1
|
Sequence polymorphism in the Trypanosoma rangeli HSP70 coding genes allows typing of the parasite KP1(+) and KP1(−) groups. Exp Parasitol 2013; 133:447-53. [DOI: 10.1016/j.exppara.2013.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2012] [Revised: 12/03/2012] [Accepted: 01/03/2013] [Indexed: 11/22/2022]
|
2
|
Abstract
Histone genes in Trypanosomatids are of considerable interest because these flagellates do not condense their chromatin during mitosis. In contrast to higher eukaryotes, histone genes in Trypanosomatids are found on separate chromosomes, and their transcripts are polyadenylated. Sequence similarity of Trypanosomatid core histones with those of higher eukaryotes is found predominantly in the globular region; the N-terminal is highly divergent. Finally, in general, Trypanosomatid histones H1 are of low molecular weight, bearing closest homology to the C-terminal region of the higher eukaryote histones H1. These features constitute interesting targets for a rational approach to the study of these protozoa, as discussed here by Norbel Galanti and colleagues.
Collapse
|
3
|
Alternative lifestyles: the population structure of Trypanosoma cruzi. Acta Trop 2010; 115:35-43. [PMID: 19695212 DOI: 10.1016/j.actatropica.2009.08.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/11/2009] [Revised: 07/22/2009] [Accepted: 08/13/2009] [Indexed: 11/23/2022]
Abstract
The genetic palette from which the spectrum of variability in Trypanosoma cruzi has been drawn is astonishingly limited. In this review we address the roots of this unusual pedigree and the usefulness of various taxonomic markers in relation to the manifestation of clinical disease and the geographic distribution of the parasite. The circumstances leading to the population structure of the extant strains were dictated by the unusual and apparently exceedingly rare mode of genetic exchange employed in this species, that being the non-meiotic fusion of two diploid cells. Two-hybridization events have been postulated in the whole of the T. cruzi pedigree, the first of which yielded the four predominant nuclear genotypes. Hybridization may be a common occurrence among closely related strains of T. cruzi, but either infrequent or inefficient when two diverse strains attempt the process. Two of the genotypes define the parental lineages, while the other two are mosaics of the parental contributions distinguished from one another by polymorphisms accumulated after the separation of a common, homozygous hybrid progeny line. The greatest genetic complexity is seen in the result of the second fusion event between one of the original parental strains and a progeny strain. The second generation of progeny reveals the proximal consequences of fusion, maintaining widespread nuclear heterozygosity and the first examples of recombination between the genotypes involved in the second hybridization. If the genesis of the heterozygous progeny follows the same path as their predecessors, these lines will move toward homozygosity after having had the opportunity for recombination. Thus, the total number of alleles may increase to five in another few million years.
Collapse
|
4
|
Elias MC, Nardelli SC, Schenkman S. Chromatin and nuclear organization in Trypanosoma cruzi. Future Microbiol 2009; 4:1065-74. [DOI: 10.2217/fmb.09.74] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022] Open
Abstract
A total of 100 years have passed since the discovery of the protozoan Trypanosoma cruzi, the etiologic agent of Chagas’ disease. Since its discovery, the molecular and cellular biology of this early divergent eukaryote, as well as its interactions with the mammalian and insect hosts, has progressed substantially. It is now clear that this parasite presents unique mechanisms controlling gene expression, DNA replication, cell cycle and differentiation, generating several morphological forms that are adapted to survive in different hosts. In recent years, the relationship between the chromatin structure and nuclear organization with the unusual transcription, splicing, DNA replication and DNA repair mechanisms have been investigated in T. cruzi. This article reviews the relevant aspects of these mechanisms in relation to chromatin and nuclear organization.
Collapse
Affiliation(s)
| | - Sheila Cristina Nardelli
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, R. Botucatu 862 8a, 04023-062 São Paulo, Brazil
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, R. Botucatu 862 8a, 04023-062 São Paulo, Brazil
| |
Collapse
|
5
|
Caracterización molecular de los genes histona H2A y ARNsno-Cl de Trypanosoma rangeli:: aplicación en pruebas diagnósticas. INFECTIO 2009. [DOI: 10.1016/s0123-9392(09)70142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
|
6
|
Canavan R, Bond U. Deletion of the nuclear exosome component RRP6 leads to continued accumulation of the histone mRNA HTB1 in S-phase of the cell cycle in Saccharomyces cerevisiae. Nucleic Acids Res 2007; 35:6268-79. [PMID: 17855393 PMCID: PMC2094057 DOI: 10.1093/nar/gkm691] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
The nuclear exosome, a macromolecular complex of 3' to 5' exonucleases, is required for the post-transcriptional processing of a variety of RNAs including rRNAs and snoRNAs. Additionally, this complex forms part of a nuclear surveillance network where it acts to degrade any aberrantly processed mRNAs in the nucleus. The exosome complex has been implicated in the biogenesis pathway of general messenger RNAs through its interaction with the 3'-end processing machinery. During the cell cycle, yeast histone mRNAs accumulate in the S-phase and are rapidly degraded as cells enter the G2-phase. To determine if the exosome contributes to the cyclic turnover of yeast histone mRNAs, we examined the pattern of accumulation of 'HTB1' mRNA during the cell cycle in a deletion strain of 'RRP6', a component of the nuclear exosome. Our results show that cells lacking Rrp6p continue to accumulate HTB1 mRNA as the cell cycle proceeds. This continued accumulation appears to result from a delay in exit from S-phase in rrp6 cells. The accumulation of HTB1 mRNA in rrp6 cells is influenced by the interaction of the nuclear exosome with the 3'-end processing machinery although there is no evidence for differential regulation of histone mRNA 3'-end processing during the yeast cell cycle.
Collapse
Affiliation(s)
| | - Ursula Bond
- *To whom correspondence should be addressed. +353 1 896 2578+353 679 9294
| |
Collapse
|
7
|
Comparación de una prueba de PCR basada en los genes codificantes para la histona H2A/SIRE con pruebas serológicas convencionales para el diagnóstico de la enfermedad de Chagas crónica en pacientes colombianos. BIOMEDICA 2007. [DOI: 10.7705/biomedica.v27i1.251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
|
8
|
Pavia PX, Vallejo GA, Montilla M, Nicholls RS, Puerta CJ. Detection of Trypanosoma cruzi and Trypanosoma rangeli infection in triatomine vectors by amplification of the histone H2A/SIRE and the sno-RNA-C11 genes. Rev Inst Med Trop Sao Paulo 2007; 49:23-30. [PMID: 17384816 DOI: 10.1590/s0036-46652007000100005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2006] [Accepted: 08/15/2006] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma rangeli is non pathogenic for humans but of important medical and epidemiological interest because it shares vertebrate hosts, insect vectors, reservoirs and geographic areas with T. cruzi, the etiological agent of Chagas disease. Therefore, in this work, we set up two PCR reactions, TcH2AF/R and TrFR2, to distinguish T. cruzi from T. rangeli in mixed infections of vectors based on amplification of the histone H2A/SIRE and the small nucleolar RNA Cl1 genes, respectively. Both PCRs were able to appropriately detect all T. cruzi or T. rangeli experimentally infected-triatomines, as well as the S35/S36 PCR which amplifies the variable region of minicircle kDNA of T. cruzi. In mixed infections, whereas T. cruzi DNA was amplified in 100% of samples with TcH2AF/R and S35/S36 PCRs, T. rangeli was detected in 71% with TrF/R2 and in 6% with S35/S36. In a group of Rhodnius colombiensis collected from Coyaima (Colombia), T. cruzi was identified in 100% with both PCRs and T. rangeli in 14% with TrF/R2 and 10% with S35/S36 PCR. These results show that TcH2AF/R and TrF/R2 PCRs which are capable of recognizing all T. cruzi and T. rangeli strains and lineages could be useful for diagnosis as well as for epidemiological field studies of T. cruzi and T. rangeli vector infections.
