1
|
Reed EK, Smith KA. Using our understanding of interactions between helminth metabolism and host immunity to target worm survival. Trends Parasitol 2024; 40:549-561. [PMID: 38853079 DOI: 10.1016/j.pt.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 06/11/2024]
Abstract
Helminths can adapt to environmental conditions in the host, utilising anaerobic processes like fermentation and malate dismutation to produce energy from carbohydrate. Although targeting carbohydrate metabolism is an established therapeutic strategy to combat helminth infection, questions remain over the metabolic pathways they employ as adults to survive and evade host immunity. Helminths also use amino acid, polyunsaturated fatty acid (PUFA), and cholesterol metabolism, a possible strategy favouring the production of immunomodulatory compounds that may influence survival in the host. Here, we discuss the significance of these differing metabolic pathways and whether targeting of helminth metabolic pathways may allow for the development of novel anthelmintics.
Collapse
Affiliation(s)
- Ella K Reed
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | | |
Collapse
|
2
|
Sun H, Cai S, Liu H, Li X, Deng Y, Yang X, Cao S, Li W, Chen H. FgSdhC Paralog Confers Natural Resistance toward SDHI Fungicides in Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20643-20653. [PMID: 38108286 DOI: 10.1021/acs.jafc.3c06288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Fusarium graminearum exhibited natural resistance to a majority of succinate dehydrogenase inhibitor fungicides (SDHIs) and the molecular mechanisms responsible for the natural resistance were still unknown. Succinate dehydrogenase subunit C (SdhC) is an essential gene for maintaining succinate-ubiquinone oxidoreductase (SQR) function in fungi. In F. graminearum, a paralog of FgSdhC named as FgSdhC1 was identified. Based on RNA-Seq and qRT-PCR assay, we found that the expression level of FgSdhC1 was very low but upregulated by SDHIs treatment. Based on reverse genetics, we demonstrated that FgSdhC1 was an inessential gene in normal growth but was sufficient for maintaining SQR function and conferred natural resistance or reduced sensitivity toward SDHIs. Additionally, we found that the standard F. graminearum isolate PH-1 had high sensitivity to a majority of SDHIs. A single nucleotide variation (C to T) in the FgSdhC1 of isolate PH-1, resulting in a premature termination codon (TAA) replacing the fourth amino acid glutamine (Q), led to the failure of FgSdhC1 to perform functions of conferring nature resistance. These results established that a dispensable paralogous gene determined SDHIs resistance in natural populations of F. graminearum.
Collapse
Affiliation(s)
- Haiyan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shiyan Cai
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huiquan Liu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinlei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuanyu Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaoyue Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shulin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
3
|
Pollo SMJ, Leon-Coria A, Liu H, Cruces-Gonzalez D, Finney CAM, Wasmuth JD. Transcriptional patterns of sexual dimorphism and in host developmental programs in the model parasitic nematode Heligmosomoides bakeri. Parasit Vectors 2023; 16:171. [PMID: 37246221 DOI: 10.1186/s13071-023-05785-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/24/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Heligmosomoides bakeri (often mistaken for Heligmosomoides polygyrus) is a promising model for parasitic nematodes with the key advantage of being amenable to study and manipulation within a controlled laboratory environment. While draft genome sequences are available for this worm, which allow for comparative genomic analyses between nematodes, there is a notable lack of information on its gene expression. METHODS We generated biologically replicated RNA-seq datasets from samples taken throughout the parasitic life of H. bakeri. RNA from tissue-dwelling and lumen-dwelling worms, collected under a dissection microscope, was sequenced on an Illumina platform. RESULTS We find extensive transcriptional sexual dimorphism throughout the fourth larval and adult stages of this parasite and identify alternative splicing, glycosylation, and ubiquitination as particularly important processes for establishing and/or maintaining sex-specific gene expression in this species. We find sex-linked differences in transcription related to aging and oxidative and osmotic stress responses. We observe a starvation-like signature among transcripts whose expression is consistently upregulated in males, which may reflect a higher energy expenditure by male worms. We detect evidence of increased importance for anaerobic respiration among the adult worms, which coincides with the parasite's migration into the physiologically hypoxic environment of the intestinal lumen. Furthermore, we hypothesize that oxygen concentration may be an important driver of the worms encysting in the intestinal mucosa as larvae, which not only fully exposes the worms to their host's immune system but also shapes many of the interactions between the host and parasite. We find stage- and sex-specific variation in the expression of immunomodulatory genes and in anthelmintic targets. CONCLUSIONS We examine how different the male and female worms are at the molecular level and describe major developmental events that occur in the worm, which extend our understanding of the interactions between this parasite and its host. In addition to generating new hypotheses for follow-up experiments into the worm's behavior, physiology, and metabolism, our datasets enable future more in-depth comparisons between nematodes to better define the utility of H. bakeri as a model for parasitic nematodes in general.
Collapse
Affiliation(s)
- Stephen M J Pollo
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, AB, Canada
| | - Aralia Leon-Coria
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Hongrui Liu
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - David Cruces-Gonzalez
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Constance A M Finney
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - James D Wasmuth
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
4
|
Karavaeva V, Sousa FL. Modular structure of complex II: An evolutionary perspective. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148916. [PMID: 36084748 DOI: 10.1016/j.bbabio.2022.148916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/21/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022]
Abstract
Succinate dehydrogenases (SDHs) and fumarate reductases (FRDs) catalyse the interconversion of succinate and fumarate, a reaction highly conserved in all domains of life. The current classification of SDH/FRDs is based on the structure of the membrane anchor subunits and their cofactors. It is, however, unknown whether this classification would hold in the context of evolution. In this work, a large-scale comparative genomic analysis of complex II addresses the questions of its taxonomic distribution and phylogeny. Our findings report that for types C, D, and F, structural classification and phylogeny go hand in hand, while for types A, B and E the situation is more complex, highlighting the possibility for their classification into subgroups. Based on these findings, we proposed a revised version of the evolutionary scenario for these enzymes in which a primordial soluble module, corresponding to the cytoplasmatic subunits, would give rise to the current diversity via several independent membrane anchor attachment events.
Collapse
Affiliation(s)
- Val Karavaeva
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Filipa L Sousa
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria.
| |
Collapse
|
5
|
Rahal A, Sharma DK, Kumar A, Sharma N, Dayal D. In silico to In vivo development of a polyherbal against Haemonchus contortus. Heliyon 2022; 8:e08789. [PMID: 35106389 PMCID: PMC8789534 DOI: 10.1016/j.heliyon.2022.e08789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/09/2021] [Accepted: 01/13/2022] [Indexed: 10/25/2022] Open
Abstract
Haemonchus contortus is a major constraint in the development of small ruminant subsector due to significant production losses incurred by it. The present study explores the antiparasitic potential of three anthelmintic plants (Butea monosperma, Vitex negundo and Catharanthus roseus (L.) G.Don) against H. contortus taking albendazole as the standard. In silico molecular docking and pharmacokinetic prediction studies were conducted with known bioactive molecules of these plants (palasonin, vinblastine, vincristine, betulinic acid and ursolic acid) against Glutamate Dehydrogenase (GDH) and tubulin molecules of the parasite. Methanolic extracts of these herbs were fractionated (hexane, ethyl acetate, chloroform and methanol) and used in in vitro larvicidal studies. Based on the in vitro data, two herbal prototypes were developed and clinically tested. All the 5 ligand molecules showed better binding affnity for GDH and tubulin protein as compared with albendazole and shared similar binding site in the core of the GDH hexamer with slight variations. Albendazole approximately stacked against GLY190A residue, showing hydrophobic interactions with PRO157A and a Pi-cation electrostatic interaction with ARG390 along with four hydrogen bonds. Vincristine formed 2 pi-anionic electrostatic bonds with ASP158 of B and C subunits alongwith hydrogen bonding and hydrophobic interaction and an additional pi-anion electrostatic interaction at ASP158A for vinblastine. Albendazole bound to α-tubulin next to colchicine site whereas vinblastine is bound at the nearby laulimalide/peloruside site of the dimer. Betulinic acid showed lateral interaction between the H2-H3 loop of one alpha subunit and H10 of the adjacent alpha subunit of two tubulin dimers. Ursolic acid and palasonin bound at the intradimer N site of microtubulin involving the H1-H7 and H1-H2 zone, respectively. The in vitro studies demonstrated good dose dependent anthelmintic potential. Both the prototypes were quite efficacious in clearing the infection, keeping it to a minimal for more than 5 months, probably, through direct anthelmintic effect through GDH, tubulin depolymerization and uncoupling as well as indirectly through immunomodulation along with antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Anu Rahal
- Division of Animal Health, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, 281122, UP, India
| | - D K Sharma
- Division of Animal Health, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, 281122, UP, India
| | - Ashok Kumar
- Division of Animal Health, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, 281122, UP, India
| | - Nitika Sharma
- Division of Animal Health, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, 281122, UP, India
| | - Deen Dayal
- Division of Animal Health, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, 281122, UP, India
| |
Collapse
|
6
|
Lautens MJ, Tan JH, Serrat X, Del Borrello S, Schertzberg MR, Fraser AG. Identification of enzymes that have helminth-specific active sites and are required for Rhodoquinone-dependent metabolism as targets for new anthelmintics. PLoS Negl Trop Dis 2021; 15:e0009991. [PMID: 34843467 PMCID: PMC8659336 DOI: 10.1371/journal.pntd.0009991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/09/2021] [Accepted: 11/11/2021] [Indexed: 11/18/2022] Open
Abstract
Soil transmitted helminths (STHs) are major human pathogens that infect over a billion people. Resistance to current anthelmintics is rising and new drugs are needed. Here we combine multiple approaches to find druggable targets in the anaerobic metabolic pathways STHs need to survive in their mammalian host. These require rhodoquinone (RQ), an electron carrier used by STHs and not their hosts. We identified 25 genes predicted to act in RQ-dependent metabolism including sensing hypoxia and RQ synthesis and found 9 are required. Since all 9 have mammalian orthologues, we used comparative genomics and structural modeling to identify those with active sites that differ between host and parasite. Together, we found 4 genes that are required for RQ-dependent metabolism and have different active sites. Finding these high confidence targets can open up in silico screens to identify species selective inhibitors of these enzymes as new anthelmintics.
