1
|
Lund AM, Hannibal J. Localization of the neuropeptides pituitary adenylate cyclase-activating polypeptide, vasoactive intestinal peptide, and their receptors in the basal brain blood vessels and trigeminal ganglion of the mouse CNS; an immunohistochemical study. Front Neuroanat 2022; 16:991403. [PMID: 36387999 PMCID: PMC9643199 DOI: 10.3389/fnana.2022.991403] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are structurally related neuropeptides that are widely expressed in vertebrate tissues. The two neuropeptides are pleiotropic and have been associated with migraine pathology. Three PACAP and VIP receptors have been described: PAC1, VPAC1, and VPAC2. The localization of these receptors in relation to VIP and PACAP in migraine-relevant structures has not previously been shown in mice. In the present study, we used fluorescence immunohistochemistry, well-characterized antibodies, confocal microscopy, and three-dimensional reconstruction to visualize the distribution of PACAP, VIP, and their receptors in the basal blood vessels (circle of Willis), trigeminal ganglion, and brain stem spinal trigeminal nucleus (SP5) of the mouse CNS. We demonstrated a dense network of circularly oriented VIP fibers on the basal blood vessels. PACAP nerve fibers were fewer in numbers compared to VIP fibers and ran along the long axis of the blood vessels, colocalized with calcitonin gene-related peptide (CGRP). The nerve fibers expressing CGRP are believed to be sensorial, with neuronal somas localized in the trigeminal ganglion and PACAP was found in a subpopulation of these CGRP-neurons. Immunostaining of the receptors revealed that only the VPAC1 receptor was present in the basal blood vessels, localized on the surface cell membrane of vascular smooth muscle cells and innervated by VIP fibers. No staining was seen for the PAC1, VPAC1, or VPAC2 receptor in the trigeminal ganglion. However, distinct PAC1 immunoreactivity was found in neurons innervated by PACAP nerve terminals located in the spinal trigeminal nucleus. These findings indicate that the effect of VIP is mediated via the VPAC1 receptor in the basal arteries. The role of PACAP in cerebral arteries is less clear. The localization of PACAP in a subpopulation of CGRP-expressing neurons in the trigeminal ganglion points toward a primary sensory function although a dendritic release cannot be excluded which could stimulate the VPAC1 receptor or the PAC1 and VPAC2 receptors on immune cells in the meninges, initiating neurogenic inflammation relevant for migraine pathology.
Collapse
Affiliation(s)
- Anne Marie Lund
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Hannibal
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Jens Hannibal,
| |
Collapse
|
2
|
Stangerup I, Hannibal J. Localization of Vasoactive Intestinal Polypeptide Receptor 1 (VPAC1) in Hypothalamic Neuroendocrine Oxytocin Neurons; A Potential Role in Circadian Prolactin Secretion. Front Neuroanat 2020; 14:579466. [PMID: 33192343 PMCID: PMC7658414 DOI: 10.3389/fnana.2020.579466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Prolactin (PRL) is a versatile hormone and serves a broad variety of physiological functions besides lactation. The release of PRL from lactotrophs in the pituitary has in rodents been shown to be released with a circadian pattern depending on the physiological state of the animal. The circadian release of PRL seems to be complex involving tonic inhibition by dopamine (DA) neurons on lactotrophs and one or even several releasing factors. Because of the circadian releasing pattern of PRL, neurons in the suprachiasmatic nucleus (SCN), "the brain clock," and especially the neurons expressing neuropeptide vasoactive intestinal polypeptide (VIP), have been suggested to be involved in the circadian regulation of PRL. In the present study, we used fluorescence immunohistochemistry, in situ hybridization histochemistry, confocal microscopy, three-dimensional reconstruction, and highly specific antibodies to visualize the occurrence of VIP receptors 1 and 2 (VPAC1 and VPAC2) in mouse brain hypothalamic sections stained in combination with VIP, oxytocin (OXT), arginine vasopressin (AVP), and DA (tyrosine hydroxylase, TH). We demonstrated that VIP fibers most likely originating from the ventral part of the SCN project to OXT neurons in the magnocellular part of the paraventricular nucleus (PVN). In the PVN, VIP fibers were found in close apposition to OXT neuron exclusively expressing the VPAC1 receptor. Furthermore, we demonstrate that neither OXT neurons nor TH or AVP neurons were expressing the VPAC2 receptor. VPAC1 receptor expression was also found on blood vessels but not in neurons expressing AVP or TH. These findings suggest that VIP signaling from the SCN does not directly target DA neurons involved in PRL secretion. Furthermore, the findings support the notion that VIP from neurons in the SCN could regulate circadian release of OXT in the posterior pituitary or modulate OXT neurons as a releasing factor involved in the circadian regulation of PRL from pituitary lactotrophs.