Collapse
Affiliation(s)
- Paula Ximena Pavia
- Laboratorio de Parasitología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | | | | | | |
Collapse
|
9
|
Cuervo C, López MC, Puerta C. The Trypanosoma rangeli histone H2A gene sequence serves as a differential marker for KP1 strains. INFECTION GENETICS AND EVOLUTION 2006; 6:401-9. [PMID: 16504597 DOI: 10.1016/j.meegid.2006.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/29/2005] [Revised: 01/16/2006] [Accepted: 01/19/2006] [Indexed: 11/29/2022]
Abstract
Trypanosoma rangeli has recently been divided in two primary lineages denoted as KP1(+) and KP1(-) strains because of epidemiological and evolutionary interest in the molecular differentiation of these two groups. We report the molecular characterization of the genes encoding histone H2A protein from a T. rangeli KP1(+) strain (H14), its comparison to T. rangeli KP1(-) strain (C23) histone H2A coding genes [Puerta, C., Cuervo, P., Thomas, M.C., López, M.C., 2000. Molecular characterization of the histone H2A gene from the parasite Trypanosoma rangeli. Parasitol. Res. 86, 916-922], and its application in a low-stringency single specific primer polymerase chain reaction (LSSP-PCR) assay to differentiate these parasite groups. The results show that the locus encoding the H2A protein in the H14 strain is formed by at least 11 gene units measuring 799 nucleotides in length, organized in tandem, and located in two chromosomes of approximately 1.9 and 1.1Mb in size. Remarkably, in KP1(-) strains these genes are on pairs of chromosomes of about 1.7 and 1.9Mb. In addition, there is a hybridization signal in the compression region above 2.1Mb in all T. rangeli strains. Therefore, the chromosomal location of these genes is a useful marker to distinguish between KP1(+) and KP1(-) T. rangeli strains. The alignment of the H2A nucleotide sequences from H14 and C23 strains showed an identity of 99.5% between the coding regions and an identity of 95% between the non-coding regions. The deduced amino acid sequences proved to be identical. Based on 5% of the difference between the intergenic regions, we developed a LSSP-PCR assay which can differentiate between KP1(+) and KP1(-) strains.
Collapse
Affiliation(s)
- Claudia Cuervo
- Laboratorio de Parasitología Molecular, Departamento de Microbiología, Facultad Ciencias, Universidad Javeriana, Carrera 7 No. 43-82, Edificio 50, Laboratorio 113, Bogotá, Colombia
| | | | | |
Collapse
|
10
|
Westenberger SJ, Barnabé C, Campbell DA, Sturm NR. Two Hybridization Events Define the Population Structure of Trypanosoma cruzi. Genetics 2005; 171:527-43. [PMID: 15998728 PMCID: PMC1456769 DOI: 10.1534/genetics.104.038745] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Abstract
Genetic variation in Trypanosoma cruzi is likely a key determinant in transmission and pathogenesis of Chagas disease. We have examined nine loci as markers for the extant T. cruzi strains. Four distinct alleles were found for each locus, corresponding to the sequence classes present in the homozygous discrete typing units (DTUs) I, IIa, IIb, and IIc. The alleles in DTUs IIa and IIc showed a spectrum of polymorphism ranging from DTU I-like to DTU IIb-like, in addition to DTU-specific sequence variation. DTUs IId and IIe were indistinguishable, showing DTU homozygosity at one locus and heterozygosity with DTU IIb and IIc allelic sequences at eight loci. Recombination between the DTU IIb and IIc alleles is evidenced from mosaic polymorphisms. These data imply that two discrete hybridization events resulted in the formation of the current DTUs. We propose a model in which a fusion between ancestral DTU I and IIb strains gave rise to a heterozygous hybrid that homogenized its genome to become the homozygous progenitor of DTUs IIa and IIc. The second hybridization between DTU IIb and IIc strains that generated DTUs IId and IIe resulted in extensive heterozygosity with subsequent recombination of parental genotypes.
Collapse
Affiliation(s)
- Scott J Westenberger
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, 90095, USA
| | | | | | | |
Collapse
|
11
|
Diez H, Thomas MC, Urueña CP, Santander SP, Cuervo CL, López MC, Puerta CJ. Molecular characterization of the kinetoplastid membrane protein-11 genes from the parasite Trypanosoma rangeli. Parasitology 2005; 130:643-51. [PMID: 15977901 DOI: 10.1017/s0031182004006936] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Abstract
Trypanosomatids are early divergent parasites which include several species of medical interest. Trypanosoma rangeli is not pathogenic for humans but shows a high immunological cross-reactivity with Trypanosoma cruzi, the causative agent of Chagas' disease that affects more than 17 million people throughout the world. Recent studies have suggested that T. cruzi KMP-11 antigen could be a good candidate for the induction of immunoprotective cytotoxic responses against T. cruzi natural infection. In the present paper the genes coding for the T. rangeli kinetoplastid membrane protein-11 have been characterized. The results show that the locus encoding this protein is formed by 4 gene units measuring 550 nucleotides in length, organized in tandem, and located in different chromosomes in KP1(+) and KP1(-) strains. The gene units are transcribed as a single mRNA of 530 nucleotides in length. Alignment of the T. rangeli KMP-11 deduced amino acid sequence with the homologous KMP-11 protein from T. cruzi revealed an identity of 97%. Interestingly, the T and B cell epitopes of the T. cruzi KMP-11 protein are conserved in the T. rangeli KMP-11 amino acid sequence.