Collapse
Affiliation(s)
- Margot J. Lautens
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - June H. Tan
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Xènia Serrat
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Andrew G. Fraser
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
7
|
Abstract
Carbon redox chemistry plays a fundamental role in biology. However, the thermodynamic and physicochemical principles underlying the rise of metabolites involved in redox biochemistry remain poorly understood. Our work introduces the theory and techniques that allow us to quantify and understand the global energy landscape of carbon redox biochemistry. We analyze the space of all possible oxidation states of linear-chain molecules with two to five carbon atoms and generate a detailed atlas of the thermodynamic stability of metabolites in comparison to nonbiological molecules. Although the emergence of life required the underlying chemistry to bootstrap itself out of equilibrium, a quantitative understanding of the environment-dependent thermodynamic landscape of prebiotic molecules will be extremely valuable for future origins of life models. Redox biochemistry plays a key role in the transduction of chemical energy in living systems. However, the compounds observed in metabolic redox reactions are a minuscule fraction of chemical space. It is not clear whether compounds that ended up being selected as metabolites display specific properties that distinguish them from nonbiological compounds. Here, we introduce a systematic approach for comparing the chemical space of all possible redox states of linear-chain carbon molecules to the corresponding metabolites that appear in biology. Using cheminformatics and quantum chemistry, we analyze the physicochemical and thermodynamic properties of the biological and nonbiological compounds. We find that, among all compounds, aldose sugars have the highest possible number of redox connections to other molecules. Metabolites are enriched in carboxylic acid functional groups and depleted of ketones and aldehydes and have higher solubility than nonbiological compounds. Upon constructing the energy landscape for the full chemical space as a function of pH and electron-donor potential, we find that metabolites tend to have lower Gibbs energies than nonbiological molecules. Finally, we generate Pourbaix phase diagrams that serve as a thermodynamic atlas to indicate which compounds are energy minima in redox chemical space across a set of pH values and electron-donor potentials. While escape from thermodynamic equilibrium toward kinetically driven states is a hallmark of life and its origin, we envision that a deeper quantitative understanding of the environment-dependent thermodynamic landscape of putative prebiotic molecules will provide a crucial reference for future origins-of-life models.
Collapse
|
8
|
Rhodoquinone in bacteria and animals: Two distinct pathways for biosynthesis of this key electron transporter used in anaerobic bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148278. [DOI: 10.1016/j.bbabio.2020.148278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
|
9
|
Steinhauer D, Salat M, Frey R, Mosbach A, Luksch T, Balmer D, Hansen R, Widdison S, Logan G, Dietrich RA, Kema GHJ, Bieri S, Sierotzki H, Torriani SFF, Scalliet G. A dispensable paralog of succinate dehydrogenase subunit C mediates standing resistance towards a subclass of SDHI fungicides in Zymoseptoria tritici. PLoS Pathog 2019; 15:e1007780. [PMID: 31860693 PMCID: PMC6941823 DOI: 10.1371/journal.ppat.1007780] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 01/03/2020] [Accepted: 11/20/2019] [Indexed: 11/24/2022] Open
Abstract
Succinate dehydrogenase inhibitor (SDHI) fungicides are widely used for the control of a broad range of fungal diseases. This has been the most rapidly expanding fungicide group in terms of new molecules discovered and introduced for agricultural use over the past fifteen years. A particular pattern of differential sensitivity (resistance) to the stretched heterocycle amide SDHIs (SHA-SDHIs), a subclass of chemically-related SDHIs, was observed in naïve Zymoseptoria tritici populations not previously exposed to these chemicals. Subclass-specific resistance was confirmed at the enzyme level but did not correlate with the genotypes of the succinate dehydrogenase (SDH) encoding genes. Mapping and characterization of the molecular mechanisms responsible for standing SHA-SDHI resistance in natural field isolates identified a gene paralog of SDHC, termed ZtSDHC3, which encodes for an alternative C subunit of succinate dehydrogenase, named alt-SDHC. Using reverse genetics, we showed that alt-SDHC associates with the three other SDH subunits, leading to a fully functional enzyme and that a unique Qp-site residue within the alt-SDHC protein confers SHA-SDHI resistance. Enzymatic assays, computational modelling and docking simulations for the two SQR enzymes (altC-SQR, WT_SQR) enabled us to describe enzyme-inhibitor interactions at an atomistic level and to propose rational explanations for differential potency and resistance across SHA-SDHIs. European Z. tritici populations displayed a presence (20–30%) / absence polymorphism of ZtSDHC3, as well as differences in ZtSDHC3 expression levels and splicing efficiency. These polymorphisms have a strong impact on SHA-SDHI resistance phenotypes. Characterization of the ZtSDHC3 promoter in European Z. tritici populations suggests that transposon insertions are associated with the strongest resistance phenotypes. These results establish that a dispensable paralogous gene determines SHA-SDHIs fungicide resistance in natural populations of Z. tritici. This study paves the way to an increased awareness of the role of fungicidal target paralogs in resistance to fungicides and demonstrates the paramount importance of population genomics in fungicide discovery. Zymoseptoria tritici is the causal agent of Septoria tritici leaf blotch (STB) of wheat, the most devastating disease for cereal production in Europe. Multiple succinate dehydrogenase inhibitor (SDHI) fungicides have been developed and introduced for the control of STB. We report the discovery and detailed characterization of a paralog of the C subunit of the SDH enzyme conferring standing resistance towards the SHA-SDHIs, a particular chemical subclass of the SDHIs. The SDHC paralog is characterized by its presence/absence, expression and alternative splicing polymorphisms, which in turn influence resistance levels. The identified mechanisms exemplify the importance of population genomics for the discovery and rational design of the most adapted solutions.
