. The glutathione reductase (Mr 50 kDa) displays a high specificity towards glutathione disulfide with a KM of 54 microM. The amino acid sequences of two peptides derived from the trypanothione reductase (Mr 54 kDa) show a high level of identity (81% and 64%) with sequences of trypanothione reductases from trypanosomatids. The trypanothione reductase is able to efficiently reduce trypanothione disulfide (KM 30.5 microM) and glutathionylspermidine disulfide (KM 90.6 microM) but not glutathione disulfide, nor Escherichia coli thioredoxin disulfide, nor 5,5'-dithiobis(2-nitrobenzoate) (DTNB). These results demonstrate for the first time (i) the existence of trypanothione reductase in a non-trypanosomatid organism and (ii) the coexistence of trypanothione reductase and glutathione reductase in E. gracilis.
Collapse
|
19
|
Britto C, Ravel C, Bastien P, Blaineau C, Pagès M, Dedet JP, Wincker P. Conserved linkage groups associated with large-scale chromosomal rearrangements between Old World and New World Leishmania genomes. Gene X 1998; 222:107-17. [PMID: 9813266 DOI: 10.1016/s0378-1119(98)00472-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The genus Leishmania can be taxonomically separated into three main groups: the Old World subgenus L. (Leishmania), the New World subgenus L. (Leishmania) and the New World subgenus L. (Viannia). The haploid genome of Old World Leishmania species has been shown to contain 36 chromosomes defined as physical linkage groups; the latter were found entirely conserved across species. In the present study, we tried to verify whether this conservation of the genome structure extends to the New World species of Leishmania. 300 loci were explored by hybridization on optimized pulsed field gel electrophoresis separations of the chromosomes of polymorphic strains of the six main pathogenic Leishmania species of the New World. When comparing these New World karyotypes with their Old World counterparts, 32 out of 36 linkage groups were found conserved among all species. Four chromosomal rearrangements were found. All species belonging to the L. (Viannia) subgenus were characterized by the presence (i) of a short sequence exchange between chromosomes 26 and 35, and (ii) more importantly, of a fused version of chromosomes 20 and 34 which are separated in all Old World species. 69 additional markers were isolated from a plasmid library specifically constructed from the rearranged chromosomes 20+34 in an attempt to detect mechanisms other than a fusion or breakage: only two markers out of 40 did not belong to the linkage groups 20 and 34. On the other hand, all strains belonging to the New World subgenus L. (Leishmania) were characterized by two different chromosomal rearrangements of the same type (fusion/breakage) as above as compared with Old World species: chromosomes 8+29 and 20+36. Consequently, these two groups of species have 35 and 34 heterologous chromosomes, respectively. Overall, these results show that large-scale chromosomal rearrangements occurred during the evolution of the genus Leishmania, and that the three main groups of pathogenic species are characterized by different chromosome numbers. Nevertheless, translocations seem particularly rare, and the conservation of the major linkage groups should be an essential feature for the compared genetics between species of this parasite.