Collapse
Affiliation(s)
- Ida Stangerup
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Denes V, Geck P, Mester A, Gabriel R. Pituitary Adenylate Cyclase-Activating Polypeptide: 30 Years in Research Spotlight and 600 Million Years in Service. J Clin Med 2019; 8:jcm8091488. [PMID: 31540472 PMCID: PMC6780647 DOI: 10.3390/jcm8091488] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging from the depths of evolution, pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors (i.e., PAC1, VPAC1, VPAC2) are present in multicellular organisms from Tunicates to humans and govern a remarkable number of physiological processes. Consequently, the clinical relevance of PACAP systems spans a multifaceted palette that includes more than 40 disorders. We aimed to present the versatility of PACAP1-38 actions with a focus on three aspects: (1) when PACAP1-38 could be a cause of a malfunction, (2) when PACAP1-38 could be the cure for a malfunction, and (3) when PACAP1-38 could either improve or impair biology. PACAP1-38 is implicated in the pathophysiology of migraine and post-traumatic stress disorder whereas an outstanding protective potential has been established in ischemia and in Alzheimer’s disease. Lastly, PACAP receptors could mediate opposing effects both in cancers and in inflammation. In the light of the above, the duration and concentrations of PACAP agents must be carefully set at any application to avoid unwanted consequences. An enormous amount of data accumulated since its discovery (1989) and the first clinical trials are dated in 2017. Thus in the field of PACAP research: “this is not the end, not even the beginning of the end, but maybe the end of the beginning.”
Collapse
Affiliation(s)
- Viktoria Denes
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Peter Geck
- Department of Immunology, School of Medicine, Tufts University, Boston, MA 02111, USA.
| | - Adrienn Mester
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| |
Collapse
|
4
|
Hannibal J, Georg B, Fahrenkrug J. PAC1- and VPAC2 receptors in light regulated behavior and physiology: Studies in single and double mutant mice. PLoS One 2017; 12:e0188166. [PMID: 29155851 PMCID: PMC5695784 DOI: 10.1371/journal.pone.0188166] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/01/2017] [Indexed: 11/19/2022] Open
Abstract
The two sister peptides, pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) and their receptors, the PAC1 -and the VPAC2 receptors, are involved in regulation of the circadian timing system. PACAP as a neurotransmitter in the retinohypothalamic tract (RHT) and VIP as a neurotransmitter, involved in synchronization of SCN neurons. Behavior and physiology in VPAC2 deficient mice are strongly regulated by light most likely as a result of masking. Consequently, we used VPAC2 and PAC1/VPAC2 double mutant mice in comparison with PAC1 receptor deficient mice to further elucidate the role of PACAP in the light mediated regulation of behavior and physiology of the circadian system. We compared circadian rhythms in mice equipped with running wheels or implanted radio-transmitter measuring core body temperature kept in a full photoperiod ((FPP)(12:12 h light dark-cycles (LD)) and skeleton photo periods (SPP) at high and low light intensity. Furthermore, we examined the expression of PAC1- and VPAC2 receptors in the SCN of the different genotypes in combination with visualization of PACAP and VIP and determined whether compensatory changes in peptide and/or receptor expression in the reciprocal knockouts (KO) (PAC1 and VPAC2) had occurred. Our data demonstrate that in although being closely related at both ligand and receptor structure/sequence, PACAP/PAC1 receptor signaling are independent of VIP/VPAC2 receptor signaling and vice versa. Furthermore, lack of either of the receptors does not result in compensatory changes at neither the physiological or anatomical level. PACAP/PAC1 signaling is important for light regulated behavior, VIP/VPAC2signaling for stable clock function and both signaling pathways may play a role in shaping diurnality versus nocturnality.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Body Temperature/physiology