Collapse
Affiliation(s)
| | - Marie Salat
- Syngenta Crop Protection AG, Stein, Switzerland
| | - Regula Frey
- Syngenta Crop Protection AG, Stein, Switzerland
| | | | | | - Dirk Balmer
- Syngenta Crop Protection AG, Stein, Switzerland
| | - Rasmus Hansen
- Syngenta Jealott’s Hill Int. Research Centre, Bracknell Berkshire, United Kingdom
| | - Stephanie Widdison
- Syngenta Jealott’s Hill Int. Research Centre, Bracknell Berkshire, United Kingdom
| | - Grace Logan
- Syngenta Jealott’s Hill Int. Research Centre, Bracknell Berkshire, United Kingdom
| | - Robert A. Dietrich
- Syngenta Biotechnology Inc., Research Triangle Park, North Carolina, United States of America
| | | | | | | | | | | |
Collapse
|
10
|
Otero L, Martínez-Rosales C, Barrera E, Pantano S, Salinas G. Complex I and II Subunit Gene Duplications Provide Increased Fitness to Worms. Front Genet 2019; 10:1043. [PMID: 31781156 PMCID: PMC6859908 DOI: 10.3389/fgene.2019.01043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/30/2019] [Indexed: 11/20/2022] Open
Abstract
Helminths use an alternative mitochondrial electron transport chain (ETC) under hypoxic conditions, such as those found in the gastrointestinal tract. In this alternative ETC, fumarate is the final electron acceptor and rhodoquinone (RQ) serves as an electron carrier. RQ receives electrons from reduced nicotinamide adenine dinucleotide through complex I and donates electrons to fumarate through complex II. In this latter reaction, complex II functions in the opposite direction to the conventional ETC (i.e., as fumarate reductase instead of succinate dehydrogenase). Studies in Ascaris suum indicate that this is possible due to changes in complex II, involving alternative succinate dehydrogenase (SDH) subunits SDHA and SDHD, derived from duplicated genes. We analyzed helminth genomes and found that distinct lineages have different gene duplications of complex II subunits (SDHA, SDHB, SDHC, and SDHD). Similarly, we found lineage-specific duplications in genes encoding complex I subunits that interact with quinones (NDUF2 and NDUF7). The phylogenetic analysis of ETC subunits revealed a complex history with independent evolutionary events involving gene duplications and losses. Our results indicated that there is not a common evolutionary event related to ETC subunit genes linked to RQ. The free-living nematode Caenorhabditis elegans uses RQ and has two genes encoding SDHA (sdha-1 and sdha-2) and two genes encoding NDUF2 (nduf2-1 and nduf2-2). sdha-1 and nduf2-1 are essential genes and have a similar expression pattern during C. elegans lifecycle. Using knockout strains, we found that sdha-2 and nduf2-2 are not essential, even in hypoxia. Yet, sdha-2 and nduf2-2 expression is increased in the early embryo and in dauer larvae, stages where there is low oxygen tension. Strikingly, sdha-1 and sdha-2 as well as nduf2-1 and nduf2-2 showed inverted expression profiles during the C. elegans life cycle. Finally, we found that sdha-2 and nduf2-2 knockout mutant strain progeny is affected. Our results indicate that different complex I and II subunit gene duplications provide increased fitness to worms.
Collapse
Affiliation(s)
- Lucía Otero
- Laboratorio de Biología de Gusanos, Unidad Mixta Departamento de Biociencias, Facultad de Química, Universidad de la República–Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Cecilia Martínez-Rosales
- Laboratorio de Biología de Gusanos, Unidad Mixta Departamento de Biociencias, Facultad de Química, Universidad de la República–Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Exequiel Barrera
- Laboratorio de Simulaciones Biomoleculares, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sergio Pantano
- Laboratorio de Simulaciones Biomoleculares, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gustavo Salinas
- Laboratorio de Biología de Gusanos, Unidad Mixta Departamento de Biociencias, Facultad de Química, Universidad de la República–Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
11
|
Antibodies against Schistosoma japonicum lactate dehydrogenase B enhance enzyme active. Mol Biochem Parasitol 2018; 226:1-8. [DOI: 10.1016/j.molbiopara.2018.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 11/18/2022]
|
12
|
Fumarate reductase superfamily: A diverse group of enzymes whose evolution is correlated to the establishment of different metabolic pathways. Mitochondrion 2017; 34:56-66. [PMID: 28088649 DOI: 10.1016/j.mito.2017.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/21/2016] [Accepted: 01/10/2017] [Indexed: 11/21/2022]
Abstract
Fumarate and succinate are known to be present in prebiotic systems essential for the origin of life. The fumarate and succinate interconversion reactions have been conserved throughout evolution and are found in all living organisms. The fumarate and succinate interconversion is catalyzed by the enzymes succinate dehydrogenase (SDH) and fumarate reductase (FRD). In this work we show that SDH and FRD are part of a group of enzymes that we propose to designate "fumarate reductase superfamily". Our results demonstrate that these enzymes emerged from a common ancestor and were essential in the development of metabolic pathways involved in energy transduction.
Collapse
|
13
|
The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. Genome Biol 2013; 14:R89. [PMID: 23985341 PMCID: PMC4053716 DOI: 10.1186/gb-2013-14-8-r89] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/28/2013] [Indexed: 01/23/2023] Open
Abstract
Background The barber's pole worm, Haemonchus contortus, is one of the most economically important parasites of small ruminants worldwide. Although this parasite can be controlled using anthelmintic drugs, resistance against most drugs in common use has become a widespread problem. We provide a draft of the genome and the transcriptomes of all key developmental stages of H. contortus to support biological and biotechnological research areas of this and related parasites. Results The draft genome of H. contortus is 320 Mb in size and encodes 23,610 protein-coding genes. On a fundamental level, we elucidate transcriptional alterations taking place throughout the life cycle, characterize the parasite's gene silencing machinery, and explore molecules involved in development, reproduction, host-parasite interactions, immunity, and disease. The secretome of H. contortus is particularly rich in peptidases linked to blood-feeding activity and interactions with host tissues, and a diverse array of molecules is involved in complex immune responses. On an applied level, we predict drug targets and identify vaccine molecules. Conclusions The draft genome and developmental transcriptome of H. contortus provide a major resource to the scientific community for a wide range of genomic, genetic, proteomic, metabolomic, evolutionary, biological, ecological, and epidemiological investigations, and a solid foundation for biotechnological outcomes, including new anthelmintics, vaccines and diagnostic tests. This first draft genome of any strongylid nematode paves the way for a rapid acceleration in our understanding of a wide range of socioeconomically important parasites of one of the largest nematode orders.
Collapse
|
14
|
Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AGM, Martin WF. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 2012; 76:444-95. [PMID: 22688819 PMCID: PMC3372258 DOI: 10.1128/mmbr.05024-11] [Citation(s) in RCA: 513] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified.
Collapse
Affiliation(s)
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Jaap J. van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Katrin Henze
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Christian Woehle
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Sven B. Gould
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Re-Young Yu
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Mark van der Giezen
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Aloysius G. M. Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - William F. Martin
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
15
|
Szeto SSW, Reinke SN, Oyedotun KS, Sykes BD, Lemire BD. Expression of Saccharomyces cerevisiae Sdh3p and Sdh4p paralogs results in catalytically active succinate dehydrogenase isoenzymes. J Biol Chem 2012; 287:22509-20. [PMID: 22573324 DOI: 10.1074/jbc.m112.344275] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Succinate dehydrogenase (SDH), also known as complex II, is required for respiratory growth; it couples the oxidation of succinate to the reduction of ubiquinone. The enzyme is composed of two domains. A membrane-extrinsic catalytic domain composed of the Sdh1p and Sdh2p subunits harbors the flavin and iron-sulfur cluster cofactors. A membrane-intrinsic domain composed of the Sdh3p and Sdh4p subunits interacts with ubiquinone and may coordinate a b-type heme. In many organisms, including Saccharomyces cerevisiae, possible alternative SDH subunits have been identified in the genome. S. cerevisiae contains one paralog of the Sdh3p subunit, Shh3p (YMR118c), and two paralogs of the Sdh4p subunit, Shh4p (YLR164w) and Tim18p (YOR297c). We cloned and expressed these alternative subunits. Shh3p and Shh4p were able to complement Δsdh3 and Δsdh4 deletion mutants, respectively, and support respiratory growth. Tim18p was unable to do so. Microarray and proteomics data indicate that the paralogs are expressed under respiratory and other more restrictive growth conditions. Strains expressing hybrid SDH enzymes have distinct metabolic profiles that we distinguished by (1)H NMR analysis of metabolites. Surprisingly, the Sdh3p subunit can form SDH isoenzymes with Sdh4p or with Shh4p as well as be a subunit of the TIM22 mitochondrial protein import complex.
