1
|
Mohammed M, Dziedziech A, Sekar V, Ernest M, Alves E Silva TL, Balan B, Emami SN, Biryukova I, Friedländer MR, Jex A, Jacobs-Lorena M, Henriksson J, Vega-Rodriguez J, Ankarklev J. Single-Cell Transcriptomics To Define Plasmodium falciparum Stage Transition in the Mosquito Midgut. Microbiol Spectr 2023; 11:e0367122. [PMID: 36847501 PMCID: PMC10100735 DOI: 10.1128/spectrum.03671-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/05/2023] [Indexed: 03/01/2023] Open
Abstract
Malaria inflicts the highest rate of morbidity and mortality among the vector-borne diseases. The dramatic bottleneck of parasite numbers that occurs in the gut of the obligatory mosquito vector provides a promising target for novel control strategies. Using single-cell transcriptomics, we analyzed Plasmodium falciparum development in the mosquito gut, from unfertilized female gametes through the first 20 h after blood feeding, including the zygote and ookinete stages. This study revealed the temporal gene expression of the ApiAP2 family of transcription factors and of parasite stress genes in response to the harsh environment of the mosquito midgut. Further, employing structural protein prediction analyses, we found several upregulated genes predicted to encode intrinsically disordered proteins (IDPs), a category of proteins known for their importance in regulation of transcription, translation, and protein-protein interactions. IDPs are known for their antigenic properties and may serve as suitable targets for antibody- or peptide-based transmission suppression strategies. In total, this study uncovers the P. falciparum transcriptome from early to late parasite development in the mosquito midgut, inside its natural vector, which provides an important resource for future malaria transmission-blocking initiatives. IMPORTANCE The malaria parasite Plasmodium falciparum causes more than half a million deaths per year. The current treatment regimen targets the symptom-causing blood stage inside the human host. However, recent incentives in the field call for novel interventions to block parasite transmission from humans to the mosquito vector. Therefore, we need to better understand the parasite biology during its development inside the mosquito, including a deeper understanding of the expression of genes controlling parasite progression during these stages. Here, we have generated single-cell transcriptome data, covering P. falciparum's development, from gamete to ookinete inside the mosquito midgut, uncovering previously untapped parasite biology, including a repertoire of novel biomarkers to be explored in future transmission-blocking efforts. We anticipate that our study provides an important resource, which can be further explored to improve our understanding of the parasite biology as well as aid in guiding future malaria intervention strategies.
Collapse
Affiliation(s)
- Mubasher Mohammed
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Alexis Dziedziech
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Vaishnovi Sekar
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Medard Ernest
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Thiago Luiz Alves E Silva
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Balu Balan
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - S. Noushin Emami
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Inna Biryukova
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marc R. Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Aaron Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Johan Henriksson
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Joel Vega-Rodriguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Johan Ankarklev
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Microbial Single Cell Genomics, Department of Cell and Molecular Biology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Deshmukh AS, Srivastava S, Dhar SK. Plasmodium falciparum: epigenetic control of var gene regulation and disease. Subcell Biochem 2013; 61:659-682. [PMID: 23150271 DOI: 10.1007/978-94-007-4525-4_28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plasmodium falciparum, one of the deadliest parasites on earth causes human malaria resulting one million deaths annually. Central to the parasite pathogenicity and morbidity is the switching of parasite virulence (var) gene expression causing host immune evasion. The regulation of Plasmodium var gene expression is poorly understood. The complex life cycle of Plasmodium and mutually exclusive expression pattern of var genes make this disease difficult to control. Recent studies have demonstrated the pivotal role of epigenetic mechanism for control of coordinated expression of var genes, important for various clinical manifestations of malaria. In this review, we discuss about different Plasmodium histones and their various modifications important for gene expression and gene repression.Contribution of epigenetic mechanism to understand the var gene expression is also highlighted. We also describe in details P. falciparum nuclear architecture including heterochromatin, euchromatin and telomeric regions and their importance in subtelomeric and centrally located var gene expression. Finally, we explore the possibility of using Histone Acetyl Transferase (HAT) and Histone Deacetylase (HDAC)inhibitors against multi-drug resistance malaria parasites to provide another line of treatment for malaria.