- Circadian Rhythm/physiology
- Female
- Gene Expression Regulation
- Light
- Light Signal Transduction
- Male
- Mice
- Mice, Knockout
- Photoperiod
- Physical Conditioning, Animal
- Pituitary Adenylate Cyclase-Activating Polypeptide/genetics
- Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/deficiency
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/genetics
- Receptors, Vasoactive Intestinal Peptide, Type II/deficiency
- Receptors, Vasoactive Intestinal Peptide, Type II/genetics
- Running
- Vasoactive Intestinal Peptide/genetics
- Vasoactive Intestinal Peptide/metabolism
Collapse
Affiliation(s)
- Jens Hannibal
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Birgitte Georg
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Sasaki S, Watanabe J, Ohtaki H, Matsumoto M, Murai N, Nakamachi T, Hannibal J, Fahrenkrug J, Hashimoto H, Watanabe H, Sueki H, Honda K, Miyazaki A, Shioda S. Pituitary adenylate cyclase‐activating polypeptide promotes eccrine gland sweat secretion. Br J Dermatol 2017; 176:413-422. [DOI: 10.1111/bjd.14885] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 11/29/2022]
Affiliation(s)
- S. Sasaki
- Department of Biochemistry Showa University School of Medicine Tokyo Japan
- Department of Dermatology Showa University School of Medicine Tokyo Japan
| | - J. Watanabe
- Centre for Biotechnology Showa University Tokyo Japan
| | - H. Ohtaki
- Department of Anatomy Showa University School of Medicine Tokyo Japan
| | - M. Matsumoto
- Department of Biochemistry Showa University School of Medicine Tokyo Japan
| | - N. Murai
- Department of Physiology Showa University School of Medicine Tokyo Japan
| | - T. Nakamachi
- Laboratory of Regulatory Biology Graduate School of Science and Engineering University of Toyama Toyama Japan
| | - J. Hannibal
- Department of Clinical Biochemistry Faculty of Health and Medical Science Bispebjerg Hospital University of Copenhagen Copenhagen Denmark
| | - J. Fahrenkrug
- Department of Clinical Biochemistry Faculty of Health and Medical Science Bispebjerg Hospital University of Copenhagen Copenhagen Denmark
| | - H. Hashimoto
- Laboratory of Molecular Neuropharmacology Graduate School of Pharmaceutical Sciences Osaka University Osaka Japan
- iPS Cell‐based Research Project on Brain Neuropharmacology and Toxicology Graduate School of Pharmaceutical Sciences Osaka University Osaka Japan
- Molecular Research Centre for Children's Mental Development United Graduate School of Child Development Osaka University Kanazawa University Hamamatsu University School of Medicine Chiba University and University of Fukui Osaka Japan
| | - H. Watanabe
- Department of Dermatology Showa University School of Medicine Tokyo Japan
| | - H. Sueki
- Department of Dermatology Showa University School of Medicine Tokyo Japan
| | - K. Honda
- Department of Anatomy Showa University School of Medicine Tokyo Japan
| | - A. Miyazaki
- Department of Biochemistry Showa University School of Medicine Tokyo Japan
| | - S. Shioda
- Department of Neuropeptide Drug Discovery Hoshi University School of Pharmacy and Pharmaceutical Sciences Ebara 2‐4‐41 Shinagawa‐ku, Tokyo 142‐8501 Japan
| |
Collapse
|
6
|
Esquiva G, Avivi A, Hannibal J. Non-image Forming Light Detection by Melanopsin, Rhodopsin, and Long-Middlewave (L/W) Cone Opsin in the Subterranean Blind Mole Rat, Spalax Ehrenbergi: Immunohistochemical Characterization, Distribution, and Connectivity. Front Neuroanat 2016; 10:61. [PMID: 27375437 PMCID: PMC4899448 DOI: 10.3389/fnana.2016.00061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/24/2016] [Indexed: 01/06/2023] Open
Abstract