Collapse
Affiliation(s)
- Samuel S W Szeto
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
16
|
Roschzttardtz H, Fuentes I, Vásquez M, Corvalán C, León G, Gómez I, Araya A, Holuigue L, Vicente-Carbajosa J, Jordana X. A nuclear gene encoding the iron-sulfur subunit of mitochondrial complex II is regulated by B3 domain transcription factors during seed development in Arabidopsis. PLANT PHYSIOLOGY 2009; 150:84-95. [PMID: 19261733 PMCID: PMC2675723 DOI: 10.1104/pp.109.136531] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 02/17/2009] [Indexed: 05/20/2023]
Abstract
Mitochondrial complex II (succinate dehydrogenase) is part of the tricarboxylic acid cycle and the respiratory chain. Three nuclear genes encode its essential iron-sulfur subunit in Arabidopsis (Arabidopsis thaliana). One of them, SUCCINATE DEHYDROGENASE2-3 (SDH2-3), is specifically expressed in the embryo during seed maturation, suggesting that SDH2-3 may have a role as the complex II iron-sulfur subunit during embryo maturation and/or germination. Here, we present data demonstrating that three abscisic acid-responsive elements and one RY-like enhancer element, present in the SDH2-3 promoter, are involved in embryo-specific SDH2-3 transcriptional regulation. Furthermore, we show that ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEAFY COTYLEDON2, three key B3 domain transcription factors involved in gene expression during seed maturation, control SDH2-3 expression. Whereas ABI3 and FUS3 interact with the RY element in the SDH2-3 promoter, the abscisic acid-responsive elements are shown to be a target for bZIP53, a member of the basic leucine zipper (bZIP) family of transcription factors. We show that group S1 bZIP53 protein binds the promoter as a heterodimer with group C bZIP10 or bZIP25. To the best of our knowledge, the SDH2-3 promoter is the first embryo-specific promoter characterized for a mitochondrial respiratory complex protein. Characterization of succinate dehydrogenase activity in embryos from two homozygous sdh2-3 mutant lines permits us to conclude that SDH2-3 is the major iron-sulfur subunit of mature embryo complex II. Finally, the absence of SDH2-3 in mutant seeds slows down their germination, pointing to a role of SDH2-3-containing complex II at an early step of germination.
Collapse
Affiliation(s)
- Hannetz Roschzttardtz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Morales J, Mogi T, Mineki S, Takashima E, Mineki R, Hirawake H, Sakamoto K, Omura S, Kita K. Novel mitochondrial complex II isolated from Trypanosoma cruzi is composed of 12 peptides including a heterodimeric Ip subunit. J Biol Chem 2009; 284:7255-63. [PMID: 19122194 PMCID: PMC2652292 DOI: 10.1074/jbc.m806623200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 01/02/2009] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial respiratory enzymes play a central role in energy production in aerobic organisms. They differentiated from the alpha-proteobacteria-derived ancestors by adding noncatalytic subunits. An exception is Complex II (succinate: ubiquinone reductase), which is composed of four alpha-proteobacteria-derived catalytic subunits (SDH1-SDH4). Complex II often plays a pivotal role in adaptation of parasites in host organisms and would be a potential target for new drugs. We purified Complex II from the parasitic protist Trypanosoma cruzi and obtained the unexpected result that it consists of six hydrophilic (SDH1, SDH2N, SDH2C, and SDH5-SDH7) and six hydrophobic (SDH3, SDH4, and SDH8-SDH11) nucleus-encoded subunits. Orthologous genes for each subunit were identified in Trypanosoma brucei and Leishmania major. Notably, the iron-sulfur subunit was heterodimeric; SDH2N and SDH2C contain the plant-type ferredoxin domain in the N-terminal half and the bacterial ferredoxin domain in the C-terminal half, respectively. Catalytic subunits (SDH1, SDH2N plus SDH2C, SDH3, and SDH4) contain all key residues for binding of dicarboxylates and quinones, but the enzyme showed the lower affinity for both substrates and inhibitors than mammalian enzymes. In addition, the enzyme binds protoheme IX, but SDH3 lacks a ligand histidine. These unusual features are unique in the Trypanosomatida and make their Complex II a target for new chemotherapeutic agents.
Collapse
Affiliation(s)
- Jorge Morales
- Department of Biomedical Chemistry, Graduate School of Medicine, the University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kawahara K, Mogi T, Tanaka TQ, Hata M, Miyoshi H, Kita K. Mitochondrial dehydrogenases in the aerobic respiratory chain of the rodent malaria parasite Plasmodium yoelii yoelii. J Biochem 2008; 145:229-37. [PMID: 19060309 DOI: 10.1093/jb/mvn161] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the intraerythrocytic stages of malaria parasites, mitochondria lack obvious cristae and are assumed to derive energy through glycolysis. For understanding of parasite energy metabolism in mammalian hosts, we isolated rodent malaria mitochondria from Plasmodium yoelii yoelii grown in mice. As potential targets for antiplasmodial agents, we characterized two respiratory dehydrogenases, succinate:ubiquinone reductase (complex II) and alternative NADH dehydrogenase (NDH-II), which is absent in mammalian mitochondria. We found that P. y. yoelii complex II was a four-subunit enzyme and that kinetic properties were similar to those of mammalian enzymes, indicating that the Plasmodium complex II is favourable in catalysing the forward reaction of tricarboxylic acid cycle. Notably, Plasmodium complex II showed IC(50) value for atpenin A5 three-order of magnitudes higher than those of mammalian enzymes. Divergence of protist membrane anchor subunits from eukaryotic orthologs likely affects the inhibitor resistance. Kinetic properties and sensitivity to 2-heptyl-4-hydroxyquinoline-N-oxide and aurachin C of NADH: ubiquinone reductase activity of Plasmodium NDH-II were similar to those of plant and fungus enzymes but it can oxidize NADPH and deamino-NADH. Our findings are consistent with the notion that rodent malaria mitochondria are fully capable of oxidative phosphorylation and that these mitochondrial enzymes are potential targets for new antiplasmodials.
Collapse
Affiliation(s)
- Kenji Kawahara
- Department of Biomedical Chemistry, Graduate School of Medicine, the University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Campbell BE, Nagaraj SH, Hu M, Zhong W, Sternberg PW, Ong EK, Loukas A, Ranganathan S, Beveridge I, McInnes RL, Hutchinson GW, Gasser RB. Gender-enriched transcripts in Haemonchus contortus--predicted functions and genetic interactions based on comparative analyses with Caenorhabditis elegans. Int J Parasitol 2007; 38:65-83. [PMID: 17707841 DOI: 10.1016/j.ijpara.2007.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 06/27/2007] [Accepted: 07/03/2007] [Indexed: 02/05/2023]
Abstract
In the present study, a bioinformatic-microarray approach was employed for the analysis of selected expressed sequence tags (ESTs) from Haemonchus contortus, a key parasitic nematode of small ruminants. Following a bioinformatic analysis of EST data using a semiautomated pipeline, 1885 representative ESTs (rESTs) were selected, to which oligonucleotides (three per EST) were designed and spotted on to a microarray. This microarray was hybridized with cyanine-dye labelled cRNA probes synthesized from RNA from female or male adults of H. contortus. Differential hybridisation was displayed for 301 of the 1885 rESTs ( approximately 16%). Of these, 165 (55%) had significantly greater signal intensities for female cRNA and 136 (45%) for male cRNA. Of these, 113 with increased signals in female or male H. contortus had homologues in Caenorhabditis elegans, predicted to function in metabolism, information storage and processing, cellular processes and signalling, and embryonic and/or larval development. Of the rESTs with no known homologues in C. elegans, 24 ( approximately 40%) had homologues in other nematodes, four had homologues in various other organisms and 30 (52%) had no homology to any sequence in current gene databases. A genetic interaction network was predicted for the C. elegans orthologues of the gender-enriched H. contortus genes, and a focused analysis of a subset revealed a tight network of molecules involved in amino acid, carbohydrate or lipid transport and metabolism, energy production and conversion, translation, ribosomal structure and biogenesis and, importantly, those associated with meiosis and/or mitosis in the germline during oogenesis or spermatogenesis. This study provides a foundation for the molecular, biochemical and functional exploration of selected molecules with differential transcription profiles in H. contortus, for further microarray analyses of transcription in different developmental stages of H. contortus, and for an extended functional analysis once the full genome sequence of this nematode is known.
