1
|
Ungogo MA, de Koning HP. Drug resistance in animal trypanosomiases: Epidemiology, mechanisms and control strategies. Int J Parasitol Drugs Drug Resist 2024; 25:100533. [PMID: 38555795 PMCID: PMC10990905 DOI: 10.1016/j.ijpddr.2024.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Animal trypanosomiasis (AT) is a complex of veterinary diseases known under various names such as nagana, surra, dourine and mal de caderas, depending on the country, the infecting trypanosome species and the host. AT is caused by parasites of the genus Trypanosoma, and the main species infecting domesticated animals are T. brucei brucei, T. b. rhodesiense, T. congolense, T. simiae, T. vivax, T. evansi and T. equiperdum. AT transmission, again depending on species, is through tsetse flies or common Stomoxys and tabanid flies or through copulation. Therefore, the geographical spread of all forms of AT together is not restricted to the habitat of a single vector like the tsetse fly and currently includes almost all of Africa, and most of South America and Asia. The disease is a threat to millions of companion and farm animals in these regions, creating a financial burden in the billions of dollars to developing economies as well as serious impacts on livestock rearing and food production. Despite the scale of these impacts, control of AT is neglected and under-resourced, with diagnosis and treatments being woefully inadequate and not improving for decades. As a result, neither the incidence of the disease, nor the effectiveness of treatment is documented in most endemic countries, although it is clear that there are serious issues of resistance to the few old drugs that are available. In this review we particularly look at the drugs, their application to the various forms of AT, and their mechanisms of action and resistance. We also discuss the spread of veterinary trypanocide resistance and its drivers, and highlight current and future strategies to combat it.
Collapse
Affiliation(s)
- Marzuq A Ungogo
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom; School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Harry P de Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
2
|
Differences in Transporters Rather than Drug Targets Are the Principal Determinants of the Different Innate Sensitivities of Trypanosoma congolense and Trypanozoon Subgenus Trypanosomes to Diamidines and Melaminophenyl Arsenicals. Int J Mol Sci 2022; 23:ijms23052844. [PMID: 35269985 PMCID: PMC8911344 DOI: 10.3390/ijms23052844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
The animal trypanosomiases are infections in a wide range of (domesticated) animals with any species of African trypanosome, such as Trypanosoma brucei, T. evansi, T. congolense, T. equiperdum and T. vivax. Symptoms differ between host and infective species and stage of infection and are treated with a small set of decades-old trypanocides. A complication is that not all trypanosome species are equally sensitive to all drugs and the reasons are at best partially understood. Here, we investigate whether drug transporters, mostly identified in T. b. brucei, determine the different drug sensitivities. We report that homologues of the aminopurine transporter TbAT1 and the aquaporin TbAQP2 are absent in T. congolense, while their introduction greatly sensitises this species to diamidine (pentamidine, diminazene) and melaminophenyl (melarsomine) drugs. Accumulation of these drugs in the transgenic lines was much more rapid. T. congolense is also inherently less sensitive to suramin than T. brucei, despite accumulating it faster. Expression of a proposed suramin transporter, located in T. brucei lysosomes, in T. congolense, did not alter its suramin sensitivity. We conclude that for several of the most important classes of trypanocides the presence of specific transporters, rather than drug targets, is the determining factor of drug efficacy.
Collapse
|
3
|
Giordani F, Khalaf AI, Gillingwater K, Munday JC, de Koning HP, Suckling CJ, Barrett MP, Scott FJ. Novel Minor Groove Binders Cure Animal African Trypanosomiasis in an in Vivo Mouse Model. J Med Chem 2019; 62:3021-3035. [DOI: 10.1021/acs.jmedchem.8b01847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Abedawn I. Khalaf
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow G1 1XL, U.K
| | - Kirsten Gillingwater
- Parasite Chemotherapy, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel 4051, Switzerland
- University of Basel, Basel 4001, Switzerland
| | | | | | - Colin J. Suckling
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow G1 1XL, U.K
| | | | - Fraser J. Scott
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, U.K
| |
Collapse
|
4
|
Isometamidium chloride and homidium chloride fail to cure mice infected with Ethiopian Trypanosoma evansi type A and B. PLoS Negl Trop Dis 2018; 12:e0006790. [PMID: 30208034 PMCID: PMC6152993 DOI: 10.1371/journal.pntd.0006790] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 09/24/2018] [Accepted: 08/27/2018] [Indexed: 01/09/2023] Open
Abstract
Background Trypanosoma evansi is mechanically transmitted by biting flies and affects camels, equines, and other domestic and wild animals in which it causes a disease called surra. At least two types of Trypanosoma evansi circulate in Ethiopia: type A, which is present in Africa, Latin America and Asia, and type B, which is prevalent in Eastern Africa. Currently, no information is available about the drug sensitivity of any Ethiopian T. evansi type. Methodology/principal findings This study was conducted with the objective of determining the in vivo drug sensitivity of two T. evansi type A and two type B stocks that were isolated from camels from the Tigray and Afar regions of Northern Ethiopia. We investigated the efficacy of four trypanocidal drugs to cure T. evansi infected mice: melarsamine hydrochloride (Cymelarsan), diminazene diaceturate (Veriben and Sequzene), isometamidium chloride (Veridium) and homidium chloride (Bovidium). Per experimental group, 6 mice were inoculated intraperitoneally with trypanosomes, treated at first peak parasitemia by daily drug injections for 4 consecutive days and followed-up for 60 days. Cymelarsan at 2 mg/kg and Veriben at 20 mg/kg cured all mice infected with any T. evansi stock, while Sequzene at 20 mg/kg caused relapses in all T. evansi stocks. In contrast, Veridium and Bovidium at 1 mg/kg failed to cure any T. evansi infection in mice. Conclusions/significance We conclude that mice infected with Ethiopian T. evansi can be cured with Cymelarsan and Veriben regardless of T. evansi type. In contrast, Veridium and Bovidium are not efficacious to cure any T. evansi type. Although innate resistance to phenanthridines was previously described for T. evansi type A, this report is the first study to show that this phenomenom also occurs in T. evansi type B infections. Surra is a vector borne disease in camels, horses, water buffaloes, cattle and other domestic animals caused by Trypanosoma (T.) evansi. This protozoan parasite is transmitted by biting flies such as tabanids and stable flies and is endemic in many countries in Northern and Eastern Africa, Latin America and Asia. Surra is responsible for high economic losses due to mortality and morbidity of draught animals and leads to animal trade restrictions in endemic regions. Control of surra is mainly based on the treatment of sick animals presenting clinical symptoms. In Ethiopia two different types of T. evansi (A and B) have been described, yet no data existed about the drug sensitivity of any T. evansi type. In this study, we show for the first time that T. evansi type B is naturally in vivo resistant to the phenanthridine class of trypanocidal drugs, a phenonomen that was previously described for T. evansi type A. All Ethiopian T. evansi types are sensitive to melarsamine hydrochloride and diminazene diaceturate. Unfortunately, the most efficacious drugs are either not registered in Ethiopia or escape quality control of the active substance in commercial drug formulations. Furthermore, the inefficacious drugs remain accessible on the market despite their toxicity for animals.
Collapse
|
5
|
Yamasaki M, Watanabe N, Idaka N, Yamamori T, Otsuguro KI, Uchida N, Iguchi A, Ohta H, Takiguchi M. Intracellular diminazene aceturate content and adenosine incorporation in diminazene aceturate-resistant Babesia gibsoni isolate in vitro. Exp Parasitol 2017; 183:92-98. [PMID: 29122576 DOI: 10.1016/j.exppara.2017.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/28/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
Abstract
The mechanism of the development of diminazene aceturate (DA) resistance in Babesia gibsoni is still unknown even though DA-resistant B. gibsoni isolate was previously developed in vitro. To clarify the mechanisms of DA-resistance in B. gibsoni, we initially examined the intracellular DA content in the DA-resistant isolate using high-performance liquid chromatography, and compared it with that in the wild-type. As a result, the intracellular DA content in the DA-resistant isolate was significantly lower than that in the wild-type, suggesting that the decreased DA content may contribute to DA-resistance. Additionally, the glucose consumption of the DA-resistant isolate was significantly higher than that of the wild-type, indicating that a large amount of glucose is utilized to maintain DA-resistance. It is possible that a large amount of energy is utilized to maintain the mechanisms of DA-resistance. It was reported that as the structure of DA is similar with that of adenosine, DA may be taken up by the P2 transporter, which contributes to the uptake of adenosine, in Trypanosoma brucei brucei, and that the uptake of adenosine is decreased in DA-resistant T. brucei brucei. In the present study, the adenosine incorporation in the DA-resistant B. gibsoni isolate was higher than in the wild-type. Moreover, the adenosine incorporation in the wild-type was not inhibited by the presence of DA. These results suggest that adenosine transport in B. gibsoni is not affected by DA and may not mediate DA-resistance. To clarify the mechanism of the development of DA resistance in B. gibsoni, we should investigate the cause of the decreased DA content in the DA-resistant isolate in the future.
Collapse
Affiliation(s)
- Masahiro Yamasaki
- Laboratory of Veterinary Small Animal Internal Medicine, Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka 020-8550, Japan.
| | - Nao Watanabe
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Natsuki Idaka
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Tohru Yamamori
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Ken-Ichi Otsuguro
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Naohiro Uchida
- Laboratory of Veterinary Small Animal Internal Medicine, Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka 020-8550, Japan
| | - Aiko Iguchi
- Laboratory of Veterinary Small Animal Internal Medicine, Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka 020-8550, Japan
| | - Hiroshi Ohta
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Mitsuyoshi Takiguchi
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
6
|
Genomic analysis of Isometamidium Chloride resistance in Trypanosoma congolense. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:350-361. [PMID: 29032180 PMCID: PMC5645165 DOI: 10.1016/j.ijpddr.2017.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 12/30/2022]
Abstract
Isometamidium Chloride (ISM) is one of the principal drugs used to counteract Trypanosoma congolense infection in livestock, both as a prophylactic as well as a curative treatment. However, numerous cases of ISM resistance have been reported in different African regions, representing a significant constraint in the battle against Animal African Trypanosomiasis. In order to identify genetic signatures associated with ISM resistance in T. congolense, the sensitive strain MSOROM7 was selected for induction of ISM resistance in a murine host. Administered ISM concentrations in immune-suppressed mice were gradually increased from 0.001 mg/kg to 1 mg/kg, the maximal dose used in livestock. As a result, three independent MSOROM7 lines acquired full resistance to this concentration after five months of induction, and retained this full resistant phenotype following a six months period without drug pressure. In contrast, parasites did not acquire ISM resistance in immune-competent animals, even after more than two years under ISM pressure, suggesting that the development of full ISM resistance is strongly enhanced when the host immune response is compromised. Genomic analyses comparing the ISM resistant lines with the parental sensitive line identified shifts in read depth at heterozygous loci in genes coding for different transporters and transmembrane products, and several of these shifts were also found within natural ISM resistant isolates. These findings suggested that the transport and accumulation of ISM inside the resistant parasites may be modified, which was confirmed by flow cytometry and ex vivo ISM uptake assays that showed a decrease in the accumulation of ISM in the resistant parasites.