Collapse
Affiliation(s)
- C Britto
- EP CNRS 0613 'Biologie Moléculaire et Génome des Protozoaires Parasites', Parasitologie, Faculté de Médecine, 163 rue Auguste Broussonet, 34090, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Arana FE, Pérez-Victoria JM, Repetto Y, Morello A, Castanys S, Gamarro F. Involvement of thiol metabolism in resistance to glucantime in Leishmania tropica. Biochem Pharmacol 1998; 56:1201-8. [PMID: 9802332 DOI: 10.1016/s0006-2952(98)00129-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Clinical resistance to pentavalent antimonials, in the form of pentostam (sodium stibogluconate) or glucantime (N-methylglucamine antimoniate), has long been recognized as a problem in Leishmaniasis. However, the mechanisms of resistance are unclear. We selected in vitro a Leishmania tropica line resistant to 1.2 mg/mL of Sb(V) of glucantime (GLU-R10). The cell line has a stable phenotype for at least 6 months and a resistance index of 1400-fold. The resistant line has no cross-resistance to pentostam or to SbCl3 and SbCl5. The resistance to glucantime was reverted by buthionine sulfoximine (BSO) and chlorambucil (CLB); however, thiol analyses by HPLC of wild-type and GLU-R10 cell lines, in the presence or absence of the drug, showed no differences between these two cell lines. The resistant line had a DNA amplification shown as a circular extrachromosomal element (G-circle) of approximately 22 kb. However, the specific probes for gamma-glutamyl cysteine synthetase, ornithine decarboxylase and trypanothione reductase did not recognize the G-circle amplified in the GLU-R10. The G-circle did not arise from the H region and was not related with P-glycoprotein Pgp-MDR- or Pgp-MRP-like genes. Northern blot analysis of the G-circle showed that a single transcript of approximately 6 kb was overexpressed in the resistant line. Molecular characterization of the G-circle would lead to the determination of the gene(s) involved in resistance to glucantime in Leishmania.
Collapse
Affiliation(s)
- F E Arana
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Tovar J, Wilkinson S, Mottram JC, Fairlamb AH. Evidence that trypanothione reductase is an essential enzyme in Leishmania by targeted replacement of the tryA gene locus. Mol Microbiol 1998; 29:653-60. [PMID: 9720880 DOI: 10.1046/j.1365-2958.1998.00968.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trypanothione reductase (TR), a flavoprotein oxidoreductase central to the unique thiol-redox system that operates in trypanosomatid protozoa, has been proposed as a potential target for the chemotherapy of trypanosomatid infections. In this study, targeted gene replacement was used to obtain evidence that TR is an essential cellular component and that its physiological function is crucial for parasite survival. Precise replacement of the Leishmania donovani tryA gene encoding TR was only possible upon simultaneous expression of the tryA coding region from an episome; in its absence, attempted removal of the last tryA allele invariably led to the generation of an extra copy of tryA, seemingly as a result of selective chromosomal polysomy. Partial replacement mutants were drastically affected in their ability to survive inside cytokine-activated macrophages in a murine model of Leishmania infection. As no compensatory mechanism for the partial loss of TR activity was observed in these mutants and as it was not possible to obtain viable Leishmania devoid of TR catalytic activity, specific inhibitors of this enzyme are likely to be useful anti-leishmanial agents for chemotherapeutic use.
Collapse
Affiliation(s)
- J Tovar
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, UK.
| | | | | | | |
Collapse
|
22
|
Tovar J, Cunningham ML, Smith AC, Croft SL, Fairlamb AH. Down-regulation of Leishmania donovani trypanothione reductase by heterologous expression of a trans-dominant mutant homologue: effect on parasite intracellular survival. Proc Natl Acad Sci U S A 1998; 95:5311-6. [PMID: 9560272 PMCID: PMC20257 DOI: 10.1073/pnas.95.9.5311] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A trans-dominant mutational strategy was used to down-regulate trypanothione reductase (TR) activity levels in Leishmania donovani, the causative agent of visceral leishmaniasis in humans. TR, regarded as an ideal drug target against trypanosomatid infections, is a homodimeric flavoprotein oxidoreductase unique to these organisms that plays a central role in the enzymatic regeneration of the thiol pool. Extrachromosomal, heterologous expression of a trans-dominant mutant version of the Trypanosoma cruzi enzyme in L. donovani resulted in the formation of inactive cross-species heterodimers and in a dramatic decrease of endogenous TR activity levels. Recombinant cells depleted of up to 85% of TR activity were significantly impaired in their ability to regenerate dihydrotrypanothione from trypanothione disulfide following oxidation with diamide. Nonetheless trans-dominant mutant recombinants were still capable of maintaining a reduced intracellular environment during cell growth in culture and were able to metabolize hydrogen peroxide at wild-type rates in vitro. Importantly, however, cells expressing the trans-dominant mutant enzyme displayed a decreased ability to survive inside activated macrophages in a murine model of Leishmania infection. The apparent inability of Leishmania to modulate the expression of active TR homodimers in response to the expression of trans-dominant mutant protein suggests that specific inhibitors of this enzyme should be useful anti-leishmanial agents.