Collapse
Affiliation(s)
- Bronwyn E Campbell
- Department of Veterinary Science, The University of Melbourne, Werribee, Vic. 3030, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Elorza A, Roschzttardtz H, Gómez I, Mouras A, Holuigue L, Araya A, Jordana X. A nuclear gene for the iron-sulfur subunit of mitochondrial complex II is specifically expressed during Arabidopsis seed development and germination. PLANT & CELL PHYSIOLOGY 2006; 47:14-21. [PMID: 16249327 DOI: 10.1093/pcp/pci218] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Three nuclear genes, SDH2-1, SDH2-2 and SDH2-3, encode the essential iron-sulfur subunit of mitochondrial complex II in Arabidopsis thaliana. SDH2-1 and SDH2-2 probably arose via a recent duplication event and we reported that both are expressed in all organs from adult plants. In contrast, transcripts from SDH2-3 were not detected. Here we present data demonstrating that SDH2-3 is specifically expressed during seed development. SDH2-3 transcripts appear during seed maturation, persist through desiccation, are abundant in dry seeds and markedly decline during germination. Analysis of transgenic Arabidopsis plants carrying the SDH2-3 promoter fused to the beta-glucuronidase reporter gene shows that the SDH2-3 promoter is activated in the embryo during maturation, from the bent-cotyledon stage. beta-Glucuronidase expression correlates with the appearance of endogenous SDH2-3 transcripts, suggesting that control of this nuclear gene is achieved through transcriptional regulation. Furthermore, progressive deletions of this promoter identified a 159 bp region (-223 to -65) important for SDH2-3 transcriptional activation in seeds. Interestingly, the SDH2-3 promoter remains active in embryonic tissues during germination and post-germinative growth, and is turned off in vegetative tissues (true leaves). In contrast to SDH2-3 transcripts, SDH2-1 and SDH2-2 transcripts are barely detected in dry seeds and increase during germination and post-germinative growth. The opposite expression patterns of SDH2 nuclear genes strongly suggest that during germination the embryo-specific SDH2-3 is replaced by SDH2-1 or SDH2-2 in mitochondrial complex II.
Collapse
Affiliation(s)
- Alvaro Elorza
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Casilla 114-D, Santiago
| | | | | | | | | | | | | |
Collapse
|
21
|
Elorza A, León G, Gómez I, Mouras A, Holuigue L, Araya A, Jordana X. Nuclear SDH2-1 and SDH2-2 genes, encoding the iron-sulfur subunit of mitochondrial complex II in Arabidopsis, have distinct cell-specific expression patterns and promoter activities. PLANT PHYSIOLOGY 2004; 136:4072-87. [PMID: 15563621 PMCID: PMC535838 DOI: 10.1104/pp.104.049528] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 09/16/2004] [Accepted: 10/04/2004] [Indexed: 05/18/2023]
Abstract
Three different nuclear genes encode the essential iron-sulfur subunit of mitochondrial complex II (succinate dehydrogenase) in Arabidopsis (Arabidopsis thaliana), raising interesting questions about their origin and function. To find clues about their role, we have undertaken a detailed analysis of their expression. Two genes (SDH2-1 and SDH2-2) that likely arose via a relatively recent duplication event are expressed in all organs from adult plants, whereas transcripts from the third gene (SDH2-3) were not detected. The tissue- and cell-specific expression of SDH2-1 and SDH2-2 was investigated by in situ hybridization. In flowers, both genes are regulated in a similar way. Enhanced expression was observed in floral meristems and sex organ primordia at early stages of development. As flowers develop, SDH2-1 and SDH2-2 transcripts accumulate in anthers, particularly in the tapetum, pollen mother cells, and microspores, in agreement with an essential role of mitochondria during anther development. Interestingly, in contrast to the situation in flowers, only SDH2-2 appears to be expressed at a significant level in root tips. Strong labeling was observed in all cell layers of the root meristematic zone, and a cell-specific pattern of expression was found with increasing distance from the root tip, as cells attain their differentiated state. Analysis of transgenic Arabidopsis plants carrying SDH2-1 and SDH2-2 promoters fused to the beta-glucuronidase reporter gene indicate that both promoters have similar activities in flowers, driving enhanced expression in anthers and/or pollen, and that only the SDH2-2 promoter is active in root tips. These beta-glucuronidase staining patterns parallel those obtained by in situ hybridization, suggesting transcriptional regulation of these genes. Progressive deletions of the promoters identified regions important for SDH2-1 expression in anthers and/or pollen and for SDH2-2 expression in anthers and/or pollen and root tips. Interestingly, regions driving enhanced expression in anthers are differently located in the two promoters.
Collapse
Affiliation(s)
- Alvaro Elorza
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
22
|
Roos MH, Otsen M, Hoekstra R, Veenstra JG, Lenstra JA. Genetic analysis of inbreeding of two strains of the parasitic nematode Haemonchus contortus. Int J Parasitol 2004; 34:109-15. [PMID: 14711596 DOI: 10.1016/j.ijpara.2003.10.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Haemonchus contortus is a sheep parasitic nematode that causes severe economic losses. Previous studies have indicated a high degree of genetic heterogeneity, which is hardly affected by selection for drug resistance. As a tool for the analysis of the population dynamics of H. contortus and its response to drug resistance, we designed a strategy to study the inbreeding of a benzimidazole-sensitive and a benzimidazole-resistant strain. After 15 generations, a theoretical inbreeding coefficient of 0.87 was achieved. The different stages of inbreeding were analysed using restriction fragment polymorphism, microsatellite variability and amplified fragment length polymorphism. Model-based clustering of the amplified fragment length polymorphism genotypes showed that the allele frequencies of the benzimidazole-resistant strain were stable during the last eight generations. In the sensitive strain a gradual shift of allele frequencies was observed, which led to a temporary increase of the genetic diversity around the eight generations.
Collapse
Affiliation(s)
- Marleen H Roos
- Department of Molecular Recognition, Institute for Animal Science and Health (ID-Lelystad), Lelystad, The Netherlands.
| | | | | | | | | |
Collapse
|
23
|
Nisbet AJ, Cottee P, Gasser RB. Molecular biology of reproduction and development in parasitic nematodes: progress and opportunities. Int J Parasitol 2004; 34:125-38. [PMID: 15037100 DOI: 10.1016/j.ijpara.2003.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 09/05/2003] [Accepted: 09/11/2003] [Indexed: 10/26/2022]
Abstract
Molecular biological research on the development and reproduction of parasites is of major significance for many fundamental and applied areas of medical and veterinary parasitology. Together with knowledge of parasite biology and epidemiology, the application of molecular tools and technologies provides unique opportunities for elucidating developmental and reproductive processes in helminths. This article focuses specifically on recent progress in studying the molecular mechanisms of development, sexual differentiation and reproduction in parasitic nematodes of socio-economic importance and comparative analyses, where appropriate, with the free-living nematode Caenorhabditis elegans. It also describes the implications of such work for understanding reproduction, tissue migration, hypobiosis, signal transduction and host-parasite interactions at the molecular level, and for seeking new means of parasite intervention.
Collapse
Affiliation(s)
- Alasdair J Nisbet
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | | | | |
Collapse
|
24
|
van Hellemond JJ, van der Klei A, van Weelden SWH, Tielens AGM. Biochemical and evolutionary aspects of anaerobically functioning mitochondria. Philos Trans R Soc Lond B Biol Sci 2003; 358:205-13; discussion 213-5. [PMID: 12594928 PMCID: PMC1693107 DOI: 10.1098/rstb.2002.1182] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondria are usually considered to be the powerhouses of the cell and to be responsible for the aerobic production of ATP. However, many eukaryotic organisms are known to possess anaerobically functioning mitochondria, which differ significantly from classical aerobically functioning mitochondria. Recently, functional and phylogenetic studies on some enzymes involved clearly indicated an unexpected evolutionary relationship between these anaerobically functioning mitochondria and the classical aerobic type. Mitochondria evolved by an endosymbiotic event between an anaerobically functioning archaebacterial host and an aerobic alpha-proteobacterium. However, true anaerobically functioning mitochondria, such as found in parasitic helminths and some lower marine organisms, most likely did not originate directly from the pluripotent ancestral mitochondrion, but arose later in evolution from the aerobic type of mitochondria after these were already adapted to an aerobic way of life by losing their anaerobic capacities. This review will focus on some biochemical and evolutionary aspects of these fermentative mitochondria, with special attention to fumarate reductase, the synthesis of the rhodoquinone involved, and the enzymes involved in acetate production (acetate : succinate CoA-transferase and succinyl CoA-synthetase).