The blind mole rat, Spalax ehrenbergi, can, despite severely degenerated eyes covered by fur, entrain to the daily light/dark cycle and adapt to seasonal changes due to an intact circadian timing system. The present study demonstrates that the Spalax retina contains a photoreceptor layer, an outer nuclear layer (ONL), an outer plexiform layer (OPL), an inner nuclear layer (INL), an inner plexiform layer (IPL), and a ganglion cell layer (GCL). By immunohistochemistry, the number of melanopsin (mRGCs) and non-melanopsin bearing retinal ganglion cells was analyzed in detail. Using the ganglion cell marker RNA-binding protein with multiple splicing (RBPMS) it was shown that the Spalax eye contains 890 ± 62 RGCs. Of these, 87% (752 ± 40) contain melanopsin (cell density 788 melanopsin RGCs/mm2). The remaining RGCs were shown to co-store Brn3a and calretinin. The melanopsin cells were located mainly in the GCL with projections forming two dendritic plexuses located in the inner part of the IPL and in the OPL. Few melanopsin dendrites were also found in the ONL. The Spalax retina is rich in rhodopsin and long/middle wave (L/M) cone opsin bearing photoreceptor cells. By using Ctbp2 as a marker for ribbon synapses, both rods and L/M cone ribbons containing pedicles in the OPL were found in close apposition with melanopsin dendrites in the outer plexus suggesting direct synaptic contact. A subset of cone bipolar cells and all photoreceptor cells contain recoverin while a subset of bipolar and amacrine cells contain calretinin. The calretinin expressing amacrine cells seemed to form synaptic contacts with rhodopsin containing photoreceptor cells in the OPL and contacts with melanopsin cell bodies and dendrites in the IPL. The study demonstrates the complex retinal circuitry used by the Spalax to detect light, and provides evidence for both melanopsin and non-melanopsin projecting pathways to the brain.
Collapse
Affiliation(s)
- Gema Esquiva
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of CopenhagenCopenhagen, Denmark; Department of Physiology, Genetics and Microbiology, University of AlicanteAlicante, Spain
| | - Aaron Avivi
- Laboratory of Biology of Subterranean Mammals, Institute of Evolution, University of Haifa Haifa, Israel
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
7
|
Hannibal J, Kankipati L, Strang CE, Peterson BB, Dacey D, Gamlin PD. Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey. J Comp Neurol 2014; 522:2231-48. [PMID: 24752373 DOI: 10.1002/cne.23588] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/16/2013] [Accepted: 01/27/2014] [Indexed: 12/23/2022]
Abstract
Circadian rhythms generated by the suprachiasmatic nucleus (SCN) are entrained to the environmental light/dark cycle via intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin and the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP). The ipRGCs regulate other nonimage-forming visual functions such as the pupillary light reflex, masking behavior, and light-induced melatonin suppression. To evaluate whether PACAP-immunoreactive retinal projections are useful as a marker for central projection of ipRGCs in the monkey brain, we characterized the occurrence of PACAP in melanopsin-expressing ipRGCs and in the retinal target areas in the brain visualized by the anterograde tracer cholera toxin subunit B (CtB) in combination with PACAP staining. In the retina, PACAP and melanopsin were found to be costored in 99% of melanopsin-expressing cells characterized as inner and outer stratifying melanopsin RGCs. Two macaque monkeys were anesthetized and received a unilateral intravitreal injection of CtB. Bilateral retinal projections containing colocalized CtB and PACAP immunostaining were identified in the SCN, the lateral geniculate complex including the pregeniculate nucleus, the pretectal olivary nucleus, the nucleus of the optic tract, the brachium of the superior colliculus, and the superior colliculus. In conclusion, PACAP-immunoreactive projections with colocalized CtB represent retinal projections of ipRGCs in the macaque monkey, supporting previous retrograde tracer studies demonstrating that melanopsin-containing retinal projections reach areas in the primate brain involved in both image- and nonimage-forming visual processing.