Collapse
Affiliation(s)
- H Diez
- Laboratorio de Parasitología Molecular, Departamento de Microbiología, Facultad Ciencias, Pontificia Universidad Javeriana, Carrera 7a No 43-82, Edificio 50, Laboratorio 113, Bogotá, Colombia
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Repetitive DNA sequences are interspersed throughout the genomes of mammals and other higher eukaryotes, and represent a substantial portion of the genome. Although it has been generally assumed that the redundant DNA is present only in the complex genomes of high order organisms, over the past few years a number of repetitive DNA sequences have been also detected in the protozoan parasite Trypanosoma cruzi. A compilation of the repetitive DNA sequences found in the T. cruzi genome is here presented by Jose Maria Requena, Manuel Carlos López and Carlos Alonso, who also speculate on their possible origin and functional implications regarding retrotransposition and gene regulation.
Collapse
Affiliation(s)
- J M Requena
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | | | |
Collapse
|
13
|
Sturm NR, Vargas NS, Westenberger SJ, Zingales B, Campbell DA. Evidence for multiple hybrid groups in Trypanosoma cruzi. Int J Parasitol 2003; 33:269-79. [PMID: 12670512 DOI: 10.1016/s0020-7519(02)00264-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
A role for parasite genetic variability in the spectrum of Chagas disease is emerging but not yet evident, in part due to an incomplete understanding of the population structure of Trypanosoma cruzi. To investigate further the observed genotypic variation at the sequence and chromosomal levels in strains of standard and field-isolated T. cruzi we have undertaken a comparative analysis of 10 regions of the genome from two isolates representing T. cruzi I (Dm28c and Silvio X10) and two from T. cruzi II (CL Brener and Esmeraldo). Amplified regions contained intergenic (non-coding) sequences from tandemly repeated genes. Multiple nucleotide polymorphisms correlated with the T. cruzi I/T. cruzi II classification. Two intergenic regions had useful polymorphisms for the design of classification probes to test on genomic DNA from other known isolates. Two adjacent nucleotide polymorphisms in HSP 60 correlated with the T. cruzi I and T. cruzi II distinction. 1F8 nucleotide polymorphisms revealed multiple subdivisions of T. cruzi II: subgroups IIa and IIc displayed the T. cruzi I pattern; subgroups IId and IIe possessed both the I and II patterns. Furthermore, isolates from subgroups IId and IIe contained the 1F8 polymorphic markers on different chromosome bands supporting a genetic exchange event that resulted in chromosomes V and IX of T. cruzi strain CL Brener. Based on these analyses, T. cruzi I and subgroup IIb appear to be pure lines, while subgroups IIa/IIc and IId/IIe are hybrid lines. These data demonstrate for the first time that IIa/IIc are hybrid, consistent with the hypothesis that genetic recombination has occurred more than once within the T. cruzi lines.
Collapse
Affiliation(s)
- Nancy R Sturm
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, 609 Charles E. Young Drive East, Los Angeles, CA 90095-1489, USA
| | | | | | | | | |
Collapse
|
14
|
Papageorgiou FT, Soteriadou KP. Expression of a novel Leishmania gene encoding a histone H1-like protein in Leishmania major modulates parasite infectivity in vitro. Infect Immun 2002; 70:6976-86. [PMID: 12438377 PMCID: PMC132950 DOI: 10.1128/iai.70.12.6976-6986.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
We describe identification and characterization of a novel two-copy gene of the parasitic protozoan Leishmania that encodes a nuclear protein designated LNP18. This protein is highly conserved in the genus Leishmania, and it is developmentally regulated. It is an alanine- and lysine-rich protein with potential bipartite nuclear targeting sequence sites. LNP18 shows sequence similarity to H1 histones of trypanosomatids and of higher eukaryotes and in particular with histone H1 of Leishmania major. The nuclear localization of LNP18 was determined by indirect immunofluorescence and Western blot analysis of isolated nuclei by using antibodies raised against the recombinant protein as probes. The antibodies recognized predominantly a 18-kDa band or a 18-kDa-16-kDa doublet. Photochemical cross-linking of intact parasites followed by Western blot analysis provided evidence that LNP18 is indeed a DNA-binding protein. Generation of transfectants overexpressing LNP18 allowed us to determine the role of this protein in Leishmania infection of macrophages in vitro. These studies revealed that transfectants overexpressing LNP18 are significantly less infective than transfectants with the vector alone and suggested that the level of LNP18 expression modulates Leishmania infectivity, as assessed in vitro.
Collapse
|
15
|
Morales L, Romero I, Diez H, Del Portillo P, Montilla M, Nicholls S, Puerta C. Characterization of a candidate Trypanosoma rangeli small nucleolar RNA gene and its application in a PCR-based parasite detection. Exp Parasitol 2002; 102:72-80. [PMID: 12706742 DOI: 10.1016/s0014-4894(03)00027-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
In this study, we report the isolation and characterization of a candidate Trypanosoma rangeli small nucleolar RNA (snoRNA) gene, and the development of a PCR assay for detection of the parasite based on its nucleotide sequence. This gene, isolated from a T. rangeli genomic sub-library, was named snoRNA-cl1 and is encoded by a multi-copy gene of 801bp in length. Computer sequence analysis of snoRNA-cl1 showed the presence of two sequence motifs, box C and box D, as well as of two long stretches that perfectly complement the universal core region of the mature rRNA 28S, suggesting that cl1 encodes for a Box C/D snoRNA from the parasite. Hybridization analysis using cl1 as probe, showed a weak hybridization signal with Trypanosoma cruzi DNA, demonstrating the existence of differences in this locus between these two species. Two oligonucleotide primers from this gene, which specifically amplified a 620-bp fragment in KP1 (+) and KP1 (-) strains of T. rangeli, were used in a PCR assay. The amplification allowed the detection of 1pg of DNA in the presence of heterologous DNA and no amplification was observed with different T. cruzi strains (groups I and II). In addition, the PCR assay reported here is able to detect T. rangeli in the presence of T. cruzi DNA, and is useful for detection of the parasite in samples from infected vectors.
Collapse
Affiliation(s)
- Liliana Morales
- Laboratorio de Parasitología Molecular, Departamento de Microbiología, Facultad Ciencias, Universidad Javeriana, Carrera 7 No 43-82, Lab. 113, Bogotá, Colombia
| | | | | | | | | | | | | |
Collapse
|
16
|
Padilla C, Barreto T, De Los Santos M, Barker DC, Carrillo C, Montoya Y. Genes coding structural proteins in the Leishmania braziliensis complex. Trans R Soc Trop Med Hyg 2002; 96 Suppl 1:S49-54. [PMID: 12055851 DOI: 10.1016/s0035-9203(02)90051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
Abstract
Acidic ribosomal P1 and P2b proteins, referred to as P proteins, and histone H3 are reported for first time in the Leishmania braziliensis complex. Deoxyribonucleic acid analysis and multiple sequence alignment suggest that both P proteins may maintain their structural function in the ribosomal stalk, in spite of the high rate of mutations detected. The deduced amino acid sequence of protein P1 showed 51% identity with Trypanosoma cruzi protein P1 and protein P2b showed 61% identity with T. cruzi protein P2b. Another conserved protein, L. (Viannia) braziliensis histone H3, showed 82% and 70% identity with histone H3 of L. (Leishmania) infantum and T. cruzi, respectively. The N-terminal end of this histone is divergent in comparison with the consensus eukaryotic sequence. Their predicted tridimensional structure was designed.