Collapse
|
7
|
Abstract
Pathogenic animal trypanosomes affecting livestock have represented a major constraint to agricultural development in Africa for centuries, and their negative economic impact is increasing in South America and Asia. Chemotherapy and chemoprophylaxis represent the main means of control. However, research into new trypanocides has remained inadequate for decades, leading to a situation where the few compounds available are losing efficacy due to the emergence of drug-resistant parasites. In this review, we provide a comprehensive overview of the current options available for the treatment and prophylaxis of the animal trypanosomiases, with a special focus on the problem of resistance. The key issues surrounding the main economically important animal trypanosome species and the diseases they cause are also presented. As new investment becomes available to develop improved tools to control the animal trypanosomiases, we stress that efforts should be directed towards a better understanding of the biology of the relevant parasite species and strains, to identify new drug targets and interrogate resistance mechanisms.
Collapse
|
8
|
Bassarak B, Moser I, Menge C. In vitro production of Trypanosoma equiperdum antigen and its evaluation for use in serodiagnosis of dourine. Vet Parasitol 2016; 223:133-40. [PMID: 27198790 DOI: 10.1016/j.vetpar.2016.04.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 11/19/2022]
Abstract
A modified Baltz's in vitro cultivation system for the propagation of Trypanosoma equiperdum strain OVI was established to develop a replacement for the conventional production procedure of dourine diagnostic antigen in rats. To increase trypanosome yields we designed an optimized culture medium by addition of supplemental compounds. Trypanosomes were adapted to this medium by two succeeding cultivation steps which led to a substantial proliferation rate and an increased cell density tolerance, respectively. As a result, adapted parasites could be propagated to maximum cell densities of >2×10(6) cells/ml, facilitating in vitro antigen production in preparative quantities comparable to the conventional method. A panel of 180 horse field sera, previously sent for testing to the German National Reference Laboratory for Dourine, was tested by complement fixation test using culture-derived as well as conventionally produced dourine antigen. Cohen's kappa values for results obtained with two batches of culture-derived antigen as compared to conventional antigen were 0.91 (95% confidence interval [CI]: 82.2-99.7) and 0.83 (95% CI: 70.3-95.3), respectively. Performance of antigens for diagnostic purposes was characterized in an inter-laboratory comparative study deploying 14 sera from horses with defined dourine statuses. Complement fixation test results from 15 participating European laboratories showed a diagnostic sensitivity of 94.1% (95% CI: 89.4-98.7) and a diagnostic specificity of 96.2% (95% CI: 92.5-99.9) for conventional antigen and a slightly higher diagnostic sensitivity of 96.0% (95% CI: 92.2-99.8) and a diagnostic specificity of 97.1% (95% CI: 94.0-100) for culture-derived antigen. We conclude that our novel approach for dourine antigen production from in vitro-grown trypanosomes described and evaluated herein meets the requirements for the prospective purpose in quantitative and qualitative terms and should be considered by the competent authorities as an alternative for the animal experiment currently prescribed by international standards.
Collapse
Affiliation(s)
- Björn Bassarak
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Straße 96a, 07743 Jena, Germany; German National Reference Laboratory for Dourine, Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Straße 96a, 07743 Jena, Germany.
| | - Irmgard Moser
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Straße 96a, 07743 Jena, Germany; German National Reference Laboratory for Dourine, Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Straße 96a, 07743 Jena, Germany.
| | - Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Straße 96a, 07743 Jena, Germany.
| |
Collapse
|
9
|
Nishikawa H, Sakagami T, Yamada E, Fukuda Y, Hayakawa H, Nomura N, Mitsuyama J, Miyazaki T, Mukae H, Kohno S. T-2307, a novel arylamidine, is transported into Candida albicans by a high-affinity spermine and spermidine carrier regulated by Agp2. J Antimicrob Chemother 2016; 71:1845-55. [PMID: 27090633 DOI: 10.1093/jac/dkw095] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/29/2016] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES T-2307, a novel arylamidine, exhibits potent broad-spectrum activities against pathogenic fungi, particularly Candida albicans. We previously reported that T-2307 uptake was mainly mediated by a saturable high-affinity carrier at the MIC for C. albicans. Since we hypothesized that the potent anticandidal activity arose from accumulation via the high-affinity carrier, we characterized the specificity and kinetic features of the carrier. METHODS The MICs of T-2307 for C. albicans strains were evaluated in the presence and absence of potential competitive substrates. The cells were exposed to [(14)C]T-2307, [(14)C]spermine or [(14)C]spermidine in the presence of unlabelled T-2307, pentamidine, propamidine, or competitive substrates if necessary, and the radioactivity in the cells was measured. C. albicans gene deletion was performed using a one-step PCR-based technique. RESULTS Coapplication with exogenous spermine or spermidine decreased the antifungal activity and uptake of T-2307 in C. albicans strains. T-2307 competitively inhibited spermine and spermidine uptake with inhibition constants similar to its Km for the high-affinity carrier. The comparison of MICs and kinetic values between T-2307 and other diamidine compounds suggested that the different antifungal properties could be partially attributable to the variations in their affinity with the carrier. Studies of gene deletion mutants revealed that T-2307 was transported into C. albicans by a high-affinity spermine and spermidine carrier regulated by Agp2. CONCLUSIONS Uptake of T-2307 via the high-affinity spermine and spermidine carrier regulated by Agp2 could contribute to its potent antifungal activity. Further investigation is required to identify the high-affinity carrier for potential targeting with novel therapies.
Collapse
Affiliation(s)
- Hiroshi Nishikawa
- Research Laboratories, Toyama Chemical Co., Ltd, 2-4-1 Shimookui, Toyama, Japan Second Department of Internal Medicine, Nagasaki University, Nagasaki, Japan Division of Infectious Diseases, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toru Sakagami
- Research Laboratories, Toyama Chemical Co., Ltd, 2-4-1 Shimookui, Toyama, Japan
| | - Eio Yamada
- Research Laboratories, Toyama Chemical Co., Ltd, 2-4-1 Shimookui, Toyama, Japan
| | - Yoshiko Fukuda
- Research Laboratories, Toyama Chemical Co., Ltd, 2-4-1 Shimookui, Toyama, Japan
| | - Hiroyoshi Hayakawa
- Research Laboratories, Toyama Chemical Co., Ltd, 2-4-1 Shimookui, Toyama, Japan
| | - Nobuhiko Nomura
- Research Laboratories, Toyama Chemical Co., Ltd, 2-4-1 Shimookui, Toyama, Japan
| | - Junichi Mitsuyama
- Research Laboratories, Toyama Chemical Co., Ltd, 2-4-1 Shimookui, Toyama, Japan
| | - Taiga Miyazaki
- Second Department of Internal Medicine, Nagasaki University, Nagasaki, Japan Division of Infectious Diseases, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Mukae
- Second Department of Internal Medicine, Nagasaki University, Nagasaki, Japan
| | - Shigeru Kohno
- Second Department of Internal Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
10
|
Munday JC, Settimo L, de Koning HP. Transport proteins determine drug sensitivity and resistance in a protozoan parasite, Trypanosoma brucei. Front Pharmacol 2015; 6:32. [PMID: 25814953 PMCID: PMC4356943 DOI: 10.3389/fphar.2015.00032] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/05/2015] [Indexed: 12/02/2022] Open
Abstract
Drug resistance in pathogenic protozoa is very often caused by changes to the ‘transportome’ of the parasites. In Trypanosoma brucei, several transporters have been implicated in uptake of the main classes of drugs, diamidines and melaminophenyl arsenicals. The resistance mechanism had been thought to be due to loss of a transporter known to carry both types of agents: the aminopurine transporter P2, encoded by the gene TbAT1. However, although loss of P2 activity is well-documented as the cause of resistance to the veterinary diamidine diminazene aceturate (DA; Berenil®), cross-resistance between the human-use arsenical melarsoprol and the diamidine pentamidine (melarsoprol/pentamidine cross resistance, MPXR) is the result of loss of a separate high affinity pentamidine transporter (HAPT1). A genome-wide RNAi library screen for resistance to pentamidine, published in 2012, gave the key to the genetic identity of HAPT1 by linking the phenomenon to a locus that contains the closely related T. brucei aquaglyceroporin genes TbAQP2 and TbAQP3. Further analysis determined that knockdown of only one pore, TbAQP2, produced the MPXR phenotype. TbAQP2 is an unconventional aquaglyceroporin with unique residues in the “selectivity region” of the pore, and it was found that in several MPXR lab strains the WT gene was either absent or replaced by a chimeric protein, recombined with parts of TbAQP3. Importantly, wild-type AQP2 was also absent in field isolates of T. b. gambiense, correlating with the outcome of melarsoprol treatment. Expression of a wild-type copy of TbAQP2 in even the most resistant strain completely reversed MPXR and re-introduced HAPT1 function and transport kinetics. Expression of TbAQP2 in Leishmania mexicana introduced a pentamidine transport activity indistinguishable from HAPT1. Although TbAQP2 has been shown to function as a classical aquaglyceroporin it is now clear that it is also a high affinity drug transporter, HAPT1. We discuss here a possible structural rationale for this remarkable ability.