Collapse
Affiliation(s)
- J Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, DK2400, NV, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
8
|
Hundahl CA, Fahrenkrug J, Hannibal J. Neurochemical phenotype of cytoglobin-expressing neurons in the rat hippocampus. Biomed Rep 2014; 2:620-627. [PMID: 25054000 DOI: 10.3892/br.2014.299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/03/2014] [Indexed: 11/05/2022] Open
Abstract
Cytoglobin (Cygb), a novel oxygen-binding protein, is expressed in the majority of tissues and has been proposed to function in nitric oxide (NO) metabolism in the vasculature and to have cytoprotective properties. However, the overall functions of Cygb remain elusive. Cygb is also expressed in a subpopulation of brain neurons. Recently, it has been shown that stress upregulates Cygb expression in the brain and the majority of neuronal nitric oxide synthase (nNOS)-positive neurons, an enzyme that produces NO, co-express Cygb. However, there are more neurons expressing Cygb than nNOS, thus a large number of Cygb neurons remain uncharacterized by the neurochemical content. The aim of the present study was to provide an additional and more detailed neurochemical phenotype of Cygb-expressing neurons in the rat hippocampus. The rat hippocampus was chosen due to the abundance of Cygb, as well as this limbic structure being an important target in a number of neurodegenerative diseases. Using triple immunohistochemistry, it was demonstrated that nearly all the parvalbumin- and heme oxygenase 1-positive neurons co-express Cygb and to a large extent, these neuron populations are distinct from the population of Cygb neurons co-expressing nNOS. Furthermore, it was shown that the majority of neurons expressing somastostatin and vasoactive intestinal peptide also co-express Cygb and nNOS. Detailed information regarding the neurochemical phenotype of Cygb neurons in the hippocampus can be a valuable tool in determining the function of Cygb in the brain.
Collapse
Affiliation(s)
- Christian Ansgar Hundahl
- Department of Physiology, Institute of Bio- and Translational Medicine, University of Tartu, Tartu 50411, Estonia, Denmark ; Centre for Excellence in Translation Medicine, University of Tartu, Tartu 50411, Estonia, Denmark
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2400, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2400, Denmark
| |
Collapse
|
9
|
Hannibal J, Kankipati L, Strang C, Peterson B, Dacey D, Gamlin P. Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey. J Comp Neurol 2014. [DOI: 10.1002/cne.23555] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- J. Hannibal
- Department of Clinical Biochemistry; Bispebjerg Hospital; DK2400, NV Copenhagen Denmark
| | - L. Kankipati
- Department of Ophthalmology; University of Alabama at Birmingham; Birmingham Alabama 35233
| | - C.E. Strang
- Department of Vision Sciences; University of Alabama at Birmingham; Birmingham Alabama 35233
| | - B.B. Peterson
- Department of Biological Structure and the National Primate Research Center; University of Washington; Seattle Washington 98195
| | - D. Dacey
- Department of Biological Structure and the National Primate Research Center; University of Washington; Seattle Washington 98195
| | - P.D. Gamlin
- Department of Ophthalmology; University of Alabama at Birmingham; Birmingham Alabama 35233
| |
Collapse
|
10
|
Hundahl CA, Fahrenkrug J, Hay-Schmidt A, Georg B, Faltoft B, Hannibal J. Circadian behaviour in neuroglobin deficient mice. PLoS One 2012; 7:e34462. [PMID: 22496809 PMCID: PMC3320642 DOI: 10.1371/journal.pone.0034462] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/05/2012] [Indexed: 11/18/2022] Open
Abstract
Neuroglobin (Ngb), a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN). The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP) and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night.
Collapse
Affiliation(s)
- Christian A. Hundahl
- Department of Clinical Biochemistry, Faculty of Health Science, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Faculty of Health Science, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anders Hay-Schmidt
- Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Georg
- Department of Clinical Biochemistry, Faculty of Health Science, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Faltoft
- Department of Clinical Biochemistry, Faculty of Health Science, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Faculty of Health Science, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- * E-mail: .