Collapse
Affiliation(s)
- J Tovar
- Department of Tropical and Infectious Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
| | | | | | | | | |
Collapse
|
23
|
Dumas C, Ouellette M, Tovar J, Cunningham ML, Fairlamb AH, Tamar S, Olivier M, Papadopoulou B. Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages. EMBO J 1997; 16:2590-8. [PMID: 9184206 PMCID: PMC1169870 DOI: 10.1093/emboj/16.10.2590] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Parasitic protozoa belonging to the order Kinetoplastida contain trypanothione as their major thiol. Trypanothione reductase (TR), the enzyme responsible for maintaining trypanothione in its reduced form, is thought to be central to the redox defence systems of trypanosomatids. To investigate further the physiological role of TR in Leishmania, we attempted to create TR-knockout mutants by gene disruption in L. donovani and L. major strains using the selectable markers neomycin and hygromycin phosphotransferases. TR is likely to be an important gene for parasite survival since all our attempts to obtain a TR null mutant in L. donovani failed. Instead, we obtained mutants with a partial trisomy for the TR locus where, despite the successful disruption of two TR alleles by gene targeting, a third TR copy was generated as a result of genomic rearrangements involving the translocation of a TR-containing region to a larger chromosome. Mutants of L. donovani and L. major possessing only one wild-type TR allele express less TR mRNA and have lower TR activity compared with wild-type cells carrying two copies of the TR gene. Significantly, these mutants show attenuated infectivity with a markedly decreased capacity to survive intracellularly within macrophages, provided that the latter are producing reactive oxygen intermediates.
Collapse
Affiliation(s)
- C Dumas
- Centre de Recherche en Infectiologie du CHUL and Département de Microbiologie, Faculté de Médecine, Université Laval, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- J M Kelly
- Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, UK
| |
Collapse
|
25
|
Tovar J, Fairlamb AH. Extrachromosomal, homologous expression of trypanothione reductase and its complementary mRNA in Trypanosoma cruzi. Nucleic Acids Res 1996; 24:2942-9. [PMID: 8760878 PMCID: PMC146039 DOI: 10.1093/nar/24.15.2942] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Trypanothione reductase (TR), a flavoprotein oxidoreductase present in trypanosomatids but absent in human cells, is regarded as a potential target for the chemotherapy of several tropical parasitic diseases caused by trypanosomes and leishmanias. We investigated the possibility of modulating intracellular TR levels in Trypanosoma cruzi by generating transgenic lines that extrachromosomally overexpress either sense or antisense TR mRNA. Cells overexpressing the sense construct showed a 4-10-fold increase in levels of TR mRNA, protein and enzyme activity. In contrast, recombinant T.cruzi harbouring the antisense construct showed no significant difference in TR protein or catalytic activity when compared with control cells. Although increased levels of TR mRNA were detected in some of the antisense cells neither upregulation nor amplification of the endogenous trypanothione reductase gene (tryA) was observed. Instead, a proportion of plasmid molecules was found rearranged and, as a result, contained the tryA sequence in the sense orientation. Plasmid rescue experiments and sequence analysis of rearranged plasmids revealed that this specific gene inversion event was associated with the deletion of small regions of flanking DNA.