Collapse
Affiliation(s)
- Jaap J van Hellemond
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, PO Box 80176, 3508 TD Utrecht, The Netherlands
| | | | | | | |
Collapse
|
25
|
Abstract
Biochemistry textbooks depict mitochondria as oxygen-dependent organelles, but many mitochondria can produce ATP without using any oxygen. In fact, several other types of mitochondria exist and they occur in highly diverse groups of eukaryotes - protists as well as metazoans - and possess an often overlooked diversity of pathways to deal with the electrons resulting from carbohydrate oxidation. These anaerobically functioning mitochondria produce ATP with the help of proton-pumping electron transport, but they do not need oxygen to do so. Recent advances in understanding of mitochondrial biochemistry provide many surprises and furthermore, give insights into the evolutionary history of ATP-producing organelles.
Collapse
Affiliation(s)
- Aloysius G M Tielens
- Dept of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, PO Box 80176, The Netherlands.
| | | | | | | |
Collapse
|
26
|
Kita K, Hirawake H, Miyadera H, Amino H, Takeo S. Role of complex II in anaerobic respiration of the parasite mitochondria from Ascaris suum and Plasmodium falciparum. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:123-39. [PMID: 11803022 DOI: 10.1016/s0005-2728(01)00237-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parasites have developed a variety of physiological functions necessary for existence within the specialized environment of the host. Regarding energy metabolism, which is an essential factor for survival, parasites adapt to low oxygen tension in host mammals using metabolic systems that are very different from that of the host. The majority of parasites do not use the oxygen available within the host, but employ systems other than oxidative phosphorylation for ATP synthesis. In addition, all parasites have a life cycle. In many cases, the parasite employs aerobic metabolism during their free-living stage outside the host. In such systems, parasite mitochondria play diverse roles. In particular, marked changes in the morphology and components of the mitochondria during the life cycle are very interesting elements of biological processes such as developmental control and environmental adaptation. Recent research has shown that the mitochondrial complex II plays an important role in the anaerobic energy metabolism of parasites inhabiting hosts, by acting as quinol-fumarate reductase.
Collapse
Affiliation(s)
- Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
27
|
Gasser RB, Newton SE. Genomic and genetic research on bursate nematodes: significance, implications and prospects. Int J Parasitol 2000; 30:509-34. [PMID: 10731573 DOI: 10.1016/s0020-7519(00)00021-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular genetic research on parasitic nematodes (order Strongylida) is of major significance for many fundamental and applied areas of medical and veterinary parasitology. The advent of gene technology has led to some progress for this group of nematodes, particularly in studying parasite systematics, drug resistance and population genetics, and in the development of diagnostic assays and the characterisation of potential vaccine and drug targets. This paper gives an account of the molecular biology and genetics of strongylid nematodes, mainly of veterinary socio-economic importance, indicates the implications of such research and gives a perspective on genome research for this important parasite group, in light of recent technological advances and knowledge of the genomes of other metazoan organisms.
Collapse
Affiliation(s)
- R B Gasser
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria, Australia.
| | | |
Collapse
|
28
|
Amino H, Wang H, Hirawake H, Saruta F, Mizuchi D, Mineki R, Shindo N, Murayama K, Takamiya S, Aoki T, Kojima S, Kita K. Stage-specific isoforms of Ascaris suum complex. II: The fumarate reductase of the parasitic adult and the succinate dehydrogenase of free-living larvae share a common iron-sulfur subunit. Mol Biochem Parasitol 2000; 106:63-76. [PMID: 10743611 DOI: 10.1016/s0166-6851(99)00200-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Complex II of adult Ascaris suum muscle exhibits high fumarate reductase (FRD) activity and plays a key role in anaerobic electron-transport during adaptation to their microaerobic habitat. In contrast, larval (L2) complex II shows a much lower FRD activity than the adult enzyme, and functions as succinate dehydrogenase (SDH) in aerobic respiration. We have reported the stage-specific isoforms of complex II in A. suum mitochondria, and showed that at least the flavoprotein subunit (Fp) and the small subunit of cytochrome b (cybS) of the larval complex II differ from those of adult. In the present study, complete cDNAs for the iron-sulfur subunit (Ip) of complex II, which with Fp forms the catalytic portion of complex II, have been cloned and sequenced from anaerobic adult A. suum, and the free-living nematode, Caenorhabditis elegans. The amino acid sequences of the Ip subunits of these two nematodes are similar, particularly around the three cysteine-rich regions that are thought to comprise the iron-sulfur clusters of the enzyme. The Ip from A. suum larvae was also characterized because Northern hybridization showed that the adult Ip is also expressed in L2. The Ip of larval complex II was recognized by the antibody against adult Ip, and was indistinguishable from the adult Ip by peptide mapping. The N-terminal 42 amino acid sequence of Ip in the larval complex II purified by DEAE-cellulofine column chromatography was identical to that of the mature form of the adult Ip. Furthermore, the amino acid composition of larval Ip determined by micro-analysis on a PVDF membrane is almost the same as that of adult Ip. These results, together with the fact, that homology probing by RT-PCR, using degenerated primers, failed to find a larval-specific Ip, suggest that the two different stage-specific forms of the A. suum complex II share a common Ip subunit, even though the adult enzyme functions as a FRD, while larval enzyme acts as an SDH.
Collapse
Affiliation(s)
- H Amino
- Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tielens AG, Van Hellemond JJ. The electron transport chain in anaerobically functioning eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1365:71-8. [PMID: 9693724 DOI: 10.1016/s0005-2728(98)00045-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many lower eukaryotes can survive anaerobic conditions via a fermentation pathway that involves the use of the reduction of endogenously produced fumarate as electron sink. This fumarate reduction is linked to electron transport in an especially adapted, anaerobically functioning electron-transport chain. An aerobic energy metabolism with Krebs cycle activity is accompanied by electron transfer from succinate to ubiquinone via complex II of the respiratory chain. On the other hand, in an anaerobic metabolism, where fumarate functions as terminal electron acceptor, electrons are transferred from rhodoquinone to fumarate, which is the reversed direction. Ubiquinone cannot replace rhodoquinone in the process of fumarate reduction in vivo, as ubiquinone can only accept electrons from complex II and cannot donate them to fumarate. Rhodoquinone, with its lower redox potential than ubiquinone, is capable of donating electrons to fumarate. Eukaryotic fumarate reductases were shown to interact with rhodoquinone (a benzoquinone), whereas most prokaryotic fumarate reductases interact with the naphtoquinones menaquinone and demethylmenaquinone. Fumarate reductase, the enzyme essential for the anaerobic functioning of many eukaryotes, is structurally very similar to succinate dehydrogenase, the Krebs cycle enzyme catalysing the reverse reaction. In prokaryotes these enzymes are differentially expressed depending on the external conditions. Evidence is now emerging that also in eukaryotes two different enzymes exist for succinate oxidation and fumarate reduction that are differentially expressed.
Collapse
Affiliation(s)
- A G Tielens
- Laboratory of Veterinary Biochemistry, Utrecht University, The Netherlands.
| | | |
Collapse
|
30
|
Scheffler IE. Molecular genetics of succinate:quinone oxidoreductase in eukaryotes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 60:267-315. [PMID: 9594577 DOI: 10.1016/s0079-6603(08)60895-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Succinate:quinone oxidoreductase is a membrane-associated complex in mitochondria, often referred to as complex II, based on the fractionation scheme developed by Y. Hatefi and colleagues. It consists of four peptides, two of which are integral membrane proteins (15 and 12-13 kDa, respectively) and two others that are peripheral membrane proteins, i.e., a flavoprotein (Fp, 70 kDa) and an iron-protein (Ip, 27 kDa). The mature, functional complex contains a cytochrome in association with the membrane proteins, a flavin linked covalently to the largest peptide, and three iron-sulfur clusters in the 27-kDa subunit. The present review touches only briefly on the biochemical and biophysical properties of this complex. Instead, the focus is on the molecular-genetic studies that have become possible since the first genes from eukaryotes were cloned in 1989. The evolutionary conservation of the amino acid sequence of both the Fp and the Ip peptides has facilitated the cloning of these genes from a large variety of eukaryotic organisms by PCR-based methods. The review addresses questions related to the regulation of the expression of these genes, with an emphasis on mammals and yeast, for which most of the information is available. Four different genes have to be co-ordinately regulated. Transcriptional as well as posttranscriptional regulatory mechanisms have been observed in diverse organisms. Intriguing observations have been made in studies of this enzyme during the life cycle of organisms existing alternately under aerobic and anaerobic conditions. Naturally occurring or induced mutations in these genes have shed light on several questions related to the assembly of this complex, and on the relationship between structure and function. Four different peptides are imported into the mitochondria. They have to be modified, folded, and assembled. The stage is set for the exploration of highly specific changes introduced by site-directed mutagenesis. Until recently the genes were believed to be exclusively nuclear in all eukaryotes, but exceptions have since been found. This finding has relevance in the discussion of the evolution of mitochondria from prokaryotes. A highly conserved set of genes is found in prokaryotes, and some informative comparisons on gene organization and expression in prokaryotes and eukaryotes have been included.
