1
|
Di Girolamo F, Raggi C, Birago C, Pizzi E, Lalle M, Picci L, Pace T, Bachi A, de Jong J, Janse CJ, Waters AP, Sargiacomo M, Ponzi M. Plasmodium lipid rafts contain proteins implicated in vesicular trafficking and signalling as well as members of the PIR superfamily, potentially implicated in host immune system interactions. Proteomics 2008; 8:2500-13. [PMID: 18563749 DOI: 10.1002/pmic.200700763] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Plasmodium parasites, the causal agents of malaria, dramatically modify the infected erythrocyte by exporting parasite proteins into one or multiple erythrocyte compartments, the cytoplasm and the plasma membrane or beyond. Despite advances in defining signals and specific cellular compartments implicated in protein trafficking in Plasmodium-infected erythrocytes, the contribution of lipid-mediated sorting to this cellular process has been poorly investigated. In this study, we examined the proteome of cholesterol-rich membrane microdomains or lipid rafts, purified from erythrocytes infected by the rodent parasite Plasmodium berghei. Besides structural proteins associated with invasive forms, we detected chaperones, proteins implicated in vesicular trafficking, membrane fusion events and signalling. Interestingly, the raft proteome of mixed P. berghei blood stages included proteins encoded by members of a large family (bir) of putative variant antigens potentially implicated in host immune system interactions and targeted to the surface of the host erythrocytes. The generation of transgenic parasites expressing BIR/GFP fusions confirmed the dynamic association of members of this protein family with membrane microdomains. Our results indicated that lipid rafts in Plasmodium-infected erythrocytes might constitute a route to sort and fold parasite proteins directed to various host cell compartments including the cell surface.
Collapse
Affiliation(s)
- Francesco Di Girolamo
- Dipartimento di Malattie Infettive Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Kutuzov MA, Andreeva AV. Protein Ser/Thr phosphatases of parasitic protozoa. Mol Biochem Parasitol 2008; 161:81-90. [PMID: 18619495 DOI: 10.1016/j.molbiopara.2008.06.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/12/2008] [Accepted: 06/12/2008] [Indexed: 12/17/2022]
Abstract
Protein phosphorylation is an important mechanism implicated in physiology of any organism, including parasitic protozoa. Enzymes that control protein phosphorylation (kinases and phosphatases) are considered promising targets for drug development. This review attempts to provide the first account of the current understanding of the structure, regulation and biological functions of protein Ser/Thr phosphatases in unicellular parasites. We have examined the complements of phosphatases ("phosphatomes") of the PPP and PPM families in several species of Apicomplexa (including malaria parasite Plasmodium), as well as Giardia lamblia, Entamoeba histolytica, Trichomonas vaginalis and a microsporidium Encephalitozoon cuniculi. Apicomplexans have homologues (in most cases represented by single isoforms) of all human PPP subfamilies. Some apicomplexan PPP phosphatases have no orthologues in their vertebrate hosts, including a previously unrecognised group of pseudo-phosphatases with putative Ca(2+)-binding domains, which we designate as EFPP. We also describe the presence of previously undetected Zn finger motifs in PPEF phosphatases from kinetoplastids, and a likely case of convergent evolution of tetratricopeptide repeat domain-containing phosphatases in G. lamblia. Among the parasites examined, E. cuniculi has the smallest Ser/Thr phosphatome (5 PPP and no PPM), while T. vaginalis shows the largest expansion of the PPP family (169 predicted phosphatases). Most protozoan PPM phosphatases cluster separately from human sequences. The structural peculiarities or absence of human orthologues of a number of protozoan protein Ser/Thr phosphatases makes them potentially suitable targets for chemotherapy and thus warrants their functional assessment.
Collapse
Affiliation(s)
- Mikhail A Kutuzov
- Department of Pharmacology, University of Illinois at Chicago, 909 S. Wolcott Avenue, Chicago, IL 60612, USA.