Collapse
Affiliation(s)
- C Padilla
- Instituto Nacional de Salud, Centro Nacional de Laboratorios de Salud Pública, Jr Capac Yupanqui 1400, Jesus Maria, Lima, Perú
| | | | | | | | | | | |
Collapse
|
17
|
Hays SM, Swanson J, Selker EU. Identification and characterization of the genes encoding the core histones and histone variants of Neurospora crassa. Genetics 2002; 160:961-73. [PMID: 11901114 PMCID: PMC1462028 DOI: 10.1093/genetics/160.3.961] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
We have identified and characterized the complete complement of genes encoding the core histones of Neurospora crassa. In addition to the previously identified pair of genes that encode histones H3 and H4 (hH3 and hH4-1), we identified a second histone H4 gene (hH4-2), a divergently transcribed pair of genes that encode H2A and H2B (hH2A and hH2B), a homolog of the F/Z family of H2A variants (hH2Az), a homolog of the H3 variant CSE4 from Saccharomyces cerevisiae (hH3v), and a highly diverged H4 variant (hH4v) not described in other species. The hH4-1 and hH4-2 genes, which are 96% identical in their coding regions and encode identical proteins, were inactivated independently. Strains with inactivating mutations in either gene were phenotypically wild type, in terms of growth rates and fertility, but the double mutants were inviable. As expected, we were unable to isolate null alleles of hH2A, hH2B, or hH3. The genomic arrangement of the histone and histone variant genes was determined. hH2Az and the hH3-hH4-1 gene pair are on LG IIR, with hH2Az centromere-proximal to hH3-hH4-1 and hH3 centromere-proximal to hH4-1. hH3v and hH4-2 are on LG IIIR with hH3v centromere-proximal to hH4-2. hH4v is on LG IVR and the hH2A-hH2B pair is located immediately right of the LG VII centromere, with hH2A centromere-proximal to hH2B. Except for the centromere-distal gene in the pairs, all of the histone genes are transcribed toward the centromere. Phylogenetic analysis of the N. crassa histone genes places them in the Euascomycota lineage. In contrast to the general case in eukaryotes, histone genes in euascomycetes are few in number and contain introns. This may be a reflection of the evolution of the RIP (repeat-induced point mutation) and MIP (methylation induced premeiotically) processes that detect sizable duplications and silence associated genes.
Collapse
Affiliation(s)
- Shan M Hays
- Department of Biology and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | |
Collapse
|
18
|
Martínez E, Thomas MC, Alonso V, Carmelo E, González AC, Del Castillo A, Valladares B. Cloning and molecular characterization of the cDNA encoding histone H1 from Leishmania braziliensis. J Parasitol 2002; 88:199-203. [PMID: 12053969 DOI: 10.1645/0022-3395(2002)088[0199:camcot]2.0.co;2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022] Open
Abstract
The isolation and molecular characterization of the histone H1-encoding gene from Leishmania braziliensis was carried out. The gene is present in the genome as a single copy and transcribed as a polyadenylated transcript of 830 nucleotides. The deduced amino acid sequence has in its central region the DNA binding K-[K/R]-A-A-[A/P] motif, which is repeated in tandem 9 times.
Collapse
Affiliation(s)
- E Martínez
- Departamento de Parasitología, Ecología y Genética, Facultad de Farmacia, Universidad de La Laguna, Tenerife, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Histones, the basic proteins which compact DNA into the nucleosomal and solenoidal fibers are synthesized in correlation with DNA replication during the S-phase of the cell cycle. This behavior is controlled both at transcriptional and postranscriptional levels in higher eukaryotes and yeasts. We have found that histone synthesis in synchronized trypanosomes is controlled by fluctuations on the levels of their mRNAs. Though we cannot preclude the existence of a transcriptional regulatory mechanism, our results point to the participation of changes in the stability of histone mRNAs as a regulatory mechanism of their levels during the cell cycle in Trypanosoma. We have also found a postranscriptional regulatory mechanism which could be acting at the translational level. These results show both similarities and differences between Trypanosoma and higher eukaryotes regarding the expression of their histone genes.
Collapse
Affiliation(s)
- V Sabaj
- Program of Cellular and Molecular Biology, and Program of Parasitology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | |
Collapse
|
20
|
Abstract
In yeast and mammalian cells, the cell cycle-dependent histone genes are typically expressed at a 15- to 35-fold higher level during S phase than during other phases of the cell cycle due to increases in both their transcription rates (three- to 17-fold) and the stabilities of their mRNAs (three to fivefold). In the protozoan trypanosomatids, most life cycle stage-specific genes are not regulated by changes in transcription rates, but are controlled entirely by post-transcriptional events. In contrast, little is known about cell cycle-dependent regulation of trypanosomatid genes. To examine cell cycle-associated expression of histone genes in a trypanosomatid, Trypanosoma cruzi epimastigotes were synchronized with hydroxyurea. The steady state levels of histone mRNAs in the G1, S and G2 phases of the cell cycle were found to vary only two- to fourfold, peaking in S phase. Nuclear run on assays showed that the histone genes are transcribed by RNA polymerase II and that their transcription rates do not increase in S phase relative to G1 and G2. Thus, during S phase of T. cruzi the increase in histone mRNA stability is about the same as in mammals and yeast, but no corresponding increase in the transcription rates of the histone genes occurs.
Collapse
Affiliation(s)
- R F Recinos
- Department of Biochemistry, University of Iowa, 4-403 Bowen Science Research Building, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
21
|
Agüero F, Verdún RE, Frasch AC, Sánchez DO. A random sequencing approach for the analysis of the Trypanosoma cruzi genome: general structure, large gene and repetitive DNA families, and gene discovery. Genome Res 2000; 10:1996-2005. [PMID: 11116094 PMCID: PMC313047 DOI: 10.1101/gr.gr-1463r] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/02/2000] [Accepted: 09/20/2000] [Indexed: 11/24/2022]
Abstract
A random sequence survey of the genome of Trypanosoma cruzi, the agent of Chagas disease, was performed and 11,459 genomic sequences were obtained, resulting in approximately 4.3 Mb of readable sequences or approximately 10% of the parasite haploid genome. The estimated total GC content was 50.9%, with a high representation of A and T di- and trinucleotide repeats. Out of the estimated 5000 parasite genes, 947 putative new genes were identified. Another 1723 sequences corresponded to genes detected previously in T. cruzi through expression sequence tag analysis. 7735 sequences had no matches in the database, but the presence of open reading frames that passed Fickett's test suggests that some might contain coding DNA. The survey was highly redundant, with approximately 35% of the sequences included in a few large sequence families. Some of them code for protein families present in dozens of copies, including proteins essential for parasite survival and retrotransposons. Other sequence families include repetitive DNA present in thousands of copies per haploid genome. Some families in the latter group are new, parasite-specific, repetitive DNAs. These results suggest that T. cruzi could constitute an interesting model to analyze gene and genome evolution due to its plasticity in terms of sequence amplification and divergence. Additional information can be found at http://www.iib.unsam.edu.ar/tcruzi.gss. html.