Collapse
Affiliation(s)
- J Tovar
- Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, UK
| | | |
Collapse
|
26
|
Ajioka J, Swindle J. The calmodulin-ubiquitin (CUB) genes of Trypanosoma cruzi are essential for parasite viability. Mol Biochem Parasitol 1996; 78:217-25. [PMID: 8813691 DOI: 10.1016/s0166-6851(96)02627-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The CUB genes represent single copy genes in the diploid Trypanosoma cruzi genome. In this report data are presented which demonstrate that a single expressed CUB gene is necessary for parasite viability. Although either CUB gene could be deleted individually, repeated attempts to simultaneously delete both genes were unsuccessful. The essential nature of the CUB genes was further supported by studies which demonstrated positive selection for CUB gene expression. Positive selection was demonstrated by carrying out dual gene replacements which showed that both native CUB genes could be efficiently deleted provided the CalB1 calmodulin gene was simultaneously replaced by a CUB gene protein coding sequence. Although the function of the CUB gene product remains unknown the experiments presented here indicate the product is likely to play an important role in the parasites' life cycle.
Collapse
Affiliation(s)
- J Ajioka
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | |
Collapse
|
27
|
Kelly JM. Trypanosomatid shuttle vectors: new tools for the functional dissection of parasite genomes. ACTA ACUST UNITED AC 1995; 11:447-51. [PMID: 15275381 DOI: 10.1016/0169-4758(95)80057-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the past five years, gene-transfer systems have been established for each of the medically important trypanosomatids: Leishmania sp, Trypanosoma brucei and T. cruzi. Transformation can be mediated by integration, which occurs exclusively by homologous recombination, or by episomal shuttle vectors. In this article, John Kelly will focus on recent progress in the development and applications of trypanosomatid shuttle vectors, ie. vectors which are maintained extrachromosomally and which are capable of autonomous replication in both trypanosomatid and bacterial hosts.
Collapse
Affiliation(s)
- J M Kelly
- Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK WCIE 7HT.
| |
Collapse
|
28
|
Cunningham ML, Fairlamb AH. Trypanothione Reductase from Leishmania donovani. Purification, Characterisation and Inhibition by Trivalent Antimonials. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.0460h.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Cunningham ML, Fairlamb AH. Trypanothione reductase from Leishmania donovani. Purification, characterisation and inhibition by trivalent antimonials. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:460-8. [PMID: 7607216 DOI: 10.1111/j.1432-1033.1995.tb20583.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Trypanothione reductase was purified to homogeneity from Leishmania donovani promastigotes transfected with the expression plasmid pTEX-LdTR. The physical, spectral and kinetic properties were found to be similar to those obtained from other pathogenic trypanosomatids. The substrates trypanothione disulfide and NADPH exhibit Michaelis-Menten saturation kinetics with Km values of 36 microM and 9 microM, respectively, the former yielding a kcat/Km of 5.0 x 10(6) M-1 s-1. Like other trypanothione reductases, the leishmania enzyme is unable to use glutathione disulfide as substrate. Both trypanothione reductase and the analogous mammalian enzyme, glutathione reductase, are inhibited by trivalent but not pentavalent anti-leishmanial antimonials. Inhibition by trivalent sodium antimonyl gluconate (Triostam) occurs in a time-dependent manner, with the pseudo-first-order rate constants of inhibition being linearly related to drug concentration. Inhibition proceeds until an apparent equilibrium between active enzyme/free drug and inactive enzyme-drug complex is reached. MelT, an adduct of melarsen oxide and dihydrotrypanothione which is a competitive inhibitor of the disulfide binding site of trypanothione reductase, confers protection against Triostam. Prior reduction of the catalytically active disulfide bridge by NADPH is essential for inhibition. Spectral analysis shows that the broad absorbance band centred on 530 nm, characteristic of the charge-transfer complex in the two-electron-reduced EH2 enzyme, is lost upon addition of Triostam. Further spectral changes resemble those associated with reduction of the FAD prosthetic group to FADH2. Inhibition by Triostam is readily reversed by dilution or addition of the dithiols 2,3-dimercaptopropanol, 2,3-dimercaptosuccinate or dithiothreitol, but not dihydrotrypanothione, suggesting that this trypanosomatid-unique metabolite is unlikely to protect the enzyme from inhibition in whole cells. A mechanism consistent with these observations is proposed.