| |
Collapse
|
11
|
Fahrenkrug J, Hannibal J. Localisation of the neuropeptide PACAP and its receptors in the rat parathyroid and thyroid glands. Gen Comp Endocrinol 2011; 171:105-13. [PMID: 21176780 DOI: 10.1016/j.ygcen.2010.11.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/18/2010] [Accepted: 11/24/2010] [Indexed: 11/19/2022]
Abstract
PACAP (pituitary adenylate cyclase activating polypeptide) is widely distributed neuropeptide acting via three subtypes of receptors, PAC(1), VPAC(1) and VPAC(2). Here we examined the localisation and nature of PACAP-immunoreactive nerves in the rat thyroid and parathyroid glands and defined the distribution of PAC(1), VPAC(1) and VPAC(2) receptor mRNA's. In the parathyroid gland a large number of nerve fibres displaying PACAP-immunoreactivity were distributed beneath the capsule, around blood vessels and close to glandular cells. Most of the PACAP-nerves were sensory, since they co-stored CGRP (calcitonin-gene-related peptide) and were sensitive to capsaicin-treatment. mRNA's for PAC(1) and VPAC(2) receptors occurred in the parathyroid gland, mainly located in the glandular cells. In the thyroid gland PACAP-immunoreactive nerve fibres were associated with blood vessels, thyroid follicles and parafollicular C-cells. A high degree of co-existence between PACAP and VIP (vasoactive intestinal polypeptide) was observed in the intrathyroid nerve fibres and cell bodies of the thyroid ganglion indicating a common origin for the two peptides. A minor population of PACAP-immunoreactive nerve fibres with relation to blood vessels co-stored NPY (neuropeptide Y), whereas only a few fibres co-stored CGRP. PAC(1) and VPAC(1) receptor mRNA's occurred in follicular cells and blood vessels, whereas the expression of the VPAC(2) receptor was low. The findings suggest that PACAP plays a role in the regulation of parathyroid and thyroid blood flow and hormone secretion.
Collapse
Affiliation(s)
- Jan Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, DK-2400 Copenhagen NV, Denmark.
| | | |
Collapse
|
12
|
Thouennon E, Pierre A, Yon L, Anouar Y. Expression of trophic peptides and their receptors in chromaffin cells and pheochromocytoma. Cell Mol Neurobiol 2010; 30:1383-9. [PMID: 21046451 DOI: 10.1007/s10571-010-9594-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/02/2010] [Indexed: 10/18/2022]
Abstract
Pheochromocytomas are catecholamine-producing tumors arising from chromaffin cells of the adrenal medulla or extra-adrenal location. Along with catecholamines, tumoral cells produce and secrete elevated quantities of trophic peptides which are normally released in a regulated manner by the normal adrenal medulla. Among these peptides, the amounts of pituitary adenylate cyclase-activating polypeptide (PACAP), adrenomedullin (AM), and neuropeptide Y (NPY) are particularly high. These peptides can exert endocrine, paracrine or autocrine effects in numerous cell types. In particular, they have been shown to be involved in cell proliferation and survival, catecholamine production and secretion, and angiogenesis. Some of these processes are exacerbated in pheochromocytomas, raising the possibility of the involvement of trophic peptides. Here, we review the expression levels of NPY, PACAP, and AM and theirs receptors in chromaffin cells and pheochromocytomas, and address their possible implication in the adrenal medulla tumorigenesis and malignant development of pheochromocytomas.
Collapse
Affiliation(s)
- Erwan Thouennon
- INSERM, U982, DC2N, IFRMP23, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | |
Collapse
|
13
|
Hannibal J, Hundahl C, Fahrenkrug J, Rehfeld JF, Friis-Hansen L. Cholecystokinin (CCK)-expressing neurons in the suprachiasmatic nucleus: innervation, light responsiveness and entrainment in CCK-deficient mice. Eur J Neurosci 2010; 32:1006-17. [PMID: 20731710 DOI: 10.1111/j.1460-9568.2010.07385.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The suprachiasmatic nucleus (SCN) is the principal pacemaker driving circadian rhythms of physiology and behaviour. Neurons within the SCN express both classical and neuropeptide transmitters which regulate clock functions. Cholecyctokinin (CCK) is a potent neurotransmitter expressed in neurons of the mammalian SCN, but its role in circadian timing is not known. In the present study, CCK was demonstrated in a distinct population of neurons located in the shell region of the SCN and in a few cells in the core region. The CCK neurons did not express vasopressin or vasoactive intestinal peptide. However, CCK-containing processes make synaptic contacts with both groups of neurons and some CCK cell bodies were innervated by VIPergic neurons. The CCK neurons received no direct input from the three major pathways to the SCN, and the CCK neurons were not light-responsive as evaluated by induction of cFOS, and did not express the core clock protein PER1. Accordingly, CCK-deficient mice showed normal entrainment and had similar τ, light-induced phase shift and negative masking behaviour as wild-type animals. In conclusion, CCK signalling seems not to be involved directly in light-induced resetting of the clock or in regulating core clock function. The expression of CCK in a subpopulation of neurons, which do not belonging to either the VIP or AVP cells but which have synaptic contacts to both cell types and reverse innervation of CCK neurons from VIP neurons, suggests that the CCK neurons may act in non-photic regulation within the clock and/or, via CCK projections, mediate clock information to hypothalamic nuclei.