Collapse
Affiliation(s)
- Jane C Munday
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, UK
| | - Luca Settimo
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, UK ; Department of Chemistry and Chemical Biology, Northeastern University Boston, MA, USA
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, UK
| |
Collapse
|
11
|
Suganuma K, Allamanda P, Hakimi H, Zhou M, Angeles JM, Kawazu SI, Inoue N. Establishment of ATP-based luciferase viability assay in 96-well plate for Trypanosoma congolense. J Vet Med Sci 2014; 76:1437-41. [PMID: 25056575 PMCID: PMC4272975 DOI: 10.1292/jvms.14-0273] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Animal African trypanosomosis (AAT), caused by Trypanosoma congolense, is widespread throughout sub-Saharan Africa. There are significant concerns related to the current drugs available for the treatment of AAT due to their limited effectiveness across species and their adverse effects. Moreover, drug resistant trypanosomes have recently been reported in the field. High throughput screening (HTS) of large chemical compound library collections is a promising approach for identifying novel drug candidates. While HTS for Trypanozoon trypanosomes, T. brucei sspp. and T. evansi is well established, no assays have been developed for T. congolense. In the present study, the authors developed an ATP-based luciferase viability assay for T. congolense in a 96-well plate format. The calculated 50% inhibitory concentration (IC50) values for pentamidine and diminazene were 10-100 times higher in T. congolense than in T. brucei. This result suggests that the transporters for the 2 tested compounds differ between T. congolense and T. brucei. This assay could further be applied to screen novel chemical compounds for the treatment of AAT caused by T. congolense.
Collapse
Affiliation(s)
- Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Munday JC, Eze AA, Baker N, Glover L, Clucas C, Aguinaga Andrés D, Natto MJ, Teka IA, McDonald J, Lee RS, Graf FE, Ludin P, Burchmore RJS, Turner CMR, Tait A, MacLeod A, Mäser P, Barrett MP, Horn D, De Koning HP. Trypanosoma brucei aquaglyceroporin 2 is a high-affinity transporter for pentamidine and melaminophenyl arsenic drugs and the main genetic determinant of resistance to these drugs. J Antimicrob Chemother 2013; 69:651-63. [PMID: 24235095 PMCID: PMC3922157 DOI: 10.1093/jac/dkt442] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objectives Trypanosoma brucei drug transporters include the TbAT1/P2 aminopurine transporter and the high-affinity pentamidine transporter (HAPT1), but the genetic identity of HAPT1 is unknown. We recently reported that loss of T. brucei aquaglyceroporin 2 (TbAQP2) caused melarsoprol/pentamidine cross-resistance (MPXR) in these parasites and the current study aims to delineate the mechanism by which this occurs. Methods The TbAQP2 loci of isogenic pairs of drug-susceptible and MPXR strains of T. brucei subspecies were sequenced. Drug susceptibility profiles of trypanosome strains were correlated with expression of mutated TbAQP2 alleles. Pentamidine transport was studied in T. brucei subspecies expressing TbAQP2 variants. Results All MPXR strains examined contained TbAQP2 deletions or rearrangements, regardless of whether the strains were originally adapted in vitro or in vivo to arsenicals or to pentamidine. The MPXR strains and AQP2 knockout strains had lost HAPT1 activity. Reintroduction of TbAQP2 in MPXR trypanosomes restored susceptibility to the drugs and reinstated HAPT1 activity, but did not change the activity of TbAT1/P2. Expression of TbAQP2 sensitized Leishmania mexicana promastigotes 40-fold to pentamidine and >1000-fold to melaminophenyl arsenicals and induced a high-affinity pentamidine transport activity indistinguishable from HAPT1 by Km and inhibitor profile. Grafting the TbAQP2 selectivity filter amino acid residues onto a chimeric allele of AQP2 and AQP3 partly restored susceptibility to pentamidine and an arsenical. Conclusions TbAQP2 mediates high-affinity uptake of pentamidine and melaminophenyl arsenicals in trypanosomes and TbAQP2 encodes the previously reported HAPT1 activity. This finding establishes TbAQP2 as an important drug transporter.
Collapse
Affiliation(s)
- Jane C Munday
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The trypanosomes cause two neglected tropical diseases, Chagas disease in the Americas and African trypanosomiasis in sub-Saharan Africa. Over recent years a raft of molecular tools have been developed enabling the genetic dissection of many aspects of trypanosome biology, including the mechanisms underlying resistance to some of the current clinical and veterinary drugs. This has led to the identification and characterization of key resistance determinants, including transporters for the anti-Trypanosoma brucei drugs, melarsoprol, pentamidine and eflornithine, and the activator of nifurtimox-benznidazole, the anti-Trypanosoma cruzi drugs. More recently, advances in sequencing technology, combined with the development of RNA interference libraries in the clinically relevant bloodstream form of T. brucei have led to an exponential increase in the number of proteins known to interact either directly or indirectly with the anti-trypanosomal drugs. In this review, we discuss these findings and the technological developments that are set to further revolutionise our understanding of drug-trypanosome interactions. The new knowledge gained should inform the development of novel interventions against the devastating diseases caused by these parasites.
Collapse
|
14
|
Barrett MP, Gemmell CG, Suckling CJ. Minor groove binders as anti-infective agents. Pharmacol Ther 2013; 139:12-23. [PMID: 23507040 DOI: 10.1016/j.pharmthera.2013.03.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 01/22/2013] [Indexed: 12/29/2022]
Abstract
Minor groove binders are small molecules that form strong complexes with the minor groove of DNA. There are several structural types of which distamycin and netropsin analogues, oligoamides built from heterocyclic and aromatic amino acids, and bis-amidines separated by aromatic and heterocyclic rings are of particular pharmaceutical interest. These molecules have helical topology that approximately matches the curvature of DNA in the minor groove. Depending upon the precise structure of the minor groove binder, selectivity can be obtained with respect to the DNA base sequence to which the compound binds. Minor groove binders have found substantial applications in anti-cancer therapy but their significance in anti-infective therapy has also been significant and is growing. For example, compounds of the bis-amidine class have been notable contributors to antiparasitic therapy for many years with examples such as berenil and pentamidine being well-known. A recent growth area has been inreased sophistication in the oligoamide class. High sequence selectivity is now possible and compounds with distinct antibacterial, antifungal, antiviral, and antiparasitic activity have all been identified. Importantly, the structures of the most active compounds attacking the various infective organisms differ significantly but not necessarily predictively. This poses interesting questions of mechanism of action with many different targets involved in DNA processing being candidates. Access of compounds to specific cell types also plays a role and in some cases, can be decisive. Prospects for a range of selective therapeutic agents from this class of compounds are higher now than for some considerable time.
Collapse
Affiliation(s)
- Michael P Barrett
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, United Kingdom.
| | | | | |
Collapse
|
15
|
Munday JC, Rojas López KE, Eze AA, Delespaux V, Van Den Abbeele J, Rowan T, Barrett MP, Morrison LJ, de Koning HP. Functional expression of TcoAT1 reveals it to be a P1-type nucleoside transporter with no capacity for diminazene uptake. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2013; 3:69-76. [PMID: 24533295 PMCID: PMC3862423 DOI: 10.1016/j.ijpddr.2013.01.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/19/2013] [Accepted: 01/23/2013] [Indexed: 11/26/2022]
Abstract
It has long been established that the Trypanosoma brucei TbAT1/P2 aminopurine transporter is involved in the uptake of diamidine and arsenical drugs including pentamidine, diminazene aceturate and melarsoprol. Accordingly, it was proposed that the closest Trypanosoma congolense paralogue, TcoAT1, might perform the same function in this parasite, and an apparent correlation between a Single Nucleotide Polymorphism (SNP) in that gene and diminazene tolerance was reported for the strains examined. Here, we report the functional cloning and expression of TcoAT1 and show that in fact it is the syntenic homologue of another T. brucei gene of the same Equilibrative Nucleoside Transporter (ENT) family: TbNT10. The T. congolense genome does not seem to contain a syntenic equivalent to TbAT1. Two TcoAT1 alleles, differentiated by three independent SNPs, were expressed in the T. brucei clone B48, a TbAT1-null strain that further lacks the High Affinity Pentamidine Transporter (HAPT1); TbAT1 was also expressed as a control. The TbAT1 and TcoAT1 transporters were functional and increased sensitivity to cytotoxic nucleoside analogues. However, only TbAT1 increased sensitivity to diamidines and to cymelarsan. Uptake of [3H]-diminazene was detectable only in the B48 cells expressing TbAT1 but not TcoAT1, whereas uptake of [3H]-inosine was increased by both TcoAT1 alleles but not by TbAT1. Uptake of [3H]-adenosine was increased by all three ENT genes. We conclude that TcoAT1 is a P1-type purine nucleoside transporter and the syntenic equivalent to the previously characterised TbNT10; it does not mediate diminazene uptake and is therefore unlikely to play a role in diminazene resistance in T. congolense.
Collapse
Affiliation(s)
- Jane C Munday
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom ; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Karla E Rojas López
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anthonius A Eze
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Vincent Delespaux
- Institute of Tropical Medicine, Nationalestraat 155, B-2000 Antwerp, Belgium
| | - Jan Van Den Abbeele
- Institute of Tropical Medicine, Nationalestraat 155, B-2000 Antwerp, Belgium
| | - Tim Rowan
- GALVmed, Pentlands Science Park, Bush Loan, Edinburgh, United Kingdom
| | - Michael P Barrett
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom ; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Liam J Morrison
- Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom ; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom ; Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
16
|
Trypanocidal furamidine analogues: influence of pyridine nitrogens on trypanocidal activity, transport kinetics, and resistance patterns. Antimicrob Agents Chemother 2011; 55:2352-61. [PMID: 21402852 DOI: 10.1128/aac.01551-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Current therapies for human African trypanosomiasis (HAT) are unsatisfactory and under threat from emerging drug resistance linked to the loss of transporters, e.g., the P2 aminopurine transporter (TbAT1). Here we compare the uptake and trypanocidal properties of furamidine (DB75), recently evaluated in clinical trials against stage 1 (haemolymphatic) HAT, and two aza analogues, DB820 and CPD0801 (DB829), which are candidate compounds for treatment of stage 2 (neurological) disease. Values of 50% inhibitory concentrations (IC50s) determined in vitro against both wild-type and transporter mutant parasites were submicromolar, with DB75 trypanotoxicity shown to be better than and DB820 trypanotoxicity similar to that of the widely used veterinary trypanocide diminazene, while CPD0801 was less active. Activity correlated with uptake and with the minimum drug exposure time necessary to kill trypanosomes: DB75 accumulated at double and 10-fold the rates of DB820 and CPD0801, respectively. All three compounds inhibited P2-mediated adenosine transport with similar Ki values, indicating affinity values for this permease in the low to submicromolar range. Uptake of DB75, DB820, and CPD0801 was significantly reduced in tbat1-/- parasites and was sensitive to inhibition by adenine, showing that all three compounds are substrates for the P2 transporter. Uptake in vitro was significantly less than that seen with parasites freshly isolated from infected rats, correlating with a downregulation of P2 activity in vitro. We conclude that DB75, DB820, and CPD0801 are actively accumulated by Trypanosoma brucei brucei, with P2 as the main transport route. The aza analogues of DB75 accumulate more slowly than furamidine itself and reveal less trypanocidal activity in standard in vitro drug sensitivity assays.