| | | |
Collapse
|
3
|
Thompson J, Fernandez-Reyes D, Sharling L, Moore SG, Eling WM, Kyes SA, Newbold CI, Kafatos FC, Janse CJ, Waters AP. Plasmodium cysteine repeat modular proteins 1-4: complex proteins with roles throughout the malaria parasite life cycle. Cell Microbiol 2007; 9:1466-80. [PMID: 17253978 DOI: 10.1111/j.1462-5822.2006.00885.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Cysteine Repeat Modular Proteins (PCRMP1-4) of Plasmodium, are encoded by a small gene family that is conserved in malaria and other Apicomplexan parasites. They are very large, predicted surface proteins with multipass transmembrane domains containing motifs that are conserved within families of cysteine-rich, predicted surface proteins in a range of unicellular eukaryotes, and a unique combination of protein-binding motifs, including a >100 kDa cysteine-rich modular region, an epidermal growth factor-like domain and a Kringle domain. PCRMP1 and 2 are expressed in life cycle stages in both the mosquito and vertebrate. They colocalize with PfEMP1 (P. falciparum Erythrocyte Membrane Antigen-1) during its export from P. falciparum blood-stage parasites and are exposed on the surface of haemolymph- and salivary gland-sporozoites in the mosquito, consistent with a role in host tissue targeting and invasion. Gene disruption of pcrmp1 and 2 in the rodent malaria model, P. berghei, demonstrated that both are essential for transmission of the parasite from the mosquito to the mouse and has established their discrete and important roles in sporozoite targeting to the mosquito salivary gland. The unprecedented expression pattern and structural features of the PCRMPs thus suggest a variety of roles mediating host-parasite interactions throughout the parasite life cycle.
Collapse
Affiliation(s)
- Joanne Thompson
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Pace T, Olivieri A, Sanchez M, Albanesi V, Picci L, Siden Kiamos I, Janse CJ, Waters AP, Pizzi E, Ponzi M. Set regulation in asexual and sexual Plasmodium parasites reveals a novel mechanism of stage-specific expression. Mol Microbiol 2006; 60:870-82. [PMID: 16677299 DOI: 10.1111/j.1365-2958.2006.05141.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transmission of the malaria parasite depends on specialized gamete precursors (gametocytes) that develop in the bloodstream of a vertebrate host. Gametocyte/gamete differentiation requires controlled patterns of gene expression and regulation not only of stage and gender-specific genes but also of genes associated with DNA replication and mitosis. Once taken up by mosquito, male gametocytes undergo three mitotic cycles within few minutes to produce eight motile gametes. Here we analysed, in two Plasmodium species, the expression of SET, a conserved nuclear protein involved in chromatin dynamics. SET is expressed in both asexual and sexual blood stages but strongly accumulates in male gametocytes. We demonstrated functionally the presence of two distinct promoters upstream of the set open reading frame, the one active in all blood stage parasites while the other active only in gametocytes and in a fraction of schizonts possibly committed to sexual differentiation. In ookinetes both promoters exhibit a basal activity, while in the oocysts the gametocyte-specific promoter is silent and the reporter gene is only transcribed from the constitutive promoter. This transcriptional control, described for the first time in Plasmodium, provides a mechanism by which single-copy genes can be differently modulated during parasite development. In male gametocytes an overexpression of SET might contribute to a prompt entry and execution of S/M phases within mosquito vector.
Collapse
Affiliation(s)
- Tomasino Pace
- Dipartimento di Malattie Infettive Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Chandra BR, Olivieri A, Silvestrini F, Alano P, Sharma A. Biochemical characterization of the two nucleosome assembly proteins from Plasmodium falciparum. Mol Biochem Parasitol 2005; 142:237-47. [PMID: 15899528 DOI: 10.1016/j.molbiopara.2005.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 04/21/2005] [Accepted: 04/21/2005] [Indexed: 10/25/2022]
Abstract
The human malaria parasite Plasmodium falciparum contains two nucleosome assembly proteins, which we have termed PfNAPS and PfNAPL. We have over-expressed, purified and characterized these proteins using biochemical and biophysical techniques. PfNAPS and PfNAPL exist as dimers in solution and circular dichroism studies suggest that they may have different three-dimensional protein structures. ELISA-based binding data also suggest that PfNAPS and PfNAPL preferentially interact with the H3-H4 tetramer histones over H2A and H2B histones. We show that the parasite lysate phosphorylates only PfNAPL and this phosphorylation can be inhibited by heparin suggesting a potential role of casein kinase II in this process. Immuno-fluorescence experiments revealed that both PfNAPS and PfNAPL were expressed in all erythrocytic stages of the parasite. PfNAPL was predominantly localised in the cytoplasm in asexual and sexual stages of the parasite. PfNAPS did not co-localise with PfNAPL and was more intimately associated with the parasite nucleus, most strikingly in P. falciparum gametocytes. Taken together, our data show that although PfNAPS and PfNAPL share histone chaperone acitivities, they are regulated differently by phosphorylation and are spatially segregated within the parasite. These proteins are therefore likely to play non-redundant roles as nucleosome assembly motors in the parasite.