Collapse
Affiliation(s)
- F Agüero
- Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de General San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, San Martín, Provincia de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
22
|
Agüero F, Verdún RE, Frasch ACC, Sánchez DO. A Random Sequencing Approach for the Analysis of the Trypanosoma cruzi Genome: General Structure, Large Gene and Repetitive DNA Families, and Gene Discovery. Genome Res 2000. [DOI: 10.1101/gr.146300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
Abstract
A random sequence survey of the genome of Trypanosoma cruzi, the agent of Chagas disease, was performed and 11,459 genomic sequences were obtained, resulting in ∼4.3 Mb of readable sequences or ∼10% of the parasite haploid genome. The estimated total GC content was 50.9%, with a high representation of A and T di- and trinucleotide repeats. Out of the estimated 5000 parasite genes, 947 putative new genes were identified. Another 1723 sequences corresponded to genes detected previously in T. cruzi through expression sequence tag analysis. 7735 sequences had no matches in the database, but the presence of open reading frames that passed Fickett's test suggests that some might contain coding DNA. The survey was highly redundant, with ∼35% of the sequences included in a few large sequence families. Some of them code for protein families present in dozens of copies, including proteins essential for parasite survival and retrotransposons. Other sequence families include repetitive DNA present in thousands of copies per haploid genome. Some families in the latter group are new, parasite-specific, repetitive DNAs. These results suggest that T. cruzi could constitute an interesting model to analyze gene and genome evolution due to its plasticity in terms of sequence amplification and divergence. Additional information can be found at http://www.iib.unsam.edu.ar/tcruzi.gss.html.[The sequence data described in this paper have been submitted to the dbGSS database under the following GenBank accession nos.:AQ443439–AQ443513, AQ443743–AQ445667, AQ902981–AQ911366,AZ049857–AZ051184, and AZ302116–AZ302563.]
Collapse
|
23
|
Thomas MC, Olivares M, Escalante M, Marañón C, Montilla M, Nicholls S, López MC, Puerta C. Plasticity of the histone H2A genes in a Brazilian and six Colombian strains of Trypanosoma cruzi. Acta Trop 2000; 75:203-10. [PMID: 10708660 DOI: 10.1016/s0001-706x(00)00061-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
The analysis of three recombinant clones containing the histone H2A locus isolated from a genomic library of Trypanosoma cruzi DNA shows that the H2A gene loci are formed by 1.2 and 0.76 kb long intercalated units organized in a head-to-tail tandem array. The difference in length between the two gene units is due to the presence of a short interspersed nucleotide element (SINE)-like DNA sequence inserted at the 3' end of some of these units. Southern, northern and chromosomal blot analysis of a Brazilian Y strain and six Colombian strains demonstrated the existence of polymorphisms regarding the relative copy number of the H2A gene units, the relative abundance of the H2A transcripts and their chromosomal location. These results show the existence of a dynamic organization in the H2A loci among T. cruzi strains in which a SINE-like sequence may be involved and support the fact that T. cruzi has a high degree of plasticity in its genome.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Southern
- Brazil
- Cloning, Molecular
- Colombia
- DNA, Protozoan/analysis
- Electrophoresis, Gel, Pulsed-Field
- Escherichia coli/metabolism
- Gene Dosage
- Genes, Protozoan
- Genetic Vectors
- Genome, Protozoan
- Histones/biosynthesis
- Histones/genetics
- Humans
- Polymorphism, Genetic
- RNA, Protozoan/analysis
- Recombinant Proteins/biosynthesis
- Short Interspersed Nucleotide Elements
- Trypanosoma cruzi/genetics
Collapse
Affiliation(s)
- M C Thomas
- Instituto de Parasitología y Biomedicina 'López Neyra', Consejo Superior de Investigaciones Científicas, Calle Ventanilla 11, 18001, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Marañón C, Thomas MC, Puerta C, Alonso C, López MC. The stability and maturation of the H2A histone mRNAs from Trypanosoma cruzi are implicated in their post-transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1490:1-10. [PMID: 10786612 DOI: 10.1016/s0167-4781(99)00228-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
Abstract
We have recently described that the Trypanosoma cruzi histone H2A genes are actively transcribed as two sized classes of polyadenylated transcripts and that they differ in the 3'-UTRs due to the insertion of a partial SINE sequence in the 3'-end of some of H2A gene units. The expression of the H2A genes in the non-replicative trypomastigote forms is very low, whereas in the replicative forms, there is significant and constitutive transcription of the H2A genes probably regulated in a posttranscriptional way and associated to DNA replication. The data presented in this paper reveal that in epimastigotes, the steady-state levels of the H2A mRNAs are determined by controlling the stability of the messengers in the cytoplasm, most likely mediated by a nuclease attack. The data also indicate that there must be an additional control, associated to the parasite growth phase, which may act at the maturation step of the transcripts. The data suggest, moreover; that the cytoplasmic level of the H2A protein might be involved in the regulation of its own synthesis by controlling translation of existing messengers.
Collapse
Affiliation(s)
- C Marañón
- Instituto de Parasitología y Biomedicina López Neyra Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | | | |
Collapse
|
25
|
Thomas MC, García-Pérez JL, Alonso C, López MC. Molecular characterization of KMP11 from Trypanosoma cruzi: a cytoskeleton-associated protein regulated at the translational level. DNA Cell Biol 2000; 19:47-57. [PMID: 10668791 DOI: 10.1089/104454900314708] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
Kinetoplasmid membrane protein-11 (KMP11) is present in a wide range of trypanosomatids. In the present paper, we show that the T. cruzi KMP11 gene is organized in a cluster formed by four gene units arranged in a head-to-tail tandem manner located on a chromosome of about 1900 kb. Northern blot analyses indicated that the steady-state level of mature KMP11 transcripts of 0.52 kb is high and similar in the three forms of the parasite. The KMP11 mRNAs have a half-life of about 16 h whose steady-state level is strongly downregulated when the parasites reach the stationary growth phase. The T. cruzi KMP11 sequence presents a significant homology with the amino-terminal third of the cytoskeleton-associated protein CIP1 from Arabidopsis thaliana. Western blot and immunoelectron microscopy studies showed that KMP11 is present in the cytoskeleton structure. Because the strong downregulation observed in the de novo synthesis of KMP11 protein in parasites treated with vinblastine is not accompanied by a significant fall in the steady-state level of KMP11 mRNAs, regulatory control of the protein at the translational level is suggested.