Collapse
Affiliation(s)
- Abhijit S Deshmukh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | | |
Collapse
|
3
|
Structural insights into the Plasmodium falciparum histone deacetylase 1 (PfHDAC-1): A novel target for the development of antimalarial therapy. Bioorg Med Chem 2008; 16:5254-65. [DOI: 10.1016/j.bmc.2008.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 02/27/2008] [Accepted: 03/03/2008] [Indexed: 11/20/2022]
|
4
|
Miao J, Fan Q, Cui L, Li J, Li J, Cui L. The malaria parasite Plasmodium falciparum histones: organization, expression, and acetylation. Gene 2006; 369:53-65. [PMID: 16410041 DOI: 10.1016/j.gene.2005.10.022] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 10/08/2005] [Accepted: 10/11/2005] [Indexed: 10/25/2022]
Abstract
Histones are the building units of nucleosomes and play essential roles in DNA replication, repair and transcription. A comprehensive analysis of histone genes revealed that the Plasmodium falciparum genome encodes a canonical form of each core histone and four histone variants H2A.Z, H3.3, centromere-specific H3 (CenH3), and H2Bv. Mass spectrometry confirmed the synthesis of all histones except CenH3. Real-time reverse transcriptase-polymerase chain reaction and immunoblotting detected a dramatic increase in core histone gene expression during the late trophozoite stages, consistent with their role in replication-related nucleosome assembly. In contrast, the expression of variant histones decreased in mid- or late trophozoite stages. The N-terminal tails of histones participate in transcription regulation through covalent modifications, especially at the lysine residues. In accordance, mass spectrometry analysis revealed acetylation of lysines and methylation of lysines and arginines in the N-termini of H3, H3.3, and H4. Moreover, we identified a new pattern of lysine modifications of the H2A.Z variant. Using a panel of acetylation-specific antibodies, we found that K5, K8, and K12 of H4 were abundantly acetylated at a relatively steady level throughout the erythrocytic cycle. In comparison, the H3-K9 acetylation increased in late trophozoite and schizont stages, while H4-K16 acetylation peaked in mid-trophozoite stage. We have also shown that despite the sequence divergence in the PfH3 N-terminus from their mammalian homologues, the recombinant PfH3 was still efficiently acetylated by both recombinant and native PfGCN5 at K9 and K14. This study suggests that histone replacement and the dynamic histone modifications play important roles in regulating gene expression during erythrocytic development of the malaria parasite.
Collapse
Affiliation(s)
- Jun Miao
- Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
5
|
Meissner M, Soldati D. The transcription machinery and the molecular toolbox to control gene expression in Toxoplasma gondii and other protozoan parasites. Microbes Infect 2005; 7:1376-84. [PMID: 16087378 DOI: 10.1016/j.micinf.2005.04.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 04/28/2005] [Accepted: 04/29/2005] [Indexed: 02/06/2023]
Abstract
The phylum of Apicomplexa groups a large variety of obligate intracellular protozoan parasites that exhibit complicated life cycles, involving transmission and differentiation within and between different hosts. Little is known about the level of regulation and the nature of the factors controlling gene expression throughout their life stages. Unravelling the mechanisms that govern gene regulation is critical for the development of adequate tools to manipulate these parasites and modulate gene expression, in order to study their function in molecular terms in vivo. A comparative analysis of the transcriptional machinery of several apicomplexan genomes and other protozoan parasites has revealed the existence of a primitive eukaryotic transcription apparatus consisting only of a subset of the general transcription factors found in higher eukaryotes. These findings have some direct implications on development of tools.