Collapse
|
17
|
Nishikawa H, Yamada E, Shibata T, Uchihashi S, Fan H, Hayakawa H, Nomura N, Mitsuyama J. Uptake of T-2307, a novel arylamidine, in Candida albicans. J Antimicrob Chemother 2010; 65:1681-7. [PMID: 20513704 DOI: 10.1093/jac/dkq177] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES T-2307, a novel arylamidine synthesized at Toyama Chemical Co., Ltd, has in vitro and in vivo broad-spectrum activities against pathogenic fungi. T-2307 particularly exhibits potent in vitro and in vivo activity against Candida albicans, suggesting that its uptake might be mediated by a transport system. In this report, we studied the uptake of T-2307 in C. albicans. METHODS C. albicans cells and rat hepatocytes were exposed to 0.02 microM [(14)C]T-2307. After incubation, the reaction mixture was concentrated and layered on a silicon layer (mixture of silicon oil and liquid paraffin) inside a tube. The tube was then centrifuged to transfer cells into the bottom layer (sodium hydroxide) for solubilization. The bottom layer was neutralized and measured for radioactivity. RESULTS T-2307 was concentrated from the extracellular medium by C. albicans cells in 10 mM phosphate buffer solution supplemented with 1% glucose by 3200- to 5100-fold. The accumulation was approximately two orders of magnitude greater than that achieved with a rat hepatocyte preparation. T-2307 uptake was sensitive to temperature and extracellular pH, and was reduced in the presence of inhibitors of mitochondrial respiration, oxidative phosphorylation and plasma membrane proton pump, and by an uncoupler. Furthermore, T-2307 uptake was concentration dependent and an Eadie-Hofstee plot suggested the involvement of two transport systems. CONCLUSIONS The considerably higher concentrations of T-2307 were selectively accumulated in C. albicans via transporter-mediated systems, as compared with the concentrations in rat hepatocytes. This transporter-mediated uptake of T-2307 contributes to its potent anticandidal activity.
Collapse
Affiliation(s)
- Hiroshi Nishikawa
- Research Laboratories, Toyama Chemical Co., Ltd, 2-4-1 Shimookui, Toyama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
In vitro activity and preliminary toxicity of various diamidine compounds against Trypanosoma evansi. Vet Parasitol 2010; 169:264-72. [DOI: 10.1016/j.vetpar.2010.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Revised: 01/07/2010] [Accepted: 01/14/2010] [Indexed: 11/23/2022]
|
19
|
Multiple genetic mechanisms lead to loss of functional TbAT1 expression in drug-resistant trypanosomes. EUKARYOTIC CELL 2009; 9:336-43. [PMID: 19966032 DOI: 10.1128/ec.00200-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The P2 aminopurine transporter, encoded by TbAT1 in African trypanosomes in the Trypanosoma brucei group, carries melaminophenyl arsenical and diamidine drugs into these parasites. Loss of this transporter contributes to drug resistance. We identified the genomic location of TbAT1 to be in the subtelomeric region of chromosome 5 and determined the status of the TbAT1 gene in two trypanosome lines selected for resistance to the melaminophenyl arsenical, melarsamine hydrochloride (Cymelarsan), and in a Trypanosoma equiperdum clone selected for resistance to the diamidine, diminazene aceturate. In the Trypanosoma brucei gambiense STIB 386 melarsamine hydrochloride-resistant line, TbAT1 is deleted, while in the Trypanosoma brucei brucei STIB 247 melarsamine hydrochloride-resistant and T. equiperdum diminazene-resistant lines, TbAT1 is present, but expression at the RNA level is no longer detectable. Further characterization of TbAT1 in T. equiperdum revealed that a loss of heterozygosity at the TbAT1 locus accompanied loss of expression and that P2-mediated uptake of [(3)H]diminazene is lost in drug-resistant T. equiperdum. Adenine-inhibitable adenosine uptake is still detectable in a DeltaTbat1 T. b. brucei mutant, although at a greatly reduced capacity compared to that of the wild type, indicating that an additional adenine-inhibitable adenosine permease, distinct from P2, is present in these cells.
Collapse
|
20
|
Genotypic status of the TbAT1/P2 adenosine transporter of Trypanosoma brucei gambiense isolates from Northwestern Uganda following melarsoprol withdrawal. PLoS Negl Trop Dis 2009; 3:e523. [PMID: 19787038 PMCID: PMC2745678 DOI: 10.1371/journal.pntd.0000523] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 09/01/2009] [Indexed: 11/19/2022] Open
Abstract
Background The development of arsenical and diamidine resistance in Trypanosoma brucei is associated with loss of drug uptake by the P2 purine transporter as a result of alterations in the corresponding T. brucei adenosine transporter 1 gene (TbAT1). Previously, specific TbAT1 mutant type alleles linked to melarsoprol treatment failure were significantly more prevalent in T. b. gambiense from relapse patients at Omugo health centre in Arua district. Relapse rates of up to 30% prompted a shift from melarsoprol to eflornithine (α-difluoromethylornithine, DFMO) as first-line treatment at this centre. The aim of this study was to determine the status of TbAT1 in recent isolates collected from T. b. gambiense sleeping sickness patients from Arua and Moyo districts in Northwestern Uganda after this shift in first-line drug choice. Methodology and results Blood and cerebrospinal fluids of consenting patients were collected for DNA preparation and subsequent amplification. All of the 105 isolates from Omugo that we successfully analysed by PCR-RFLP possessed the TbAT1 wild type allele. In addition, PCR/RFLP analysis was performed for 74 samples from Moyo, where melarsoprol is still the first line drug; 61 samples displayed the wild genotype while six were mutant and seven had a mixed pattern of both mutant and wild-type TbAT1. The melarsoprol treatment failure rate at Moyo over the same period was nine out of 101 stage II cases that were followed up at least once. Five of the relapse cases harboured mutant TbAT1, one had the wild type, while no amplification was achieved from the remaining three samples. Conclusions/significance The apparent disappearance of mutant alleles at Omugo may correlate with melarsoprol withdrawal as first-line treatment. Our results suggest that melarsoprol could successfully be reintroduced following a time lag subsequent to its replacement. A field-applicable test to predict melarsoprol treatment outcome and identify patients for whom the drug can still be beneficial is clearly required. This will facilitate cost-effective management of HAT in rural resource-poor settings, given that eflornithine has a much higher logistical requirement for its application. Human African trypanosomiasis (HAT) manifests as a chronic infection caused by Trypanosoma brucei gambiense, or as a more acute form due to T. b. rhodesiense. Both manifestations occur in Uganda and melarsoprol use against the former was jeopardised in the 1990s as reports of reduced efficacy increased to the point where it was dismissed as first-line treatment at some treatment centers. Previous work to elucidate possible mechanisms leading to melarsoprol resistance pointed to a P2 type adenosine transporter known to mediate melarsoprol uptake and previously shown to be mutated in significant numbers of patients not responding to the drug. Our present findings indicate that there is a low prevalence of mutants in foci where melarsoprol relapses are infrequent. In addition we observe that at the Omugo focus where the drug was withdrawn as first line over 6 years ago, the mutant alleles have disappeared, suggesting that drug pressure is responsible for fuelling their spread. Thus constant monitoring for mutants could play a key role in cost-effective HAT management by identifying which foci can still use the less logistically demanding melarsoprol as opposed to the alternative drug eflornithine. What is required now is a simple method for identifying such mutants at the point of care, enabling practitioners to make informed prescriptions at first diagnosis.
Collapse
|
21
|
Reid CM, Ebikeme C, Barrett MP, Patzewitz EM, Müller S, Robins DJ, Sutherland A. Synthesis of novel benzamidine- and guanidine-derived polyazamacrocycles: Selective anti-protozoal activity for human African trypanosomiasis. Bioorg Med Chem Lett 2008; 18:5399-401. [DOI: 10.1016/j.bmcl.2008.09.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/10/2008] [Accepted: 09/11/2008] [Indexed: 10/21/2022]
|
22
|
Ever-increasing complexities of diamidine and arsenical crossresistance in African trypanosomes. Trends Parasitol 2008; 24:345-9. [DOI: 10.1016/j.pt.2008.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 04/08/2008] [Accepted: 04/08/2008] [Indexed: 10/21/2022]
|
23
|
Molecular tools for the rapid detection of drug resistance in animal trypanosomes. Trends Parasitol 2008; 24:236-42. [PMID: 18420457 DOI: 10.1016/j.pt.2008.02.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 01/31/2008] [Accepted: 02/01/2008] [Indexed: 11/21/2022]
Abstract
There are currently 17 African countries in which animal trypanocidal drug resistance has been reported. Large-scale surveys were carried out in only ten of them. The lack of baseline information is mainly due to the fact that the methods currently available for the detection of drug resistance are laborious, expensive and time consuming. In this review the mechanisms involved in resistance to isometamidium and diminazene will be discussed, together with some new molecular detection tools that have been developed recently enabling faster diagnosis of drug resistance than conventional laboratory or field tests.