Collapse
Affiliation(s)
- Beeram Ravi Chandra
- Structural Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
6
|
Gissot M, Refour P, Briquet S, Boschet C, Coupé S, Mazier D, Vaquero C. Transcriptome of 3D7 and its gametocyte-less derivative F12 Plasmodium falciparum clones during erythrocytic development using a gene-specific microarray assigned to gene regulation, cell cycle and transcription factors. Gene 2004; 341:267-77. [PMID: 15474309 DOI: 10.1016/j.gene.2004.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2004] [Revised: 06/21/2004] [Accepted: 07/05/2004] [Indexed: 11/19/2022]
Abstract
During the complex life cycle of Plasmodium falciparum, through mosquito and human, the erythrocytic cycle is responsible for malarial disease and transmission. The regulation of events that occur during parasite development, such as proliferation and differentiation, implies a fine control of transcriptional activities that in turn governs the expression profiles of sets of genes. Pathways that underline gametocyte commitment are yet poorly understood even though kinases and transcription factors have been assumed to play a crucial role in this event. In order to understand the molecular mechanisms controlling the variation of gene expression profiles that might participate in early gametocytogenesis, the transcriptome of two clones, 3D7 and its gametocyte-less derivative F12, was compared at five time points of the erythrocytic asexual development. We have used a thematic DNA microarray containing 150 PCR fragments, representative of P. falciparum genes involved in signal transduction, cell cycle and transcriptional regulation. We identified several genes eliciting different expression profiles among which some implicated in gene regulation or encoding putative transcription factors. The differential expression of transcription factor and kinase transcripts observed in the two clones may enlighten genes that might have a role in impairment of the early gametocytogenesis of the F12 clone.
Collapse
Affiliation(s)
- Mathieu Gissot
- INSERM U511, CHU Pitié-Salpêtrière, Université Paris 6, 91 boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Birago C, Albanesi V, Silvestrini F, Picci L, Pizzi E, Alano P, Pace T, Ponzi M. A gene-family encoding small exported proteins is conserved across Plasmodium genus. Mol Biochem Parasitol 2003; 126:209-18. [PMID: 12615320 DOI: 10.1016/s0166-6851(02)00275-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A gene-family, named sep, encoding small exported proteins conserved across Plasmodium species has been identified. SEP proteins (13-16 kDa) contain a predicted signal peptide at the NH(2)-terminus, an internal hydrophobic region and a polymorphic, low-complexity region at the carboxy-terminus. One member of the Plasmodium berghei family, Pbsep1, encodes an integral membrane protein expressed along the entire erythrocytic cycle. Immunolocalisation results indicated that PbSEP1 is targeted to the membrane of the parasitophorous vacuole up to the early phases of schizogony, while, in late schizonts, it re-locates in structures within the syncitium. After erythrocyte rupture, PbSEP1 is still detectable in free merozoites thus suggesting its involvement in the early steps of parasite invasion. Seven members of the sep-family in Plasmodium falciparum have been identified. Two of them correspond to previously reported gene sequences included in a family of early transcribed membrane proteins (etramp). Structural, functional and phylogenetic features of the sep family, shown in the present work, supercede this previous classification. PfSEP proteins are exported beyond the parasite membrane and translocated, early after invasion, to the host cell compartment in association with vesicle-like structures. Colocalisation results indicated that PfSEP-specific fluorescence overlaps, at the stage of trophozoite, with that of Pf332, a protein associated with Maurer's clefts, membranous structures in the cytosol of parasitised red blood cells, most probably involved in trafficking of parasite proteins. The specific signals necessary to direct SEP proteins to the vacuolar membrane in P. berghei or to the host cell compartment in P. falciparum remain to be determined.