Collapse
Affiliation(s)
- Markus Meissner
- Hygieneinstitut, abteilung parasitologie, universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | | |
Collapse
|
6
|
Przyborski JM, Lanzer M. Protein transport and trafficking inPlasmodium falciparum-infected erythrocytes. Parasitology 2004; 130:373-88. [PMID: 15830811 DOI: 10.1017/s0031182004006729] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The human malarial parasitePlasmodium falciparumextensively modifies its host erythrocyte, and to this end, is faced with an interesting challenge. It must not only sort proteins to common organelles such as endoplasmic reticulum, Golgi and mitochondria, but also target proteins across the ‘extracellular’ cytosol of its host cell. Furthermore, as a member of the phylum Apicomplexa, the parasite has to sort proteins to novel organelles such as the apicoplast, micronemes and rhoptries. In order to overcome these difficulties, the parasite has created a novel secretory system, which has been characterized in ever-increasing detail in the past decade. Along with the ‘hardware’ for a secretory system, the parasite also needs to ‘program’ proteins to enable high fidelity sorting to their correct subcellular location. The nature of these sorting signals has remained until relatively recently, enigmatic. Experimental work has now begun to dissect the sorting signals responsible for correct subcellular targeting of parasite-encoded proteins. In this review we summarize the current understanding of such signals, and comment on their role in protein sorting in this organism, which may become a model for the study of novel protein trafficking mechanisms.
Collapse
Affiliation(s)
- J M Przyborski
- Hygiene Institute, Department of Parasitology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | | |
Collapse
|
7
|
Rawat DS, Sharma I, Jalah R, Lomash S, Kothekar V, Pasha ST, Sharma YD. Identification, expression, modeled structure and serological characterization of Plasmodium vivax histone 2B. Gene 2004; 337:25-35. [PMID: 15276199 DOI: 10.1016/j.gene.2004.03.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Revised: 02/28/2004] [Accepted: 03/29/2004] [Indexed: 11/19/2022]
Abstract
Histones play important role in DNA packaging, replication and gene expression. Here, we describe the isolation and characterization of histone 2B (PvH2B) gene from the most common but non-cultivable human malaria parasite Plasmodium vivax. The isolated cDNA clone of PvH2B was allowed to express in Escherichia coli and the recombinant protein was purified by affinity chromatography. The expressed PvH2B protein showed DNA-binding properties on the South-Western analysis and the confocal microscopy localized it in the parasite nucleus. This gene is actively expressed during blood stages of the parasite and all P. vivax patients produced antibodies against the protein. The mRNA of PvH2B was found to contain a poly(A) tail at its 3' end, unlike abundant mRNA of human H2B. The encoded polypeptide is 118 amino acid long contains a nuclear targeting site, a signature motif of H2B and showed 74% homology to its host molecule. The structure of PvH2B showed that it has certain differences from that of its host at critical functional sites (viz acetylation, methylation, trypsin cleavage, DNA-binding and inter-histone interaction) which are required for general gene expression and DNA packaging. The distinctive structural features of P. vivax H2B described here may help in designing the specific antimalarial drugs.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Protozoan/blood
- Base Sequence
- Blotting, Western
- Cell Nucleus/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Electrophoresis, Polyacrylamide Gel
- Enzyme-Linked Immunosorbent Assay
- Escherichia coli/genetics
- Gene Expression
- Histones/chemistry
- Histones/genetics
- Histones/immunology
- Humans
- Microscopy, Fluorescence
- Models, Molecular
- Molecular Sequence Data
- Plasmodium vivax/genetics
- Protein Conformation
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Devendra S Rawat
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | | | | | | | | | |
Collapse
|
8
|
Przyborski JM, Bartels K, Lanzer M, Andrews KT. The histone H4 gene of Plasmodium falciparum is developmentally transcribed in asexual parasites. Parasitol Res 2003; 90:387-9. [PMID: 12739134 DOI: 10.1007/s00436-003-0874-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2002] [Accepted: 03/18/2003] [Indexed: 10/26/2022]
Abstract
Histones are abundant nuclear core proteins that are present in all eukararyotes and are responsible for linking chromosomes and packaging them into tight chromatin aggregates. The histone H2A, H2B, and H3 genes and a partial sequence of the histone H4 gene from Plasmodium falciparum have been previously identified and share a high level of nucleotide sequence identity. In this study, we compare the histone H4 sequence of the human malaria P. falciparum with the sequences of two mouse malarias, Plasmodium berghei and Plasmodium yoelii, revealing at least 91% identity at the nucleotide level and 100% conservation at the amino acid level. Furthermore, we show the P. falciparum histone H4 is developmentally transcribed in late stage asexual parasites, completing the transcription profile for the genes comprising the histone octamer of P. falciparum and adding support to suggestions that a novel histone mRNA control mechanism exists in this parasite.