Collapse
|
24
|
Mallari JP, Shelat AA, Obrien T, Caffrey CR, Kosinski A, Connelly M, Harbut M, Greenbaum D, McKerrow JH, Guy RK. Development of Potent Purine-Derived Nitrile Inhibitors of the Trypanosomal Protease TbcatB. J Med Chem 2008; 51:545-52. [DOI: 10.1021/jm070760l] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jeremy P. Mallari
- Graduate Program in Chemistry and Chemical Biology and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143-2280, Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis Tennessee 38105, and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19146
| | - Anang A. Shelat
- Graduate Program in Chemistry and Chemical Biology and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143-2280, Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis Tennessee 38105, and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19146
| | - Terri Obrien
- Graduate Program in Chemistry and Chemical Biology and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143-2280, Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis Tennessee 38105, and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19146
| | - Conor R. Caffrey
- Graduate Program in Chemistry and Chemical Biology and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143-2280, Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis Tennessee 38105, and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19146
| | - Aaron Kosinski
- Graduate Program in Chemistry and Chemical Biology and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143-2280, Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis Tennessee 38105, and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19146
| | - Michele Connelly
- Graduate Program in Chemistry and Chemical Biology and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143-2280, Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis Tennessee 38105, and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19146
| | - Michael Harbut
- Graduate Program in Chemistry and Chemical Biology and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143-2280, Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis Tennessee 38105, and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19146
| | - Doron Greenbaum
- Graduate Program in Chemistry and Chemical Biology and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143-2280, Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis Tennessee 38105, and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19146
| | - James H. McKerrow
- Graduate Program in Chemistry and Chemical Biology and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143-2280, Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis Tennessee 38105, and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19146
| | - R. Kiplin Guy
- Graduate Program in Chemistry and Chemical Biology and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143-2280, Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis Tennessee 38105, and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19146
| |
Collapse
|
25
|
Maina N, Maina KJ, Mäser P, Brun R. Genotypic and phenotypic characterization of Trypanosoma brucei gambiense isolates from Ibba, South Sudan, an area of high melarsoprol treatment failure rate. Acta Trop 2007; 104:84-90. [PMID: 17765860 DOI: 10.1016/j.actatropica.2007.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 06/21/2007] [Accepted: 07/26/2007] [Indexed: 11/25/2022]
Abstract
Resistance of trypanosomes to melarsoprol is ascribed to reduced uptake of the drug via the P2 nucleoside transporter. The aim of this study was to look for evidence of drug resistance in Trypanosoma brucei gambiense isolates from sleeping sickness patients in Ibba, South Sudan, an area of high melarsoprol failure rate. Eighteen T. b. gambiense stocks were phenotypically and only 10 strains genotypically characterized. In vitro, all isolates were sensitive to melarsoprol, melarsen oxide, and diminazene. Infected mice were cured with a 4 day treatment of 2.5mg/kg bwt melarsoprol, confirming that the isolates were sensitive. The gene that codes for the P2 transporter, TbATI, was amplified by PCR and sequenced. The sequences were almost identical to the TbAT1(sensitive) reference, except for one point mutation, C1384T resulting in the amino acid change proline-462 to serine. None of the described TbAT1(resistant)-type mutations were detected. In a T. b. gambiense sleeping sickness focus where melarsoprol had to be abandoned due to the high incidence of treatment failures, no evidence for drug resistant trypanosomes or for TbAT1(resistant)-type alleles of the P2 transporter could be found. These findings indicate that factors other than drug resistance contribute to melarsoprol treatment failures.
Collapse
Affiliation(s)
- Naomi Maina
- Trypanosomiasis Research Institute (TRC), PO Box 362, Kikuyu, Kenya
| | | | | | | |
Collapse
|
26
|
Gillingwater K, Büscher P, Brun R. Establishment of a panel of reference Trypanosoma evansi and Trypanosoma equiperdum strains for drug screening. Vet Parasitol 2007; 148:114-21. [PMID: 17624671 DOI: 10.1016/j.vetpar.2007.05.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 04/16/2007] [Accepted: 05/31/2007] [Indexed: 10/23/2022]
Abstract
The animal pathogenic protozoan, Trypanosoma evansi, leads to a wasting disease in equines, cattle and camels, commonly known as Surra. It is extensively distributed geographically with a wide range of mammalian hosts and causes great economical loss. Trypanosoma equiperdum causes a venereal disease called Dourine in horses and donkeys. Chemotherapy appears to be the most effective form of control for T. evansi, whereas infections caused by T. equiperdum are considered incurable. Due to emerging drug resistance, efficient control of T. evansi is severely threatened, emphasising the urgent need to find new alternative drugs. A drug profile for a panel of T. evansi and T. equiperdum strains has been established for the four standard drugs currently used in treatment. The (3)H-hypoxanthine incorporation assay was used to obtain 50% inhibitory concentration (IC(50)) values for each standard drug against the various strains. The results indicate the presence (and in some cases, the emergence) of drug resistance in several strains. This panel of characterised strains with known drug sensitivities and resistances will be of great value for the screening of new active compounds, in comparison with the four standard drugs currently available.
Collapse
Affiliation(s)
- K Gillingwater
- Parasite Chemotherapy, Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Socinstrasse 57, 4002 Basel, Switzerland
| | | | | |
Collapse
|
27
|
Human African trypanosomiasis: pharmacological re-engagement with a neglected disease. Br J Pharmacol 2007; 152:1155-71. [PMID: 17618313 DOI: 10.1038/sj.bjp.0707354] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This review discusses the challenges of chemotherapy for human African trypanosomiasis (HAT). The few drugs registered for use against the disease are unsatisfactory for a number of reasons. HAT has two stages. In stage 1 the parasites proliferate in the haemolymphatic system. In stage 2 they invade the central nervous system and brain provoking progressive neurological dysfunction leading to symptoms that include the disrupted sleep wake patterns that give HAT its more common name of sleeping sickness. Targeting drugs to the central nervous system offers many challenges. However, it is the cost of drug development for diseases like HAT, that afflict exclusively people of the world's poorest populations, that has been the principal barrier to new drug development and has led to them becoming neglected. Here we review drugs currently registered for HAT, and also discuss the few compounds progressing through clinical trials. Finally we report on new initiatives that might allow progress to be made in developing new and satisfactory drugs for this terrible disease.
Collapse
|
28
|
Papadopoulou B, Kündig C, Singh A, Ouellette M. Drug resistance in Leishmania: similarities and differences to other organisms. Drug Resist Updat 2007; 1:266-78. [PMID: 16904409 DOI: 10.1016/s1368-7646(98)80007-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/1998] [Revised: 06/19/1998] [Accepted: 06/19/1998] [Indexed: 11/28/2022]
Abstract
The main line of defense available against parasitic protozoa is chemotherapy. Drug resistance has emerged however, as a primary obstacle to the successful treatment and control of parasitic diseases. Leishmania spp., the causative agents of leishmaniasis, have served as a useful model for studying mechanisms of drug resistance in vitro. Antimonials and amphotericin B are the first line drugs to treat Leishmania followed by pentamidine and a number of other drugs. Parasites resistant against all these classes of drugs have been selected under laboratory conditions. A multiplicity of resistance mechanisms has been detected, the most prevalent being gene amplification and transport mutations. With the tools now available, it should be possible to elucidate the mechanisms that govern drug resistance in field isolates and develop more effective chemotherapeutic agents.
Collapse
Affiliation(s)
- B Papadopoulou
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL et Départment de Biologie Médicale, Division de Microbiologie, Faculté de Médecine, Université Laval, Québec, Canada GIV 4G2.
| | | | | | | |
Collapse
|
29
|
Bernhard SC, Nerima B, Mäser P, Brun R. Melarsoprol- and pentamidine-resistant Trypanosoma brucei rhodesiense populations and their cross-resistance. Int J Parasitol 2007; 37:1443-8. [PMID: 17602691 DOI: 10.1016/j.ijpara.2007.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 05/11/2007] [Accepted: 05/15/2007] [Indexed: 11/24/2022]
Abstract
Resistance to melarsoprol and pentamidine was induced in bloodstream-form Trypanosoma brucei rhodesiense STIB 900 in vitro, and drug sensitivity was determined for melarsoprol, pentamidine and furamidine. The resistant populations were also inoculated into immunosuppressed mice to verify infectivity and to monitor whether rodent passage selects for clones with altered drug sensitivity. After proliferation in the mouse, trypanosomes were isolated and their IC(50) values to the three drugs were determined. To assess the stability of drug-induced resistance, drug pressure was ceased for 2 months and the drug sensitivity was determined again. Resistance was stable, with a few exceptions that are discussed. Drug IC(50)s indicated cross-resistance among all drugs, but to varying extents: resistance of the melarsoprol-selected and pentamidine-selected trypanosomes to pentamidine was the same, but the pentamidine-selected trypanosome population showed lower resistance to melarsoprol than the melarsoprol-selected trypanosomes. Interestingly, both resistant populations revealed the same intermediate cross-resistance to furamidine. Resistant trypanosome populations were characterised by molecular means, referring to the status of the TbAT1 gene. The melarsoprol-selected population apparently had lost TbAT1, whereas in the pentamidine-selected trypanosome population it was still present.
Collapse
|
30
|
Bellofatto V. Pyrimidine transport activities in trypanosomes. Trends Parasitol 2007; 23:187-9; discussion 190. [PMID: 17374509 DOI: 10.1016/j.pt.2007.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 02/06/2007] [Accepted: 03/08/2007] [Indexed: 01/31/2023]
Abstract
Parasites of the Trypanosomatidae family are unable to synthesize purines. Instead, they rely on their hosts to supply these necessary compounds. The article by Gudin et al. identifies three transport mechanisms of the equilibrative nucleoside transporter family by which nucleosides and nucleobases are transported in this medically important family of organisms. The work by Gudin et al. characterizes the dynamics of these transporters and points to further areas for future genetic and therapeutic experiments.
Collapse
Affiliation(s)
- Vivian Bellofatto
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101, USA.
| |
Collapse
|
31
|
Barrett MP, Gilbert IH. Targeting of toxic compounds to the trypanosome's interior. ADVANCES IN PARASITOLOGY 2006; 63:125-83. [PMID: 17134653 DOI: 10.1016/s0065-308x(06)63002-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Drugs can be targeted into African trypanosomes by exploiting carrier proteins at the surface of these parasites. This has been clearly demonstrated in the case of the melamine-based arsenical and the diamidine classes of drug that are already in use in the treatment of human African trypanosomiasis. These drugs can enter via an aminopurine transporter, termed P2, encoded by the TbAT1 gene. Other toxic compounds have also been designed to enter via this transporter. Some of these compounds enter almost exclusively through the P2 transporter, and hence loss of the P2 transporter leads to significant resistance to these particular compounds. It now appears, however, that some diamidines and melaminophenylarsenicals may also be taken up by other routes (of yet unknown function). These too may be exploited to target new drugs into trypanosomes. Additional purine nucleoside and nucleobase transporters have also been subverted to deliver toxic agents to trypanosomes. Glucose and amino acid transporters too have been investigated with a view to manipulating them to carry toxins into Trypanosoma brucei, and recent work has demonstrated that aquaglyceroporins may also have considerable potential for drug-targeting. Transporters, including those that carry lipids and vitamins such as folate and other pterins also deserve more attention in this regard. Some drugs, for example suramin, appear to enter via routes other than plasma-membrane-mediated transport. Receptor-mediated endocytosis has been proposed as a possible way in for suramin. Endocytosis also appears to be crucial in targeting natural trypanocides, such as trypanosome lytic factor (TLF) (apolipoprotein L1), into trypanosomes and this offers an alternative means of selectively targeting toxins to the trypanosome's interior. Other compounds may be induced to enter by increasing their capacity to diffuse over cell membranes; in this case depending exclusively on selective activity within the cell rather than selective uptake to impart selective toxicity. This review outlines studies that have aimed to exploit trypanosome nutrient uptake routes to selectively carry toxins into these parasites.