Collapse
Affiliation(s)
- I E Scheffler
- Department of Biology, University of California, San Diego 92093, USA
| |
Collapse
|
31
|
Irie T, Honda Y, Matsuyama T, Watanabe T, Kuwahara M. Cloning and characterization of the gene encoding the iron-sulfur protein of succinate dehydrogenase from Pleurotus ostreatus. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1396:27-31. [PMID: 9524211 DOI: 10.1016/s0167-4781(97)00203-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genomic and cDNA fragments encoding the iron-sulfur protein (Ip) subunit of dehydrogenase (EC 1.3.99.1) have been cloned from the edible basidiomycetous fungus, Pleurotus ostreatus. The gene is interrupted by five introns and is predicted to encode a polypeptide of 268 amino acid residues. Sequence comparison with the Ip subunit from other species identified three conserved cysteine-rich clusters. One of these contains a critical histidine residue implicated in carboxin sensitivity in the heterobasidiomycete Ustilago maydis.
Collapse
Affiliation(s)
- T Irie
- Wood Research Institute, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
32
|
Hoekstra R, Borgsteede FH, Boersema JH, Roos MH. Selection for high levamisole resistance in Haemonchus contortus monitored with an egg-hatch assay. Int J Parasitol 1997; 27:1395-400. [PMID: 9421730 DOI: 10.1016/s0020-7519(97)00126-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To investigate the characteristics of selection for levamisole resistance in Haemonchus contortus, the consecutive nematode generations of an in vivo selection were monitored with a newly developed egg-hatch assay. The in vivo selection was started with a population not previously exposed to any anthelmintics (SHS). At first, the levamisole resistance progressed gradually in successive nematode generations by treating sheep with increasing doses of levamisole, the initial dose being 1 mg kg-1. Treatment with 5 mg kg-1 levamisole resulted, however, in a steep increase of resistance. The selection was ended after six generations, since a level of 30 mg kg-1 levamisole, which is not far from the toxic level for sheep, was reached. The final population, RHS6, was studied in a controlled test. Treatment of RHS6-infected sheep with 30 mg kg-1 levamisole caused an 80% decrease of faecal egg output, and a reduction of 34% in worm numbers. It was remarkable that only the number of female adults was reduced. RHS6 showed a reduced viability, but a fertility similar to the starting population SHS.
Collapse
Affiliation(s)
- R Hoekstra
- Department of Molecular Recognition, Institute for Animal Science and Health (ID-DLO), Lelystad, The Netherlands.
| | | | | | | |
Collapse
|
33
|
Hägerhäll C. Succinate: quinone oxidoreductases. Variations on a conserved theme. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1320:107-41. [PMID: 9210286 DOI: 10.1016/s0005-2728(97)00019-4] [Citation(s) in RCA: 304] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- C Hägerhäll
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia 19104, USA.
| |
Collapse
|
34
|
Hoekstra R, Visser A, Wiley LJ, Weiss AS, Sangster NC, Roos MH. Characterization of an acetylcholine receptor gene of Haemonchus contortus in relation to levamisole resistance. Mol Biochem Parasitol 1997; 84:179-87. [PMID: 9084038 DOI: 10.1016/s0166-6851(96)02793-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The anthelminitic drug levamisole is thought to bind to nicotinic acetylcholine receptors of nematodes. It is possible that resistance to this drug is associated with either a change in binding characteristics or a reduction in the number of nicotinic acetylcholine receptors. Therefore, the molecular mechanism of levamisole resistance in the parasitic nematode Haemonchus contortus was studied by isolating and characterising cDNA clones encoding a putative ligand binding nicotinic acetylcholine receptor subunit, HCAl, of two susceptible and one levamisole resistant population. Hcal is related to unc-38, a nicotinic acetylcholine receptor subunit gene associated with levamisole resistance in Caenorhabditis elegans. Although extensive sequence analyses of hcal sequences revealed polymorphism at amino acid level, no association with levamisole resistance could be detected. Restriction fragment length polymorphism analyses confirmed that, although polymorphism was detected, no selection of a specific allele of hcal has taken place during selection for levamisole resistance in various levamisole resistant populations.
Collapse
Affiliation(s)
- R Hoekstra
- Department of Molecular Recognition, Institute for Animal Science and Health (ID-DLO), Lelystad, The Netherlands
| | | | | | | | | | | |
Collapse
|
35
|
Van Hellemond JJ, Luijten M, Flesch FM, Gaasenbeek CP, Tielens AG. Rhodoquinone is synthesized de novo by Fasciola hepatica. Mol Biochem Parasitol 1996; 82:217-26. [PMID: 8946387 DOI: 10.1016/0166-6851(96)02738-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Most adult parasitic helminths have an anaerobic energy metabolism in which fumarate is reduced to succinate by fumarate reductase. Rhodoquinone (RQ) is an essential component of the electron transport associated with this fumarate reduction, whereas ubiquinone (UQ) is used in the aerobic energy metabolism of parasites. Not known yet, however, is the RQ and UQ composition during the entire life cycle nor the origin of RQ in parasitic helminths. This report demonstrates the essential function of RQ in anaerobic energy metabolism during the entire life cycle of Fasciola hepatica, as the amount of RQ present reflected the importance of fumarate reduction in various stages. We also studied the origin of RQ, as earlier studies on the protozoan Euglena gracilis suggested that RQ is synthesized from UQ. Therefore, in parasitic helminths RQ might be synthesized by modification of UQ obtained from the host. However, we demonstrated that in F. hepatica adults RQ was not produced by modification of UQ obtained from the host but that RQ was synthesized de novo, as (i) the chain-length of the quinones of F. hepatica adults was not related to the chain length of the quinone of the host, (ii) despite many attempts we could never detect any in vitro conversion of UQ9 into RQ9 or into UQ10, neither by intact adult flukes nor by homogenates of F. hepatica adults and (iii) F. hepatica adults used mevalonate as precursor for the synthesis of RQ. We also showed that the rate of quinone synthesis in F. hepatica adults was comparable to that in the free-living nematode Caenorhabditis elegans. These results prompted the suggestion that RQ is synthesized via a pathway nearly identical to that of UQ biosynthesis: possibly only the last reaction differs.
Collapse
Affiliation(s)
- J J Van Hellemond
- Laboratory of Veterinary Biochemistry, Utrecht University, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
Klein BY, Gal I, Libergal M, Ben-Bassat H. Opposing effects on mitochondrial membrane potential by malonate and levamisole, whose effect on cell-mediated mineralization is antagonistic. J Cell Biochem 1996; 60:139-47. [PMID: 8825423 DOI: 10.1002/(sici)1097-4644(19960101)60:1<139::aid-jcb16>3.0.co;2-k] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The act of chondrocyte preparation for primary, enchondral, mineralization is associated with a decline in mitochondrial respiration toward the end of the proliferative zone and the hypertrophic zone in the growth plate. Dexamethasone (Dex)-stimulated cultures of rat marrow stroma constitute a differentiation model simulating, in its energy metabolism, chondrocyte mineralization. In this model, early inhibition of succinate dehydrogenase (SDH) enriches the culture with mineralizing cells, whereas levamisole inhibits mineralization. Dex also increases mitochondrial membrane potential in stromal cells, especially on days 7-8 of stimulation. In the present study, suicide inhibition of SDH, by nitropropionic acid (NPA), in Dex-stimulated cells showed a dose-dependent increase in day 21 mineralization; the maximal effect was induced on days 2-4 of stimulation. Mineralization under 2-day-long exposure to NPA showed a similar trend to the previously studied effect of continuous exposure to malonate applied between days 3-11. Unlike malonate, the effect of NPA required its presence in the cultures for only 2 days and resulted in higher mineralization than that seen under 8 days of malonate. NPA delineated a period, days 2/4 to 7/9, in which inhibition of succinate oxidation is necessary to augment mineralization. During this period, NPA also exhibited OPC selection capacity. Early application of levamisole, under conditions previously shown to decrease day 21 mineralization, maintained mitochondrial membrane potential at the beginning of Dex stimulation but decreased or had little effect on it during days 5-10. By contrast, malonate previously found to increase day 21 mineralization decreased the membrane potential at the beginning of Dex stimulation but increased it later on day 7, or during days 5-10. These results indicate that during osteoprogenitor differentiation, before the mineralization stage, a surge in mitochondrial inner membrane potential during late matrix maturation may be a marker that heralds the extracellular matrix mineralization.
