Wojcikiewicz RJ, Luo SG. Phosphorylation of inositol 1,4,5-trisphosphate receptors by cAMP-dependent protein kinase. Type I, II, and III receptors are differentially susceptible to phosphorylation and are phosphorylated in intact cells.
J Biol Chem 1998;
273:5670-7. [PMID:
9488697 DOI:
10.1074/jbc.273.10.5670]
[Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of cAMP-dependent protein kinase (PKA) to phosphorylate type I, II, and III inositol 1,4,5-trisphosphate (InsP3) receptors was examined. The receptors either were immunopurified from cell lines and then phosphorylated with purified PKA or were phosphorylated in intact cells after activating intracellular cAMP formation. The former studies showed that the type I receptor was a good substrate for PKA (0.65 mol Pi incorporated/mol receptor), whereas type II and III receptors were phosphorylated relatively weakly. The latter studies showed that despite these differences, each of the receptors was phosphorylated in intact cells in response to forskolin or activation of neurohormone receptors. Detailed examination of SH-SY5Y neuroblastoma cells, which express >/=99% type I receptor, revealed that minor increases in cAMP concentration were sufficient to cause maximal phosphorylation. Thus, VIP and pituitary adenylyl cyclase activating peptide (acting through Gs-coupled pituitary adenylyl cyclase activating peptide-I receptors) were potent stimuli of type I receptor phosphorylation, and remarkably, even slight increases in cAMP concentration induced by carbachol (acting through Gq-coupled muscarinic receptors) or other Ca2+ mobilizing agents were sufficient to cause phosphorylation. Finally, PKA enhanced InsP3-induced Ca2+ mobilization in a range of permeabilized cell types, irrespective of whether the type I, II, or III receptor was predominant. In summary, these data show that all InsP3 receptors are phosphorylated by PKA, albeit with marked differences in stoichiometry. The ability of both Gs- and Gq-coupled cell surface receptors to effect InsP3 receptor phosphorylation by PKA suggests that this process is widespread in mammalian cells and provides multiple routes by which the cAMP signaling pathway can influence Ca2+ mobilization.
Collapse