Collapse
Affiliation(s)
- Michael P Barrett
- Division of Infection & Immunity, Institute of Biomedical and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, UK
| | | |
Collapse
|
32
|
Delespaux V, Chitanga S, Geysen D, Goethals A, van den Bossche P, Geerts S. SSCP analysis of the P2 purine transporter TcoAT1 gene of Trypanosoma congolense leads to a simple PCR-RFLP test allowing the rapid identification of diminazene resistant stocks. Acta Trop 2006; 100:96-102. [PMID: 17083909 DOI: 10.1016/j.actatropica.2006.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 09/19/2006] [Accepted: 10/04/2006] [Indexed: 10/24/2022]
Abstract
Analyses were made on a Trypanosoma congolense contig coding a putative P2-like nucleoside transporter (the contig was named in this study TcoAT1). The sequence includes a start and stop codon and presents a high similarity with the gene TbAT1 of T. brucei (Smallest Sum Probability 2.8e-136). To investigate a possible link between point mutations and diminazene aceturate (DA) resistance in mice, the TcoAT1 putative genes of 26 T. congolense strains, characterised for DA sensitivity in the single dose mouse test, were screened by means of the Single Strand Conformation Polymorphism technique (SSCP). Results showed that the SSCP profiles of 23 out of 26 (88.5%) T. congolense strains were confirmed by the sensitivity test in mice with the commonly accepted criterion for sensitivity to diminazene being a CD80 of 20mg/kg in the mouse test. The remaining T. congolense strains showed a resistant SSCP profile and relapsed in mice after treatment at doses lower than 20mg/kg indicating that the SSCP is more sensitive than the single dose mouse test for the detection of resistance to diminazene. However, none of the strains used in this study showed a sensitive SSCP profile while they were resistant in the single dose mouse test. The sequencing of the TcoAT1 gene of two sensitive, two intermediate and two resistant strains allowed the set up of a PCR-RFLP test for the discrimination between sensitive and resistant strains confirming the SSCP results for the 26 strains of this study.
Collapse
Affiliation(s)
- V Delespaux
- Animal Health Department, Institute of Tropical Medicine (Antwerp), Nationalestraat 155, B-2000 Antwerp, Belgium.
| | | | | | | | | | | |
Collapse
|
33
|
Lanteri CA, Stewart ML, Brock JM, Alibu VP, Meshnick SR, Tidwell RR, Barrett MP. Roles for theTrypanosoma bruceiP2 Transporter in DB75 Uptake and Resistance. Mol Pharmacol 2006; 70:1585-92. [PMID: 16912218 DOI: 10.1124/mol.106.024653] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A novel trypanocide, 2,5-bis(4-amidinophenyl)furan (DB75), in its prodrug amidoxime-derivative form, 2,5-bis(4-amidinophenyl)furan-bis-O-methylamidoxime (DB289), is in trials as the first orally administered drug for human African trypanosomiasis. DB75 is a diamidine. Resistance to some diamidines correlates to loss of uptake via the P2 aminopurine transporter. We show here that uptake of DB75 into Trypanosoma brucei also occurs principally via the P2 transporter. Uptake of tritiated DB75 occurred via a high-affinity (K(m app), 3.2 microM) carriermediated route that was inhibited by adenosine, adenine, and pentamidine, all known substrates of the P2 transporter. Trypanosomes lacking the TbAT1 gene that encodes the P2 transporter demonstrated an 11-fold reduction in sensitivity to DB75 when measured under controlled in vitro conditions. These knockout cells were also less sensitive to DB75 than wild-type cells in mice. Initial uptake rates of DB75 into the Deltatbat1 knockout cell line were greatly reduced compared with rates in wild-type cells. A trypanosome cell line selected in vitro for DB75 resistance was shown to have lost P2-mediated DB75 uptake. The TbAT1 gene was mapped to chromosome V of the T. brucei genome and the DB75-resistant parasites were shown to have deleted both alleles of this gene. Fluorescence microscopy of DB75-treated trypanosomes revealed that DB75 fluorescence localizes rapidly within the DNA-containing organelles of wild-type trypanosomes, whereas no fluorescence was observed in Deltatbat1-null parasites or in the parasites selected for resistance to DB75.
Collapse
Affiliation(s)
- Charlotte A Lanteri
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, The Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
34
|
Stewart ML, Boussard C, Brun R, Gilbert IH, Barrett MP. Interaction of monobenzamidine-linked trypanocides with the Trypanosoma brucei P2 aminopurine transporter. Antimicrob Agents Chemother 2006; 49:5169-71. [PMID: 16304196 PMCID: PMC1315980 DOI: 10.1128/aac.49.12.5169-5171.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Single benzamidine group-carrying compounds were shown to interact with the Trypanosoma brucei P2 aminopurine transporter. Replacement of the amidine with a guanidine group decreased affinity. Trypanocidal activity was evident, but compounds were equally toxic against trypanosomes lacking the P2 transporter, which indicates additional uptake routes for monobenzamidine-derived compounds.
Collapse
Affiliation(s)
- Mhairi L Stewart
- University of Glasgow, Institute of Biomedical and Life Sciences, Division of Infection & Immunity, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Witola WH, Tsuda A, Inoue N, Ohashi K, Onuma M. Acquired resistance to berenil in a cloned isolate of Trypanosoma evansi is associated with upregulation of a novel gene, TeDR40. Parasitology 2006; 131:635-46. [PMID: 16255822 DOI: 10.1017/s003118200500836x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 03/28/2005] [Accepted: 05/24/2005] [Indexed: 11/07/2022]
Abstract
Drug resistance is now a severe and increasing problem in trypanosomes, but molecular details of mechanisms of resistance are only beginning to unveil. There is urgent need to clearly elucidate the different mechanisms of drug resistance in trypanosomes in order to circumvent existing resistance problems and avoid emergence of resistance to the next generation drugs. In this study, we cloned and characterized a novel gene, TeDR40, whose expression is associated with resistance to berenil in Trypanosoma evansi. Expression analysis showed that the gene was at least 1000-fold upregulated in resistant parasites and the encoded protein appeared to have a ubiquitous cellular localization. To investigate the association of TeDR40 with berenil-resistance, we genetically modified wild-type berenil-sensitive T. evansi for inducible over-expression of the TeDR40 gene. Induction of over-expression of TeDR40 in T. evansi led to decreased (P < 0.01) sensitivity to berenil. Our findings indicate a possible correlation between over-expression of a novel gene, TeDR40, and reduced sensitivity to berenil in an in vitro-cultured clonal line of T. evansi.
Collapse
Affiliation(s)
- W H Witola
- Laboratory of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | |
Collapse
|
36
|
Mukherjee A, Padmanabhan PK, Sahani MH, Barrett MP, Madhubala R. Roles for mitochondria in pentamidine susceptibility and resistance in Leishmania donovani. Mol Biochem Parasitol 2006; 145:1-10. [PMID: 16219371 DOI: 10.1016/j.molbiopara.2005.08.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 08/18/2005] [Accepted: 08/26/2005] [Indexed: 11/15/2022]
Abstract
Pentamidine resistant Leishmania donovani was raised in the laboratory by stepwise exposure to increasing drug pressure until a line capable of growth in 8 microM pentamidine (R8) had been selected. An IC(50) value of 40 microM was determined for this line, some 50-fold higher than that recorded for the parental wild-type line. The pentamidine resistant promastigotes were cross-resistant to other toxic diamidine derivatives but not to antimonials or substrates of multidrug resistance pumps. Decreased mitochondrial transmembrane potential was observed in pentamidine resistant promastigotes. A substantial net decrease in accumulation of [(3)H]-pentamidine accompanied the resistance phenotype. Inhibitors of P-glycoprotein pumps, including prochlorperazine and trifluoperazine, did not reverse this decreased drug uptake, which distinguishes the L. donovani resistant line studied here from L. mexicana promastigotes previously studied for pentamidine resistance. Kinetic analysis identified a carrier with an apparent K(m) value of 6 microM for pentamidine. No significant difference between wild-type and resistant parasites could be detected with respect to this transporter in rapid uptake experiments. However, in longer-term uptake experiments and also using concentrations of pentamidine up to 1mM, it was demonstrated that wild-type cells, but not resistant cells, could continue to accumulate pentamidine after apparent saturation via the measured transporter had been reached. Agents that diminish the mitochondrial membrane potential inhibited this secondary route. A fluorescent analogue of pentamidine, 2,5-bis-(4-amidophenyl)-3,4-dimethylfuran (DB99), accumulated in the kinetoplast of wild-type but not resistant parasites indicating that uptake of this cationic compound into mitochondria of wild-type cells was more pronounced than in the resistant line. These data together indicate that resistance to pentamidine in L. donovani is associated with alterations to the mitochondria of the parasites, which lead to reduced accumulation of drug.
Collapse
Affiliation(s)
- Angana Mukherjee
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
37
|
de Koning HP, Bridges DJ, Burchmore RJS. Purine and pyrimidine transport in pathogenic protozoa: From biology to therapy. FEMS Microbiol Rev 2005; 29:987-1020. [PMID: 16040150 DOI: 10.1016/j.femsre.2005.03.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 03/22/2005] [Accepted: 03/24/2005] [Indexed: 01/10/2023] Open
Abstract
Purine salvage is an essential function for all obligate parasitic protozoa studied to date and most are also capable of efficient uptake of preformed pyrimidines. Much progress has been made in the identification and characterisation of protozoan purine and pyrimidine transporters. While the genes encoding protozoan or metazoan pyrimidine transporters have yet to be identified, numerous purine transporters have now been cloned. All protozoan purine transporter-encoding genes characterised to date have been of the Equilibrative Nucleoside Transporter family conserved in a great variety of eukaryote organisms. However, these protozoan transporters have been shown to be sufficiently different from mammalian transporters to mediate selective uptake of therapeutic agents. Recent studies are increasingly addressing the structure and substrate recognition mechanisms of these vital transport proteins.