Collapse
Affiliation(s)
- Jude M Przyborski
- Abteilung Parasitologie, Hygiene-Institut, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | | | | | | |
Collapse
|
9
|
Andrews KT, Walduck A, Kelso MJ, Fairlie DP, Saul A, Parsons PG. Anti-malarial effect of histone deacetylation inhibitors and mammalian tumour cytodifferentiating agents. Int J Parasitol 2000; 30:761-8. [PMID: 10856511 DOI: 10.1016/s0020-7519(00)00043-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The histones of Plasmodium falciparum represent a potential new target for anti-malarial compounds. A naturally occurring compound, apicidin, has recently been shown to inhibit the in vitro growth of P. falciparum. Apicidin was shown to hyperacetylate histones, suggesting that its mode of action is through histone deacetylase inhibition. We have tested the ability of known histone deacetylase inhibitors, mammalian tumour suppressor compounds, and cytodifferentiating agents to inhibit the in vitro growth of a drug sensitive and resistant strain of P. falciparum. Seven of the tested compounds had microM IC50 values, and trichostatin A, a histone deacetylation inhibitor and cytodifferentiating agent, was active at low nM concentrations. One compound, suberic acid bisdimethylamide, which selectively arrests tumour cells as opposed to normal mammalian cells, had an in vivo cytostatic effect against the acute murine malaria Plasmodium berghei, and one round of treatment with the compound failed to select for resistant mutations. These results suggest a promising role for histone deacetylase inhibitors and cytodifferentiating agents as antimalarial drug candidates.
Collapse
Affiliation(s)
- K T Andrews
- The Queensland Institute of Medical Research, PO Royal Brisbane Hospital, 300 Herston Road, Queensland 4029, Brisbane, Australia.
| | | | | | | | | | | |
Collapse
|
10
|
Lobo CA, Kumar N. Differential transcription of histone genes in asexual and sexual stages of Plasmodium falciparum. Int J Parasitol 1999; 29:1447-9. [PMID: 10579431 DOI: 10.1016/s0020-7519(99)00090-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Molecular mechanisms of cell-cycle control in Plasmodium falciparum remain poorly understood. We have traced transcription of histones H2A, H2B and H3 as the parasite progresses through different developmental stages--rings, trophozoites, schizonts and gametocytes. Our results show that the ring stage parasites do not appear to synthesise any of the three histones. We also found a markedly elevated level of H3 transcript in the schizont stage parasite, while H2A and H2B were made in approximately equivalent amounts (in trophozoites, schizonts and garnetocytes). Further study might lead to a better understanding of the control elements involved in the regulation of histone levels in Plasmodium as it develops in the erythrocyte.