Collapse
Affiliation(s)
- M C Thomas
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | |
Collapse
|
26
|
Vazquez MP, Levin MJ. Functional analysis of the intergenic regions of TcP2beta gene loci allowed the construction of an improved Trypanosoma cruzi expression vector. Gene 1999; 239:217-25. [PMID: 10548722 DOI: 10.1016/s0378-1119(99)00386-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
TcP2beta ribosomal protein genes in Trypanosoma cruzi are encoded by four different loci, H6.4, H1.8, H1.5 and H1.3. All loci have a similar organization, except for H1.8 that harbors two TcP2beta genes arranged in tandem and separated by a short repetitive sequence, named SIRE (short interspersed repetitive element), which is also found upstream of the first gene of the tandem and downstream of the second. In this locus the trans-splicing signal of TcP2beta is located within the SIRE element, while in the other loci it is positioned within the first 50bases upstream of the AUG with an AG acceptor site at position -12 respective to the initiation codon. Transient transfection experiments were used to evaluate the efficiency of these two different trans-splicing regions to drive CAT activity. The region named HX1 located upstream the TcP2beta H1. 8 gene was clearly more efficient than the SIRE sequence contained in the region named HX2. Therefore, we decided to use the HX1 region to ameliorate the performance of the cryptic trans-splicing signal present in the T. cruzi expression vector pRIBOTEX (Martinez-Calvillo, S., López, I., Hernandez, H., 1997. pRIBOTEX expression vector: a pTEX derivative for a rapid selection of Trypanosoma cruzi transfectants. Gene 199, 71-76). By insertion of the region HX1 downstream of the ribosomal promoter of pRIBOTEX, we constructed pRHX1CAT40 that, in stable transfected cells, was able to drive CAT activity 2760 times more efficiently than the control plasmids. Based on this, a novel plasmid vector was conceived, named pTREX-n, which retains the neo gene of pRIBOTEX as a positive selectable marker and replaces the CAT-SV40 cassette in pRHX1CAT40 by a multiple cloning site.
Collapse
Affiliation(s)
- M P Vazquez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular - CONICET, University of Buenos Aires, Vuelta de obligado 2490 2P, 1428, Buenos Aires, Argentina
| | | |
Collapse
|
27
|
García-Salcedo JA, Gijón P, Pays E. Regulated transcription of the histone H2B genes of Trypanosoma brucei. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:717-23. [PMID: 10491117 DOI: 10.1046/j.1432-1327.1999.00592.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
In Trypanosoma brucei, the genes encoding histone H2B are organized in a cluster of about 10-15 tandemly linked copies per haploid genome. The H2B transcripts are processed by trans-splicing and polyadenylation, and encode a polypeptide of 111 residues with a molecular mass of 12.5 kDa. H2B mRNAs are differentially expressed during the parasite life-cycle and are present at higher levels in dividing procyclic and bloodstream slender forms than in the nondividing bloodstream stumpy forms. Analysis of H2B mRNA levels during the synchronous differentiation from stumpy to procyclics forms revealed that the abundance of these transcripts is regulated through the cell-cycle, reaching maximum levels during S-phase. Addition of hydroxyurea to procyclic forms in culture specifically decreased H2B mRNA levels by about twofold, an effect not linked to its 3' untranslated region. Inhibition of protein synthesis prevented this decrease.
Collapse
Affiliation(s)
- J A García-Salcedo
- Laboratory of Molecular Parasitology, Department of Molecular Biology, Free University of Brussels, Belgium.
| | | | | |
Collapse
|
28
|
Zhao J, Hyman L, Moore C. Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 1999; 63:405-45. [PMID: 10357856 PMCID: PMC98971 DOI: 10.1128/mmbr.63.2.405-445.1999] [Citation(s) in RCA: 808] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Formation of mRNA 3' ends in eukaryotes requires the interaction of transacting factors with cis-acting signal elements on the RNA precursor by two distinct mechanisms, one for the cleavage of most replication-dependent histone transcripts and the other for cleavage and polyadenylation of the majority of eukaryotic mRNAs. Most of the basic factors have now been identified, as well as some of the key protein-protein and RNA-protein interactions. This processing can be regulated by changing the levels or activity of basic factors or by using activators and repressors, many of which are components of the splicing machinery. These regulatory mechanisms act during differentiation, progression through the cell cycle, or viral infections. Recent findings suggest that the association of cleavage/polyadenylation factors with the transcriptional complex via the carboxyl-terminal domain of the RNA polymerase II (Pol II) large subunit is the means by which the cell restricts polyadenylation to Pol II transcripts. The processing of 3' ends is also important for transcription termination downstream of cleavage sites and for assembly of an export-competent mRNA. The progress of the last few years points to a remarkable coordination and cooperativity in the steps leading to the appearance of translatable mRNA in the cytoplasm.
Collapse
Affiliation(s)
- J Zhao
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
29
|
Planelles L, Marañón C, Requena JM, López MC. Phage recovery by electroporation of naked DNA into host cells avoids the use of packaging extracts. Anal Biochem 1999; 267:234-5. [PMID: 9918677 DOI: 10.1006/abio.1998.2963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
In this paper, we describe the application of electroporation to deliver phage DNA into bacterial cells in order to recover it as phage particles. The methodology represents a quicker and cheaper alternative to the use of packaging extracts to rescue phage clones stored as naked DNAs. Furthermore, our data demonstrate that there were not rearrangements or recombinations between phage DNAs when a mixture of different DNAs was electroporated, suggesting the use of electroporation as a reliable method for construction of gene libraries.
Collapse
Affiliation(s)
- L Planelles
- Instituto de Parasitología y Biomedicina "López Neyra,", CSIC, Granada, Spain
| | | | | | | |
Collapse
|
30
|
Weston D, Patel B, Van Voorhis WC. Virulence in Trypanosoma cruzi infection correlates with the expression of a distinct family of sialidase superfamily genes. Mol Biochem Parasitol 1999; 98:105-16. [PMID: 10029313 DOI: 10.1016/s0166-6851(98)00152-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
Abstract
The overall success of Trypanosoma cruzi depends on its ability to invade the host and establish a long-term infection. Little is known of the genetic factors responsible for observed differences in virulence from strain to strain in T. cruzi. A virulent T. cruzi line was derived from an attenuated parental line by two passages through mice. To identify virulence genes a subtraction library was constructed and screened for cDNA expressed exclusively in the virulent line. One cDNA hybridized to 3.5 and 4.5 Kb RNA present in virulent trypomastigotes but absent in attenuated trypomastigotes. Sequence analysis showed the cDNA to encode an 85 kDa protein with homology to members of the sialidase/trans-sialidase superfamily and has been designated vp85.1. The highest amino acid sequence similarity was to a previously described T. cruzi sialidase-homologue pseudogene [Takle, G.B., O'Conner, J., Young, A.J. and Cross, G.A.M. (1992) Mol. Biochem. Parasitol. 56, 117-128]. The vp85.1 amino acid sequence has higher homology to members of the 160 kDa flagellar-associated antigen family, FL-160, than to other 85 kDa expressed sialidase superfamily members. Southern blot analysis of virulent and attenuated lines demonstrated a complex hybridization pattern consistent with a multiple gene copy family that was identical in both lines. Antibody directed against recombinant vp85.1 peptide recognized proteins between 95 and 115 kDa in total virulent parasite lysates which were absent in attenuated lysates. Peptide N-glycosidase F treatment reduced the high molecular weight bands to 85 kDa, indicating vp85 is an N-linked glycoprotein. Immunofluorescence with anti-vp85.1 demonstrated surface localization of vp85.1 on virulent, but not attenuated, trypomastigotes. We postulate this new subfamily of trans-sialidases may play a role in virulence.