Collapse
Affiliation(s)
- Harry P de Koning
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|
38
|
Geiser F, Lüscher A, de Koning HP, Seebeck T, Mäser P. Molecular pharmacology of adenosine transport in Trypanosoma brucei: P1/P2 revisited. Mol Pharmacol 2005; 68:589-95. [PMID: 15933219 DOI: 10.1124/mol.104.010298] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma brucei are unicellular parasites that cause sleeping sickness in humans and nagana in livestock. Trypanosomes salvage purines from their hosts through a variety of transporters, of which adenosine permeases deserve particular attention because of their role in drug sensitivity. T. brucei possess two distinct adenosine transport systems, P1 and P2, the latter of which also mediates cellular uptake of the drugs melarsoprol and pentamidine. Loss or mutation of P2 has been associated with drug resistance and sleeping sickness treatment failures. However, genetic disruption in Trypanosoma brucei brucei of the gene encoding P2, TbAT1, reduced the susceptibility to melarsoprol and pentamidine by only a factor of approximately 2. In this study, we show stronger phenotypes of the tbat1 null mutant with respect to its sensitivity toward toxic adenosine analogs. Compared with parental TbAT1+/+ trypanosomes, the tbat1-/- mutant is 77-fold less sensitive to tubercidin and 14-fold less sensitive to cordycepin. Resistance is further increased by the addition of inosine but is reverted by adenine. It is surprising that the tbat1-/- mutant grows faster than TbAT1+/+ trypanosomes and that it overexpresses genes of the TbNT cluster encoding P1-type transporters. These unexpected phenotypes show that there are conditions other than drug pressure under which loss of P2 may confer a selective advantage to bloodstream-form trypanosomes. Overexpression of P1 by trypanosomes after loss of P2 indicates that combinatorial chemotherapy with trypanocidal P1 and P2 substrates may be a promising strategy to prevent drug resistance in sleeping sickness.
Collapse
Affiliation(s)
- Federico Geiser
- Institute of Cell Biology, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
39
|
Matovu E, Stewart ML, Geiser F, Brun R, Mäser P, Wallace LJM, Burchmore RJ, Enyaru JCK, Barrett MP, Kaminsky R, Seebeck T, de Koning HP. Mechanisms of arsenical and diamidine uptake and resistance in Trypanosoma brucei. EUKARYOTIC CELL 2004; 2:1003-8. [PMID: 14555482 PMCID: PMC219364 DOI: 10.1128/ec.2.5.1003-1008.2003] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sleeping sickness, caused by Trypanosoma brucei spp., has become resurgent in sub-Saharan Africa. Moreover, there is an alarming increase in treatment failures with melarsoprol, the principal agent used against late-stage sleeping sickness. In T. brucei, the uptake of melarsoprol as well as diamidines is thought to be mediated by the P2 aminopurine transporter, and loss of P2 function has been implicated in resistance to these agents. The trypanosomal gene TbAT1 has been found to encode a P2-type transporter when expressed in yeast. Here we investigate the role of TbAT1 in drug uptake and drug resistance in T. brucei by genetic knockout of TbAT1. Tbat1-null trypanosomes were deficient in P2-type adenosine transport and lacked adenosine-sensitive transport of pentamidine and melaminophenyl arsenicals. However, the null mutants were only slightly resistant to melaminophenyl arsenicals and pentamidine, while resistance to other diamidines such as diminazene was more pronounced. Nevertheless, the reduction in drug sensitivity might be of clinical significance, since mice infected with tbat1-null trypanosomes could not be cured with 2 mg of melarsoprol/kg of body weight for four consecutive days, whereas mice infected with the parental line were all cured by using this protocol. Two additional pentamidine transporters, HAPT1 and LAPT1, were still present in the null mutant, and evidence is presented that HAPT1 may be responsible for the residual uptake of melaminophenyl arsenicals. High-level arsenical resistance therefore appears to involve the loss of more than one transporter.
Collapse
Affiliation(s)
- Enock Matovu
- Institute of Cell Biology, CH-3012 Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
de Koning HP, Anderson LF, Stewart M, Burchmore RJS, Wallace LJM, Barrett MP. The trypanocide diminazene aceturate is accumulated predominantly through the TbAT1 purine transporter: additional insights on diamidine resistance in african trypanosomes. Antimicrob Agents Chemother 2004; 48:1515-9. [PMID: 15105099 PMCID: PMC400564 DOI: 10.1128/aac.48.5.1515-1519.2004] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance to diminazene aceturate (Berenil) is a severe problem in the control of African trypanosomiasis in domestic animals. It has been speculated that resistance may be the result of reduced diminazene uptake by the parasite. We describe here the mechanisms by which [(3)H]diminazene is transported by Trypanosoma brucei brucei bloodstream forms. Diminazene was rapidly accumulated through a single transporter, with a K(m) of 0.45 +/- 0.11 micro M, which was dose dependently inhibited by pentamidine and adenosine. The K(i) values for these inhibitors were consistent with this transporter being the P2/TbAT1 adenosine transporter. Yeast expressing TbAT1 acquired the ability to take up [(3)H]diminazene and [(3)H]pentamidine. TbAT1-null mutants had lost almost all capacity for [(3)H]diminazene transport. However, this cell line still displayed a small but detectable rate of [(3)H]diminazene accumulation, in a nonsaturable manner. We conclude that TbAT1 mediates [(3)H]diminazene transport almost exclusively and that this explains the observed diminazene resistance phenotypes of TbAT1-null mutants and field isolates.
Collapse
Affiliation(s)
- Harry P de Koning
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Drug resistance in African trypanosomes has been studied for almost a hundred years. Beginning with Paul Ehrlich's work that led to the chemoreceptor hypothesis, reduction of net drug uptake has emerged as the most frequent cause of resistance. This review, therefore, focuses on trypanosomal drug transporter genes. TbAT1 encodes purine permease P2, which mediates influx of melarsoprol and diamidines. Disruption of TbAT1 in Trypanosoma brucei reduced sensitivity to these trypanocides. TbMRPA encodes a putative trypanothione-conjugate efflux pump, and overexpression of TbMRPA in T. brucei causes melarsoprol resistance. It will be important to determine the role of TbAT1 and TbMRPA in sleeping sickness treatment failures.
Collapse
Affiliation(s)
- Pascal Mäser
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
42
|
Witola WH, Inoue N, Ohashi K, Onuma M. RNA-interference silencing of the adenosine transporter-1 gene in Trypanosoma evansi confers resistance to diminazene aceturate. Exp Parasitol 2004; 107:47-57. [PMID: 15208037 DOI: 10.1016/j.exppara.2004.03.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 01/15/2004] [Accepted: 03/30/2004] [Indexed: 11/16/2022]
Abstract
Drug resistance of trypanosomes is now a problem, but its underlying mechanisms are not fully understood. Cellular uptake of the major trypanocidal drugs is thought to occur through an adenosine transporter. The adenosine transporter-1 gene, TbAT1, encoding a P2-like nucleoside transporter has previously been cloned from Trypanosoma brucei brucei, and when expressed in yeast, it showed very similar substrate specificity to the P2-nucleoside transporter, but could not transport diamidines (pentamidine and diminazene). We have cloned and sequenced a similar gene (TevAT1) from Trypanosoma evansi and found it to have 99.7% identity to the TbAT1 gene. To elucidate the role of the TevAT1 gene on diamidine trypanocidal effect, we genetically engineered T. evansi for conditional knock-out of the TevAT1 gene by RNA interference (RNAi). Induction of the RNAi resulted in 10-fold depletion of TevAT1 mRNA, with concomitantly significant resistance to diminazene aceturate (berenil). The induced parasites propagated normally and attained peak cell density at an in vitro concentration of berenil, 5.5-fold higher than the IC(100) of the wild-type. TevAT1 knock-out had no effect on the trypanocidal activity of suramin and antrycide, but conferred some resistance to samorin. Our findings validate the significance of the TevAT1 adenosine transporter-1 gene in mediating the trypanocidal effect of diamidines in T. evansi. Further, we show for the first time that RNAi gene silencing in T. evansi can be induced using plasmids designed for T. brucei. We also demonstrate the usefulness of real-time PCR in rapidly quantifying mRNA levels in trypanosomes.
Collapse
Affiliation(s)
- William H Witola
- Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | |
Collapse
|
43
|
Azema L, Claustre S, Alric I, Blonski C, Willson M, Perié J, Baltz T, Tetaud E, Bringaud F, Cottem D, Opperdoes FR, Barrett MP. Interaction of substituted hexose analogues with the Trypanosoma brucei hexose transporter. Biochem Pharmacol 2004; 67:459-67. [PMID: 15037198 DOI: 10.1016/j.bcp.2003.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Accepted: 09/19/2003] [Indexed: 11/25/2022]
Abstract
Glucose metabolism is essential for survival of bloodstream form Trypanosoma brucei subspecies which cause human African trypanosomiasis (sleeping sickness). Hexose analogues may represent good compounds to inhibit glucose metabolism in these cells. Delivery of such compounds to the parasite is a major consideration in drug development. A series of D-glucose and D-fructose analogues were developed to explore the limits of the structure-activity relationship of the THT1 hexose transporter of bloodstream form African trypanosomes, a portal that might be exploited for drug uptake. D-glucose analogues with substituents at the C2 and C6 position continued to interact with the exofacial hexose binding site of the transporter. There was a limit to the size at C6 which still permitted recognition, although compounds carrying large groups at position C2 were still recognised. However, radiolabelled N-acetyl-D-[1-14C] glucosamine was not internalised by trypanosomes, in spite of the ability of this compound to inhibit glucose uptake, indicating that there is a limit to the size of C2 substituent that allows translocation. Addition of an alkylating group (bromoacetyl) at position C2 in the D-glucose series and at position 6 in the D-fructose set, created two analogues which interact with the transporter and kill trypanosomes in vitro. This indicates that inhibition of the transporter may be a good means of killing trypanosomes.