Collapse
Affiliation(s)
- C A Lobo
- Department of Molecular Microbiology and Immunology, School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
11
|
Joshi MB, Lin DT, Chiang PH, Goldman ND, Fujioka H, Aikawa M, Syin C. Molecular cloning and nuclear localization of a histone deacetylase homologue in Plasmodium falciparum. Mol Biochem Parasitol 1999; 99:11-9. [PMID: 10215020 DOI: 10.1016/s0166-6851(98)00177-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Reversible acetylation of core histones plays an important role in transcriptional regulation, cell cycle progression and developmental events. The acetylation state of histones is controlled by a dynamic equilibrium between activities of histone acetylase and deacetylase enzymes. Histone deacetylase (HDAC) was recently suggested to be the target of a fungus-derived antiprotozoal agent exhibiting structural similarity to known HDAC inhibitors. We have initiated a study of HDAC of human malaria parasite, Plasmodium falciparum, to evaluate its potential as the target for novel antimalarials and its role in parasite development. We have isolated HDAC1 gene from the P. falciparum genomic and cDNA libraries. The nucleotide sequence contains no intervening sequence and its open reading frame (ORF) codes for a protein of 449 amino acid residues. We have named the protein, PfHDAC1, as the sequence shows significant homology to yeast, human and other eukaryotic HDACs. Northern blot analysis of the total RNA from different asexual and sexual stages of the parasite reveals the presence of single mRNA transcript, which is predominantly expressed in mature asexual blood stages and in gametocytes. Antiserum raised against a carboxyl terminal peptide immunoprecipitated an in vitro translated P. falciparum HDAC gene product and recognized an approximately 50 kDa protein in the Triton X-100 insoluble fraction of parasites. Immunoelectron microscopy analysis showed majority of the protein localized in the nucleus of P. falciparum. To our knowledge, this is the first HDAC gene isolated from the malaria parasite.
Collapse
Affiliation(s)
- M B Joshi
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD 20852-1448, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Beauchamps P, Tourvieille B, Cesbron-Delauw MF, Capron A. The partial sequence of the Plasmodium falciparum histone H4 gene. Res Microbiol 1997; 148:201-3. [PMID: 9765800 DOI: 10.1016/s0923-2508(97)85240-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Graeser R, Wernli B, Franklin RM, Kappes B. Plasmodium falciparum protein kinase 5 and the malarial nuclear division cycles. Mol Biochem Parasitol 1996; 82:37-49. [PMID: 8943149 DOI: 10.1016/0166-6851(96)02716-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the course of our studies on cell cycle regulation mechanisms of Plasmodium falciparum, we investigated expression pattern, kinase activity, and localization of PfPK5, a putative malarial member of the family of cyclin-dependent protein kinase (cdks). The kinase was immunoprecipitated from parasites of selected stages and from parasites blocked with the cell-cycle inhibitor aphidicolin. An elevated kinase activity of PfPK5 from aphidicolin-blocked cells suggested that the enzyme might be implicated in the regulation of the parasite's S-phase. To further investigate this hypothetical function, parasite cultures were treated with the specific cdk inhibitors flavopiridol and olomoucine, which act on PfPK5 in vitro at similar concentrations as on other cdks. When applied during the nuclear division cycles of the parasite, both drugs markedly inhibited the DNA synthesis, as predicted from our proposition that PfPK5 is necessary to activate or maintain the parasite S-phase. Immunolocalization studies provide further evidence for this potential role of PfPK5.
Collapse
Affiliation(s)
- R Graeser
- Department of Structural Biology, University of Basel, Switzerland
| | | | | | | |
Collapse
|
14
|
Birago C, Pace T, Barca S, Picci L, Ponzi M. A chromatin-associated protein is encoded in a genomic region highly conserved in the Plasmodium genus. Mol Biochem Parasitol 1996; 80:193-202. [PMID: 8892296 DOI: 10.1016/0166-6851(96)02680-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A single copy gene, pbB7, encoding a putative 26 kDa acidic protein has been isolated from Plasmodium berghei and appears to be part of a genomic region well conserved within the Plasmodium genus. The deduced amino acid sequence exhibits significant blocks of similarity with nucleosome assembly proteins from yeast and man. The nuclear localization of the natural protein and its close association with chromatin during the entire erythrocytic cycle of the parasite have been demonstrated using specific monoclonal antibodies against the pbB7 product expressed in Escherichia coli. These results suggest an involvement of this nuclear factor in the dynamics of chromatin packaging.
Collapse
Affiliation(s)
- C Birago
- Laboratorio di Biologia Cellulare, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | |
Collapse
|