Collapse
Affiliation(s)
- D Weston
- Seattle Biomedical Research Institute, WA 98109, USA
| | | | | |
Collapse
|
31
|
Marañón C, Puerta C, Alonso C, López MC. Control mechanisms of the H2A genes expression in Trypanosoma cruzi. Mol Biochem Parasitol 1998; 92:313-24. [PMID: 9657335 DOI: 10.1016/s0166-6851(98)00003-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
In a previous report we have described that the T. cruzi histone H2A gene is encoded in two independent gene clusters located in a single chromosome. In the present paper we show that both gene cluster are actively transcribed as two sized classes of polyadenylated mRNAs demonstrating, moreover, the existence of alternative splicing sites and microheterogeneities at the polyadenylation site. We also describe that while the expression of the H2A genes in the non replicative trypomastigote forms is only residual, in the replicative forms there is constitutive transcription of these genes and that the transcription is not associated to DNA replication. The data show, moreover, that in the replicative forms the steady state levels of the H2A mRNAs are controlled at a post-transcriptional level which is associated to DNA replication.
Collapse
Affiliation(s)
- C Marañón
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | |
Collapse
|
32
|
Soto M, Quijada L, Alonso C, Requena JM. Molecular cloning and analysis of expression of the Leishmania infantum histone H4 genes. Mol Biochem Parasitol 1997; 90:439-47. [PMID: 9476792 DOI: 10.1016/s0166-6851(97)00178-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
In the present work, we describe the sequence, organization and expression of histone H4 genes in the protozoan parasite Leishmania infantum. The predicted L. infantum histone H4 is a polypeptide of 100 amino acids with a molecular mass of 11.5 kDa. Comparison of the amino acid sequence of Leishmania histone H4 with the rest of histone H4 sequences indicates that this is the most divergent sequence reported to date. The genomic distribution analysis of histone H4 genes indicates that there must be up to seven gene copies. A single size-class histone H4 mRNA of 0.6 kb was detected, whose level dramatically decreases from logarithmic to stationary phase. However, the Leishmania histone H4 mRNAs do not decrease in abundance following treatment with inhibitors of DNA synthesis, suggesting a regulation by a replication-independent mechanism.
Collapse
Affiliation(s)
- M Soto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
33
|
Abstract
Trypanosoma cruzi is an ancient, parasitic eukaryote which does not undergo chromatin condensation during cell division. This behavior may be explained if one considers the strong amino acid sequence divergence of Trypanosoma histones compared to higher eukaryotes. In the latter organisms histone synthesis is coupled to DNA replication. Considering the nonconserved amino acid sequence of T. cruzi histones, as well as the absence of chromatin condensation in this organism, we have studied histone synthesis in relation to DNA replication in this parasite. We have found that core histones and a fraction of histone H1 are synthesized concomitantly to DNA replication. However, another fraction of histone H1 is constitutively synthesized.
Collapse
Affiliation(s)
- V Sabaj
- Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
34
|
Tittawella I, Ljungkvist A, Kimdal M. The gene for histone H2A from the insect trypanosome Crithidia fasciculata. Mol Biochem Parasitol 1997; 88:259-62. [PMID: 9274887 DOI: 10.1016/s0166-6851(97)00080-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023]
Affiliation(s)
- I Tittawella
- Department of Cell and Molecular Biology, University of Umeå, Sweden.
| | | | | |
Collapse
|
35
|
Soto M, Requena JM, Quijada L, Alonso C. Organization, transcription and regulation of the Leishmania infantum histone H3 genes. Biochem J 1996; 318 ( Pt 3):813-9. [PMID: 8836124 PMCID: PMC1217691 DOI: 10.1042/bj3180813] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023]
Abstract
The genomic organization and transcription of the genes encoding the histone H3 of the protozoan parasite Leishmania infantum have been studied. It was found that there are multiple copies of the histone H3 genes distributed in chromosomal bands XIX and XIV. The nucleotide sequence of two of the L. infantum H3 genes, each one located in a different chromosome, is reported. Although the nucleotide sequence of the coding region of both genes is identical, the sequence of the 3' untranslated region is highly divergent. It was found also that there exist two different size classes of histone H3 transcripts, each one derived from a different gene, and that they are polyadenylated. The steady-state level of the transcripts dramatically decreases when the parasites enter the stationary phase of growth, suggesting a mode of regulation which is linked to the proliferation status of the cell. Unlike the replication-dependent histones, the L. infantum H3 mRNA levels do not decrease after treatment with DNA synthesis inhibitors. A comparative analysis of the sensitivity of the histone mRNA levels to DNA inhibition in the parasites L. infantum and Trypanosoma cruzi revealed the existence of different control mechanisms in histone expression in these two phylogenetically related protozoan parasites.
Collapse
Affiliation(s)
- M Soto
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
36
|
Waterborg JH, Robertson AJ. Common features of analogous replacement histone H3 genes in animals and plants. J Mol Evol 1996; 43:194-206. [PMID: 8703085 DOI: 10.1007/bf02338827] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/01/2023]
Abstract
Phylogenetic analysis of histone H3 protein sequences demonstrates the independent origin of the replacement histone H3 genes in animals and in plants. Multiple introns in the replacement histone H3 genes of animals in a pattern distinct from that in plant replacement H3 genes supports this conclusion. It is suggested that replacement H3 genes arose at the same time that, independently, multicellular forms of animals and of plants evolved. Judged by the degree of invariant and functionally constrained amino acid positions, histones H3 and H4, which form together the tetramer kernel of the nucleosome, have co-evolved with equal rates of sequence divergence. Residues 31 and 87 in histone H3 are the only residues that consistently changed across each gene duplication event that created functional replacement histone H3 variant forms. Once changed, these residues have remained invariant across divergent speciation. This suggests that they are required to allow replacement histone H3 to participate in the assembly of nucleosomes in non-S-phase cells. The abundant occurrence of polypyrimidine sequences in the introns of all replacement H3 genes, and the replacement of an intron by a polypyrimidine motif upstream of the alfalfa replacement H3 gene, suggests a function. It is speculated that they may contribute to the characteristic cell-cycle-independent pattern of replacement histone H3 genes by binding nucleosome-excluding proteins.