Collapse
Affiliation(s)
- Laurent Azema
- Groupe de Chimie Organique Biologique, Laboratoire de Synthèse et Physico Chimie de Molécules d'Intérêt Biologique, Université Paul Sabatier, UMR-5068-CNRS, Bât IIR1 118 route de Narbonne, 31062 Toulouse Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Parasites are responsible for a wide variety of infectious diseases in human as well as in domestic and wild animals, causing an enormous health and economical blight. Current containment strategies are not entirely successful and parasitic infections are on the rise. In the absence of availability of antiparasitic vaccines, chemotherapy remains the mainstay for the treatment of most parasitic diseases. However, there is an urgent need for new drugs to prevent or combat some major parasitic infections because of lack of a single effective approach for controlling the parasites (e.g., trypanosomiasis) or because some serious parasitic infections developed resistance to presently available drugs (e.g., malaria). The rational design of a drug is usually based on biochemical and physiological differences between pathogens and host. Some of the most striking differences between parasites and their mammalian host are found in purine metabolism. Purine nucleotides can be synthesized by the de novo and/or the so-called "salvage" pathways. Unlike their mammalian host, most parasites studied lack the pathways for de novo purine biosynthesis and rely on the salvage pathways to meet their purine demands. Moreover, because of the great phylogenic separation between the host and the parasite, there are in some cases sufficient distinctions between corresponding enzymes of the purine salvage from the host and the parasite that can be exploited to design specific inhibitors or "subversive substrates" for the parasitic enzymes. Furthermore, the specificities of purine transport, the first step in purine salvage, diverge significantly between parasites and their mammalian host. This review highlights the unique transporters and enzymes responsible for the salvage of purines in parasites that could constitute excellent potential targets for the design of safe and effective antiparasitic drugs.
Collapse
Affiliation(s)
- Mahmoud H el Kouni
- Department of Pharmacology and Toxicology, Center for AIDS Research, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
45
|
Soulère L, Hoffmanna P, Bringaud F. Synthesis of sydnonimine derivatives as potential trypanocidal agents. J Heterocycl Chem 2003. [DOI: 10.1002/jhet.5570400533] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Basselin M, Denise H, Coombs GH, Barrett MP. Resistance to pentamidine in Leishmania mexicana involves exclusion of the drug from the mitochondrion. Antimicrob Agents Chemother 2002; 46:3731-8. [PMID: 12435669 PMCID: PMC132791 DOI: 10.1128/aac.46.12.3731-3738.2002] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The uptake of [(3)H]pentamidine into wild-type and drug-resistant strains of Leishmania mexicana was compared. Uptake was carrier mediated. Pentamidine-resistant parasites showed cross-resistance to other toxic diamidine derivatives. A substantial decrease in accumulation of the drug accompanied the resistance phenotype, although the apparent affinity for pentamidine by its carrier was not altered when initial uptake velocity was measured. The apparent V(max), however, was reduced. An efflux of pentamidine could be measured in both wild-type and resistant cells. Only a relatively small proportion of the total accumulated pentamidine was available for efflux in wild-type cells, while in resistant cells the majority of loaded pentamidine was available for release. Pharmacological reagents which diminish the mitochondrial membrane potential reduced pentamidine uptake in wild-type parasites, and the mitochondrial membrane potential was shown to be reduced in resistant cells. A fluorescent analogue of pentamidine, 4',6'-diamidino-2-phenylindole, accumulated in the kinetoplast of wild-type but not resistant parasites. These data together indicate that diamidine drugs accumulate in the Leishmania mitochondrion and that the development of the resistance phenotype is accompanied by lack of mitochondrial accumulation of the drug and its exclusion from the parasites.
Collapse
Affiliation(s)
- Mireille Basselin
- Division of Infection & Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, United Kingdom
| | | | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Sleeping sickness has re-emerged as a serious problem in sub-Saharan Africa, with an estimated 100000 deaths each year. South Sudan, the Democratic Republic of Congo and Angola have experienced serious epidemics of the Gambian form of the disease. The control of Gambian sleeping sickness, which relies primarily on active case finding followed by chemotherapy, is being threatened by problems of drug resistance. Recently, Rhodesian sleeping sickness has also posed a health risk to travellers visiting game parks in East Africa. RECENT FINDINGS Because of war-related constraints, which have prevented case detection, the prevalence of Gambian sleeping sickness commonly exceeds 5% and reached 29% in one focus in south Sudan. The incidence of Gambian infections refractory to melarsoprol treatment has also risen sharply in northern Uganda, northern Angola and southern Sudan, with failure rates as high as 26.9%. Molecular techniques based on the gene for human serum resistance (SRA) have enabled the identification of human infective parasites in the domestic animal reservoir. This molecular tool has shown that the Rhodesian form of the disease is being carried in cattle northwards in Uganda towards areas endemic for the Gambian form. The coalescence of distributions of the chronic and acute forms of the disease will present problems for both control and treatment. SUMMARY This review surveys the molecular tools that are improving our understanding of the epidemiology of sleeping sickness, and highlights the search for new diagnostics and drugs to deal with the disease.
Collapse
Affiliation(s)
- Susan C Welburn
- Centre for Tropical Veterinary Medicine, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Roslin, Midlothian, Scotland, UK.
| | | |
Collapse
|
48
|
de Koning HP, Jarvis SM. Uptake of pentamidine in Trypanosoma brucei brucei is mediated by the P2 adenosine transporter and at least one novel, unrelated transporter. Acta Trop 2001; 80:245-50. [PMID: 11700182 DOI: 10.1016/s0001-706x(01)00177-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Diamidine drugs such as pentamidine and berenil (diminazene aceturate) are vital drugs for the treatment of early stage human African trypanosomiasis and the corresponding veterinary condition, respectively. The action of diamidines on trypanosomes is critically dependent on their efficient uptake by the parasite. We have therefore investigated the mode of uptake of pentamidine by Trypanosoma brucei brucei, using [(125)I]iodopentamidine as a permeant. [(125)I]Iodopentamidine uptake was linear for up to 15 min and inhibited by adenosine with a K(i) value of 0.64+/-0.03 microM to a maximum of 50-70%. The adenosine-sensitive flux was also inhibited by adenine with a K(i) value of 0.44+/-0.04 microM. Iodopentamidine uptake was saturable, with the adenosine-insensitive flux displaying a K(m) of 22+/-2 microM and a V(max) of 2.2+/-0.9 pmol(10(7) cells)(-1)s(-1), whereas the adenosine-sensitive flux was inhibited by much lower iodopentamidine concentrations. These results clearly demonstrate that iodopentamidine is taken up by at least two different T. b. brucei transporters, an adenosine-sensitive pentamidine transporter (ASPT1) and a low-affinity pentamidine transporter (LAPT1). The identity of these transporters was investigated, and their significance for drug uptake and resistance in African trypanosomes is discussed.
Collapse
Affiliation(s)
- H P de Koning
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity, University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
49
|
Suswam EA, Taylor DW, Ross CA, Martin RJ. Changes in properties of adenosine transporters in Trypanosoma evansi and modes of selection of resistance to the melaminophenyl arsenical drug, Mel Cy. Vet Parasitol 2001; 102:193-208. [PMID: 11777599 DOI: 10.1016/s0304-4017(01)00533-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Resistance to arsenical drugs in trypanosomes has been linked to changes in adenosine uptake. The transport of melaminophenyl arsenicals into Trypanosoma brucei was shown to be mediated by an unusual adenosine nucleoside transporter, P2 (Carter and Fairlamb, 1993), and the loss of this transporter is associated with resistance to melaminophenyl arsenicals in these parasites. To further understand the mechanisms of arsenical resistance, we generated several lines of Mel Cy-resistant T. evansi from a drug-sensitive isolate using both in vivo and in vitro selection methods. Uptake of the melaminophenyl arsenical, Mel Cy on the P2 transporter was studied in the drug-sensitive as well as Mel Cy-resistant parasites, by means of inhibition of Mel Cy-induced lysis of trypanosomes, in an in vitro lysis assay. Adenosine uptake was also investigated using competition inhibition assays. Our study shows that T. evansi, TREU 1840, possesses the P1/P2 adenosine transport system as reported in T. brucei and T. equiperdum. However, in T. evansi, the P2 transporter is the larger transport process instead of the P1. The P2 transporter in T. evansi mediated the uptake of Mel Cy in the drug-sensitive parasites. The P2 was retained in all the arsenical-resistant T. evansi lines studied. However, the activity of the transporter was reduced to different extents in the different-resistant lines. The residual P2 activity related well to the levels of drug resistance in each line, suggesting that P2 activity could be an important marker for arsenical resistance. Furthermore, important differences were observed between the in vivo- and the in vitro-selected arsenical-resistant parasites suggesting that there may be differences in resistance phenotypes selected on the field.
Collapse
Affiliation(s)
- E A Suswam
- Center for Tropical Veterinary Medicine, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG, UK
| | | | | | | |
Collapse
|
50
|
Matovu E, Geiser F, Schneider V, Mäser P, Enyaru JC, Kaminsky R, Gallati S, Seebeck T. Genetic variants of the TbAT1 adenosine transporter from African trypanosomes in relapse infections following melarsoprol therapy. Mol Biochem Parasitol 2001; 117:73-81. [PMID: 11551633 DOI: 10.1016/s0166-6851(01)00332-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have analyzed the TbAT1 gene, which codes for the P2 adenosine transporter, from Trypanosoma brucei field isolates to investigate a possible link between the presence of mutations in this gene and melarsoprol treatment failure. Of 65 T. b. gambiense isolates analyzed from a focus in north-western Uganda with high treatment failure rates following melarsoprol therapy, 38 had a mutated TbAT1. Unexpectedly, all individual isolates contained the same set of nine mutations in their TbAT1 genes. Of these, five point mutations resulted in amino acid substitutions, one resulted in the deletion of an entire codon, and three were silent point mutations. Eight of these mutations had previously been reported in a laboratory-derived Cymelarsan-resistant T. b. brucei clone. Identical sets of mutations were also found in a drug-resistant T.b.rhodesiense isolate from south-eastern Uganda and in a T.b.gambiense isolate from a relapsing patient from northern Angola. A deletion of the TbAT1 gene was found in a single T. b. gambiense isolate from a relapsing patient from northern Angola. The data presented demonstrate the surprising finding that trypanosomes from individual relapse patients of one area, as well as from geographically distant localities, contain an identical set of point mutations in the transporter gene TbAT1. They further demonstrate that many isolates from relapse patients contained the wild-type TbAT1 genes, suggesting that melarsoprol refractoriness is not solely due to a mutational inactivation of TbAT1.
Collapse
Affiliation(s)
- E Matovu
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|