Collapse
Affiliation(s)
- M L Cunningham
- Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, England
| | | |
Collapse
|
30
|
Borges A, Cunningham ML, Tovar J, Fairlamb AH. Site-directed mutagenesis of the redox-active cysteines of Trypanosoma cruzi trypanothione reductase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 228:745-52. [PMID: 7737173 DOI: 10.1111/j.1432-1033.1995.tb20319.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The gene for trypanothione reductase from the Silvio strain of Trypanosoma cruzi has been cloned, sequenced and overexpressed in Escherichia coli using the constitutive lpp promoter on the expression plasmid pBSTNAV. Up to 13% of the total soluble protein is enzymically active trypanothione reductase with kinetic properties similar to the enzyme purified from T. cruzi. In order to assess the catalytic role of the putative active-site cysteine residues (C53 and C58), three mutant proteins have been constructed by site-directed mutagenesis substituting alanine or serine residues for cysteine; [C53A]trypanothione reductase, [C53S]trypanothione reductase and [C58S]trypanothione reductase. Although the purified, recombinant mutant proteins were catalytically inactive with NADPH and trypanothione disulphide as substrates, all showed comparable levels of transhydrogenase activity between NADPH and thio-NADP+, suggesting that the mutant proteins had correctly folded in vivo. All three mutants showed substantially different catalytic parameters for thio-NADP+ than the wild-type enzyme, presumably as a consequence of modifying the environment of the enzyme-bound flavin, thereby altering its chemical reactivity. The purified [C58S]trypanothione reductase showed spectral properties similar to the oxidised wild-type enzyme but, unlike the wild-type enzyme, did not acquire the characteristic charge-transfer complex of the EH2 form on addition of NADPH. In contrast, in the absence of NADPH both [C53A]trypanothione reductase and [C53S]trypanothione reductase showed spectral properties similar to the EH2 form of the wild-type enzyme. These data indicate that both C53 and C58 are essential for overall catalysis, with the thiolate anion of C58 interacting with the enzyme-bound FAD and C53 interacting with the disulphide substrate. These mutants should be useful in crystallographic studies of reaction intermediates which cannot be obtained with the catalytically active native enzyme.
Collapse
Affiliation(s)
- A Borges
- Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, England
| | | | | | | |
Collapse
|
31
|
Borges A, Cunningham ML, Tovar J, Fairlamb AH. Site-Directed Mutagenesis of the Redox-Active Cysteines of Trypanosoma cruzi Trypanothione Reductase. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.0745m.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Belli AA, Miles MA, Kelly JM. A putative Leishmania panamensis/Leishmania braziliensis hybrid is a causative agent of human cutaneous leishmaniasis in Nicaragua. Parasitology 1994; 109 ( Pt 4):435-42. [PMID: 7800411 DOI: 10.1017/s0031182000080689] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
As part of a survey of human leishmaniasis in Nicaragua we examined phenotypic and genotypic characteristics of 40 Leishmania isolates. We identified 3 distinct parasites associated with cutaneous disease in this area; Leishmania panamensis (40% of cases), Leishmania braziliensis (33%), and a strain which exhibits the heterozygous isoenzyme and DNA fingerprinting patterns expected of a L. panamensis/L. braziliensis hybrid (27%). There was complete correlation between the isoenzyme and DNA data for each of the putative hybrids examined. All of the 'hybrids' were obtained from foci in the northern region of the country where L. panamensis and L. braziliensis occur sympatrically. These observations provide strong evidence for sexual reproduction in New World Leishmania populations and suggest that it is of taxonomic and epidemiological significance.
Collapse
Affiliation(s)
- A A Belli
- Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, UK
| | | | | |
Collapse
|