Collapse
Affiliation(s)
- J H Waterborg
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, MO 64110-2499, USA
| | | |
Collapse
|
37
|
Soto M, Requena JM, Quijada L, García M, Guzman F, Patarroyo ME, Alonso C. Mapping of the linear antigenic determinants from the Leishmania infantum histone H2A recognized by sera from dogs with leishmaniasis. Immunol Lett 1995; 48:209-14. [PMID: 8867853 DOI: 10.1016/0165-2478(95)02473-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023]
Abstract
Antibodies reacting against the H2A histone protein were frequently observed in the sera from dogs naturally infected with the protozoan parasite Leishmania infantum. Using synthetic peptides covering the complete sequence of the protein we have identified the amino terminal region, comprising from amino acids 1 to 20, and the carboxyl terminal region, comprising from amino acids 106 to 132, as conforming the antigenic determinants of the protein. Those regions, exposed in the nucleosome surface, are highly divergent in sequence relative to the mammalian H2A histones. The anti-H2A histone antibodies present in the sera of these dogs specifically recognize the L. infantum H2A histone and they do not react with mammalian histones. The present data indicate that, in spite of the evolutionary conservation of the H2A histone protein among eukaryotic organisms, the humoral response against this protein during natural infection is specifically triggered by the parasite protein antigenic determinants.
Collapse
Affiliation(s)
- M Soto
- Centro de Biologia Molecular "Severo Ochoa," Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Henriksson J, Porcel B, Rydåker M, Ruiz A, Sabaj V, Galanti N, Cazzulo JJ, Frasch AC, Pettersson U. Chromosome specific markers reveal conserved linkage groups in spite of extensive chromosomal size variation in Trypanosoma cruzi. Mol Biochem Parasitol 1995; 73:63-74. [PMID: 8577348 DOI: 10.1016/0166-6851(95)00096-j] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
Abstract
The karyotypes of three cloned stocks, CL Brener (CL), CA I/72 (CA) and Sylvio X10/7 (X10), of Trypanosoma cruzi were studied by pulsed-field gel electrophoresis followed by ethidium bromide staining and hybridization with 35 different probes, 30 of which identified single chromosomes. The chromosome-specific probes identified between 26 and 31 chromosomal bands in the three cloned stocks, corresponding to 20 unique chromosomes in CL and 19 in CA and X10. Considering the DNA content of the parasite, it was predicted that the markers recognise at least half of all T. cruzi chromosomes. A majority of identified chromosomes showed large differences in size among different strains, in some cases by up to 50%. Interestingly, CL had in general larger chromosomes than the two other studied cloned stocks. Several of the markers showed linkage and nine different linkage groups were identified, each comprising 2-4 markers. The linkage between the markers was maintained in 8 of the 9 linkage groups when a panel comprising 26 different T. cruzi strains representing major T. cruzi populations was tested. One linkage group was found to be maintained in some strains but not in others. This result shows that chromosomal rearrangements occur in the T. cruzi genome, albeit with a low frequency. Repetitive DNA, both non-coding and in one case coding, was more abundant in the cloned stock CL Brener than in CA and X10. The information presented will make it possible to select chromosomes for the construction of physical chromosomal maps required for the T. cruzi genome project.
Collapse
Affiliation(s)
- J Henriksson
- Department of Medical Genetics, University of Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Trypanosomes are protozoan agents of major parasitic diseases such as Chagas' disease in South America and sleeping sickness of humans and nagana disease of cattle in Africa. They are transmitted to mammalian hosts by specific insect vectors. Their life cycle consists of a succession of differentiation and growth phases requiring regulated gene expression to adapt to the changing extracellular environment. Typical of such stage-specific expression is that of the major surface antigens of Trypanosoma brucei, procyclin in the procyclic (insect) form and the variant surface glycoprotein (VSG) in the bloodstream (mammalian) form. In trypanosomes, the regulation of gene expression is effected mainly at posttranscriptional levels, since primary transcription of most of the genes occurs in long polycistronic units and is constitutive. The transcripts are processed by transsplicing and polyadenylation under the influence of intergenic polypyrimidine tracts. These events show some developmental regulation. Untranslated sequences of the mRNAs seem to play a prominent role in the stage-specific control of individual gene expression, through a modulation of mRNA abundance. The VSG and procyclin transcription units exhibit particular features that are probably related to the need for a high level of expression. The promoters and RNA polymerase driving the expression of these units resemble those of the ribosomal genes. Their mutually exclusive expression is ensured by controls operating at several levels, including RNA elongation. Antigenic variation in the bloodstream is achieved through DNA rearrangements or alternative activation of the telomeric VSG gene expression sites. Recent discoveries, such as the existence of a novel nucleotide in telomeric DNA and the generation of point mutations in VSG genes, have shed new light on the mechanisms and consequences of antigenic variation.
Collapse
Affiliation(s)
- L Vanhamme
- Department of Molecular Biology, Free University of Brussels, Rhode Saint Genèse, Belgium
| | | |
Collapse
|
40
|
García-Salcedo JA, Oliver JL, Stock RP, González A. Molecular characterization and transcription of the histone H2B gene from the protozoan parasite Trypanosoma cruzi. Mol Microbiol 1994; 13:1033-43. [PMID: 7854118 DOI: 10.1111/j.1365-2958.1994.tb00494.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/27/2023]
Abstract
The structure, genomic organization and transcription of the gene encoding histone H2B in the protozoan parasite Trypanosoma cruzi have been studied. This gene consists of a 746-nucleotide unit, tandemly repeated at least 18 times in each of two clusters. DNA probes corresponding to histones H2B and H3 hybridized to different chromosomes revealing that the genes coding for these two histones are not physically linked in the genome of T. cruzi. The primary transcription product of the H2B gene is processed by trans-splicing and polyadenylation. Inhibition of DNA synthesis with aphidicolin resulted in the reduction of histone H2B mRNA to undetectable levels in about two hours, suggesting that its abundance is regulated throughout the cell cycle as it occurs in other eukaryotes. In addition, a concomitant inhibition of translation by cycloheximide reverted this effect indicating that de novo protein synthesis is required for RNA instability. Histone mRNA abundance was dependent on the life-cycle stage of T. cruzi: abundant in amastigotes and epimastigotes, the dividing forms in the host cell and the insect vector, respectively, while undetected in trypomastigotes, the parasite's non-dividing life stage.
Collapse
Affiliation(s)
- J A García-Salcedo
- Instituto de Parasitología y Biomedicina, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | |
Collapse
|