Collapse
Affiliation(s)
- Cecilia Birago
- Laboratorio di Biologia Cellulare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Dobson S, Kumar R, Bracchi-Ricard V, Freeman S, Al-Murrani SWK, Johnson C, Damuni Z, Chakrabarti D, Barik S. Characterization of a unique aspartate-rich protein of the SET/TAF-family in the human malaria parasite, Plasmodium falciparum, which inhibits protein phosphatase 2A. Mol Biochem Parasitol 2003; 126:239-50. [PMID: 12615323 DOI: 10.1016/s0166-6851(02)00293-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A search for physiological inhibitors of protein phosphatases led to the identification of a Plasmodium falciparum (Pf) cDNA that had the potential to code for an aspartate-rich protein and hence named ARP. The PfARP was virtually identical to its Plasmodium berghei counterpart in gene structure and protein sequence. The PfARP coding sequence contained two introns, and the predicted protein contained 269 amino acid residues. Its primary structure showed significant similarity to eukaryotic proteins of the SET and TAF-family that included two inhibitors of mammalian serine/threonine protein phosphatase 2A (PP2A), namely I1(PP2A) and I2(PP2A). Like the SET and TAF proteins, it had an extremely acidic tail. The cDNA was confirmed by recombinant expression in bacteria. Native parasitic ARP was purified and was found to be highly thermostable. PfARP specifically inhibited the parasitic PP2A at nanomolar concentrations, with no effect on PP1, PP2B, PP5, or PPJ. Expression of PfARP in HeLa cells led to elevated phosphorylation of c-Jun, and activation of transcription factors AP1 and NF-kappa B. These functional properties are also characteristic of the SET/TAF-family proteins. The ARP mRNA and protein were detectable in all the erythrocytic asexual stages of the parasite, and the protein was located mainly in the parasitic cytoplasm. Thus, PfARP is a unique cytoplasmic member of the SET/TAF-family and a candidate physiological regulator of the Plasmodium PP2A.
Collapse
Affiliation(s)
- Sean Dobson
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, 307 University Boulevard, Mobile, AL 36688, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
van Lin LH, Pace T, Janse CJ, Birago C, Ramesar J, Picci L, Ponzi M, Waters AP. Interspecies conservation of gene order and intron-exon structure in a genomic locus of high gene density and complexity in Plasmodium. Nucleic Acids Res 2001; 29:2059-68. [PMID: 11353075 PMCID: PMC55447 DOI: 10.1093/nar/29.10.2059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A 13.6 kb contig of chromosome 5 of Plasmodium berghei, a rodent malaria parasite, has been sequenced and analysed for its coding potential. Assembly and comparison of this genomic locus with the orthologous locus on chromosome 10 of the human malaria Plasmodium falciparum revealed an unexpectedly high level of conservation of the gene organisation and complexity, only partially predicted by current gene-finder algorithms. Adjacent putative genes, transcribed from complementary strands, overlap in their untranslated regions, introns and exons, resulting in a tight clustering of both regulatory and coding sequences, which is unprecedented for genome organisation of PLASMODIUM: In total, six putative genes were identified, three of which are transcribed in gametocytes, the precursor cells of gametes. At least in the case of two multiple exon genes, alternative splicing and alternative transcription initiation sites contribute to a flexible use of the dense information content of this locus. The data of the small sample presented here indicate the value of a comparative approach for Plasmodium to elucidate structure, organisation and gene content of complex genomic loci and emphasise the need to integrate biological data of all Plasmodium species into the P.falciparum genome database and associated projects such as PlasmodB to further improve their annotation.
Collapse
Affiliation(s)
- L H van Lin
- Department of Parasitology, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
10
|
van Dijk MR, Janse CJ, Thompson J, Waters AP, Braks JA, Dodemont HJ, Stunnenberg HG, van Gemert GJ, Sauerwein RW, Eling W. A central role for P48/45 in malaria parasite male gamete fertility. Cell 2001; 104:153-64. [PMID: 11163248 DOI: 10.1016/s0092-8674(01)00199-4] [Citation(s) in RCA: 302] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fertilization and zygote development are obligate features of the malaria parasite life cycle and occur during parasite transmission to mosquitoes. The surface protein PFS48/45 is expressed by male and female gametes of Plasmodium falciparum and PFS48/45 antibodies prevent zygote development and transmission. Here, gene disruption was used to show that Pfs48/45 and the ortholog Pbs48/45 from a rodent malaria parasite P. berghei play a conserved and important role in fertilization. p48/45- parasites had a reduced capacity to produce oocysts in mosquitoes due to greatly reduced zygote formation. Unexpectedly, only male gamete fertility of p48/45- parasites was affected, failing to penetrate otherwise fertile female gametes. P48/45 is shown to be a surface protein of malaria parasites with a demonstrable role in fertilization.