Collapse
Affiliation(s)
- B Y Klein
- Orthopedic Department (B.Y.K.,M.L.), Hadassah University Medical Center, Jerusalem, Israel
| | | | | | | |
Collapse
|
37
|
Van Hellemond JJ, Klockiewicz M, Gaasenbeek CP, Roos MH, Tielens AG. Rhodoquinone and complex II of the electron transport chain in anaerobically functioning eukaryotes. J Biol Chem 1995; 270:31065-70. [PMID: 8537365 DOI: 10.1074/jbc.270.52.31065] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Many anaerobically functioning eukaryotes have an anaerobic energy metabolism in which fumarate is reduced to succinate. This reduction of fumarate is the opposite reaction to succinate oxidation catalyzed by succinate-ubiquinone oxidoreductase, complex II of the aerobic respiratory chain. Prokaryotes are known to contain two distinct enzyme complexes and distinct quinones, menaquinone and ubiquinone (Q), for the reduction of fumarate and the oxidation of succinate, respectively. Parasitic helminths are also known to contain two different quinones, Q and rhodoquinone (RQ). This report demonstrates that RQ was present in all examined eukaryotes that reduce fumarate during anoxia, not only in parasitic helminths, but also in freshwater snails, mussels, lugworms, and oysters. It was shown that the measured RQ/Q ratio correlated with the importance of fumarate reduction in vivo. This is the first demonstration of the role of RQ in eukaryotes, other than parasitic helminths. Furthermore, throughout the development of the liver fluke Fasciola hepatica, a strong correlation was found between the quinone composition and the type of metabolism: the amount of Q was correlated with the use of the aerobic respiratory chain, and the amount of RQ with the use of fumarate reduction. It can be concluded that RQ is an essential component for fumarate reduction in eukaryotes, in contrast to prokaryotes, which use menaquinone in this process. Analyses of enzyme kinetics, as well as the known differences in primary structures of prokaryotic and eukaryotic complexes that reduce fumarate, support the idea that fumarate-reducing eukaryotes possess an enzyme complex for the reduction of fumarate, structurally related to the succinate dehydrogenase-type complex II, but with the functional characteristics of the prokaryotic fumarate reductases.
Collapse
Affiliation(s)
- J J Van Hellemond
- Laboratory of Veterinary Biochemistry, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Au HC, Ream-Robinson D, Bellew LA, Broomfield PL, Saghbini M, Scheffler IE. Structural organization of the gene encoding the human iron-sulfur subunit of succinate dehydrogenase. Gene X 1995; 159:249-53. [PMID: 7622059 DOI: 10.1016/0378-1119(95)00162-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The iron-sulfur protein (Ip) subunit of succinate dehydrogenase (SDH and complex II) of the respiratory chain is highly conserved in evolution [Gould et al., Proc. Natl. Acad. Sci. USA 86 (1989) 1934-1938]. We have cloned the entire human Ip cDNA, as well as the Ip-encoding gene (SDH-B) from two genomic human libraries. The cDNA contains a coding sequence of 840 nt, flanked by a 5'-UTR of 133 nt and a 3'-UTR of 123 nt. The entire transcript is encoded by eight exons within approx. 40 kb. The seven introns range in size from 0.75 kb to > 11 kb, and they appear to be of the 'late' intron class. Approx. 5 kb of upstream sequence was also cloned, and approx. 2.4 kb of the promoter region were sequenced and analyzed for consensus elements binding potential transcription factors and transcriptional activators.
Collapse
Affiliation(s)
- H C Au
- Department of Biology, University of California at San Diego, La Jolla 92093-0322, USA
| | | | | | | | | | | |
Collapse
|
39
|
Kuramochi T, Kita K, Takamiya S, Kojima S, Hayasaki M. Comparative study and cDNA cloning of the flavoprotein subunit of mitochondrial complex II (succinate-ubiquinone oxidoreductase: fumarate reductase) from the dog heartworm, Dirofilaria immitis. Comp Biochem Physiol B Biochem Mol Biol 1995; 111:491-502. [PMID: 7613771 DOI: 10.1016/0305-0491(95)00022-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mitochondrial complex II functions as a fumarate reductase (FRD), the reverse reaction of succinate dehydrogenase (SDH), and plays an important role in the anaerobic respiratory chain of parasitic helminths. In this study, complex II from the dog heartworm, Dirofilaria immitis adult, which is thought to act as a homolactatic fermenter, was examined in terms of its enzymatic features and primary structure in order to investigate the possible role of mitochondria in this filaria. Mitochondria from D. immitis adult showed high FRD activity when the enzymatic assay was performed using methylviologen as an artificial electron donor. The ratio of SDH to FRD in D. immitis was comparable to that in Ascaris suum adult, which is known to have an anaerobic mitochondrial respiratory chain with a high FRD activity of complex II. The FRD activity of D. immitis mitochondria was inhibited by the sulfhydryl reagent N-ethylmaleimide (NEM), while that of A. suum complex II was resistant to this inhibitor. The presence of the flavoprotein (Fp) subunit, which contains the substrate binding active site, was confirmed in D. immitis mitochondria by immunoblotting using a monoclonal antibody against the A. suum Fp subunit. By homology probing with the polymerase chain reaction, the entire cDNA for the D. immitis adult Fp was cloned and sequenced. The deduced amino acid sequence showed significant homology to that of A. suum and other mitochondrial Fps, in contrast to much less similarity to bacterial FRD, even though the D. immitis complex II showed high FRD activity. These results are the first indication of the presence of a functional complex II in D. immitis mitochondria.
Collapse
Affiliation(s)
- T Kuramochi
- Department of Veterinary Internal Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Japan
| | | | | | | | | |
Collapse
|
40
|
Kooyman FN, Eysker M. Analysis of proteins related to conditioning for arrested development and differentiation in Haemonchus contortus by two-dimensional gel electrophoresis. Int J Parasitol 1995; 25:561-8. [PMID: 7635634 DOI: 10.1016/0020-7519(94)00161-g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The abundance of the majority of proteins of infectious third-stage larvae (L3) of Haemonchus contortus, conditioned for arrested development, remained unaltered. Only seven proteins showed quantitative differences as observed by two-dimensional gel electrophoresis. These differences were also observed in a laboratory strain which has lost the ability for arrested development. The abundance of two of these proteins increased dramatically during conditioning of larvae for 5-10 weeks. This coincided with the highest percentage of inhibited larvae in experimental infections. Moreover, the abundance of these proteins decreased again after prolonged conditioning (22 weeks). The abundance of the other 5 proteins was not correlated to the percentage of inhibition. We therefore conclude that these proteins are involved in the aging process of larvae. The changes in protein between free-living (L3) and parasitic stages (L4) were large and seem to reflect the large environmental changes experienced by the larvae when entering a mammalian host. Early fourth- (EL4) and late fourth- (LL4) stage larvae differed in 9 proteins. One protein was stage-specific for EL4. These results imply that only minor alterations do occur in these stages notwithstanding the large morphological differences between these larvae.
Collapse
Affiliation(s)
- F N Kooyman
- Department of Parasitology and Tropical Veterinary Medicine, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | | |
Collapse
|
41
|
Van Hellemond JJ, Tielens AG. Expression and functional properties of fumarate reductase. Biochem J 1994; 304 ( Pt 2):321-31. [PMID: 7998964 PMCID: PMC1137495 DOI: 10.1042/bj3040321] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J J Van Hellemond
- Laboratory of Veterinary Biochemistry, Utrecht University, The Netherlands
| | | |
Collapse
|