Collapse
Affiliation(s)
- M R van Dijk
- Laboratory for Parasitology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Pace T, Scotti R, Janse CJ, Waters AP, Birago C, Ponzi M. Targeted terminal deletions as a tool for functional genomics studies in Plasmodium. Genome Res 2000; 10:1414-20. [PMID: 10984459 PMCID: PMC310916 DOI: 10.1101/gr.140000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We describe a transfection system that induces terminal deletions at specific chromosome ends in malaria parasites using a linear construct containing telomeric repeats at one end and plasmodial sequences able to drive homologous recombination at the other. A site-specific deletion was generated at one extremity of chromosome 5 of Plasmodium berghei, which was stably maintained in the parasite population selected after transfection. The telomeric repeat array introduced with the construct reached the average length observed in natural telomeres of Plasmodium, indicating that in vivo telomere addition occurred at the newly formed extremity. The expression of a mutant dhfr/ts gene conferring pyrimethamine resistance, used as a selectable marker, was not affected by the proximity to the telomeric sequences, either in the presence or absence of drug pressure. In addition, no transcriptional silencing was observed on insertion of the mutant dhfr/ts gene either in subtelomeric or internal positions that are transcriptionally silent in blood-stage parasites. This suggests that the activity of its promoter is not affected by the chromatin organization of the chromosomal context.
Collapse
Affiliation(s)
- T Pace
- Laboratorio di Biologia Cellulare, Istituto Superiore di Sanitá, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
12
|
van Lin LH, Janse CJ, Waters AP. The conserved genome organisation of non-falciparum malaria species: the need to know more. Int J Parasitol 2000; 30:357-70. [PMID: 10731560 DOI: 10.1016/s0020-7519(99)00196-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The current knowledge on genomes of non-falciparum malaria species and the potential of model malaria parasites for functional analyses are reviewed and compared with those of the most pathogenic human parasite, Plasmodium falciparum. There are remarkable similarities in overall genome composition among the different species at the level of chromosome organisation and chromosome number, conserved order of individual genes, and even conserved functions of specific gene domains and regulatory control elements. With the initiative taken to sequence the genome of P. falciparum, a wealth of information is already becoming available to the scientific community. In order to exploit the biological information content of a complete genome sequence, simple storage of the bulk of sequence data will be inadequate. The requirement for functional analyses to determine the biological role of the open reading frames is commonly accepted and knowledge of the genomes of the animal model malaria species will facilitate these analyses. Detailed comparative genome information and sequencing of additional Plasmodium genomes will provide a deeper insight into the evolutionary history of the species, the biology of the parasite, and its interactions with the mammalian host and mosquito vector. Therefore, an extended and integrated approach will enhance our knowledge of malaria and will ultimately lead to a more rational approach that identifies and evaluates new targets for anti-malarial drug and vaccine development.
Collapse
Affiliation(s)
- L H van Lin
- Department of Parasitology, Leiden University Medical Centre, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | | | | |
Collapse
|
13
|
Birago C, Pace T, Picci L, Pizzi E, Scotti R, Ponzi M. The putative gene for the first enzyme of glutathione biosynthesis in Plasmodium berghei and Plasmodium falciparum. Mol Biochem Parasitol 1999; 99:33-40. [PMID: 10215022 DOI: 10.1016/s0166-6851(98)00179-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The putative gene for gamma-glutamylcysteine synthetase, the rate-limiting enzyme in glutathione biosynthesis, has been characterized both in Plasmodium berghei and Plasmodium falciparum. Protein sequence comparison between these two species reveals large conserved regions sharing more than 80% similarity, separated by less conserved portions. When the comparison is extended to known gamma-glutamylcysteine synthetases from other eukaryotes, a number of high similarity blocks are observed which may help in identifying sequence essential for protein function.
Collapse
Affiliation(s)
- C Birago
- Laboratorio di Biologia Cellulare, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Pace T, Birago C, Janse CJ, Picci L, Ponzi M. Developmental regulation of a Plasmodium gene involves the generation of stage-specific 5' untranslated sequences. Mol Biochem Parasitol 1998; 97:45-53. [PMID: 9879886 DOI: 10.1016/s0166-6851(98)00130-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The B7 gene of Plasmodium berghei, highly conserved within the genus Plasmodium, encodes a nuclear protein most likely involved in chromatin assembly. In this study we describe the transcription pattern of B7 during asexual multiplication and sexual differentiation of the parasites in the blood of the vertebrate host. Two alternative transcripts have been identified: one, 1.4 kb in length is specific for asexual blood stages; the other, 1.8 kb in length is specific for sexually differentiated cells (gametocytes). The processed mRNAs are identical in their coding region and differ only in their 5' untranslated regions (5' UTRs). We show here that the differences in 5' UTRs are the result of two mechanisms: (1) the use of alternative transcription initiation sites mapped at least 1.4 kb apart, which imply the existence of separate, stage-specific promoters; (2) the splicing of a 765 bp gametocyte-specific intron at the 5' UTR of the 1.8 kb transcript.
Collapse
Affiliation(s)
- T Pace
- Laboratorio di Biologia Cellulare, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | |
Collapse
|