Collapse
Affiliation(s)
- Jens Hannibal
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
14
|
Abstract
Vasoactive intestinal polypeptide (VIP) is derived from a 170 amino acid precursor which in addition is processed to preproVIP 22-79, PHI, preproVIP 111-122 and preproVIP 156-170. All preproVIP-derived peptides have been shown in normal tissue and VIP-producing cell lines and elevated quantities occur in plasma and tumour tissues from patients with VIP-producing tumours. In some tissues the dibasic cleavage site after PHI is uncleaved resulting in a C-terminally extended form, PHV. PHI and VIP are present in a 1:1 molar ratio in large dense core vesicles and released in roughly equimolar amounts. Carboxyamidation of VIP and PHI is not critical and glycine-extended forms of both peptides have been demonstrated. Pituitary adenylate cyclase activating polypeptide (PACAP) is derived from a 170 amino acid long precursor, which gives rise to PACAP 38, PACAP 27 and PACAP related peptide (PRP). All peptides are present in tissue, the dominating form being PACAP 38. Prohormone convertase (PC) 1 and 2 seem to be involved in the processing of PACAP, except in the testes and ovary, where the PACAP precursor is substrate for PC4.
Collapse
|
15
|
Stanić D, Kuteeva E, Nylander I, Hökfelt T. Characterization of CGRP protein expression in “satellite-like” cells and dendritic arbours of the mouse olfactory bulb. J Comp Neurol 2010; 518:770-84. [DOI: 10.1002/cne.22226] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H. Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptors: 20 Years after the Discovery. Pharmacol Rev 2009; 61:283-357. [DOI: 10.1124/pr.109.001370] [Citation(s) in RCA: 829] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
17
|
Nagata A, Tanaka T, Minezawa A, Poyurovsky M, Mayama T, Suzuki S, Hashimoto N, Yoshida T, Suyama K, Miyata A, Hosokawa H, Nakayama T, Tatsuno I. cAMP activation by PACAP/VIP stimulates IL-6 release and inhibits osteoblastic differentiation through VPAC2 receptor in osteoblastic MC3T3 cells. J Cell Physiol 2009; 221:75-83. [PMID: 19496170 DOI: 10.1002/jcp.21831] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP), a member of the glucagon/vasoactive intestinal peptide (VIP) superfamily, stimulates cyclic AMP accumulation initiating a variety of biological processes such as: neurotropic actions, immune and pituitary function, learning and memory, catecholamine biosynthesis and regulation of cardiopulmonary function. Both osteoclasts and osteoblasts have been shown to express receptors for PACAP/VIP implicated in their role in bone metabolism. To further understand the role of PACAP/VIP family in controlling bone metabolism, we investigated differentiation model of MC3T3-E1 cells, an osteoblastic cell line derived from mouse calvaria. Quantitative RT-PCR analysis demonstrated that MC3T3-E1 cells expressed only VPAC2 receptor and its expression was upregulated during osteoblastic differentiation, whereas VPAC1 and PAC1 receptors were not expressed. Consistent with expression of receptor subtype, both PACAP and VIP stimulate cAMP accumulation in a time- and dose-dependent manner with the similar potency in undifferentiated and differentiated cells, while Maxadilan, a specific agonist for PAC1-R, did not. Furthermore, downregulation of VPAC2-R by siRNA completely blocked cAMP response mediated by PACAP and VIP. Importantly, PACAP/VIP as well as forskolin markedly suppressed the induction of alkaline phosphatase mRNA upon differentiation and the pretreatment with 2',5'-dideoxyadenosine, a cAMP inhibitor, restored its inhibitory effect of PACAP. We also found that PACAP and VIP stimulated IL-6 release, a stimulator of bone resorption, and VPAC2-R silencing inhibited IL-6 production. Thus, PACAP/VIP can activate adenylate cyclase response and regulate IL-6 release through VPAC2 receptor with profound functional consequences for the inhibition of osteoblastic differentiation in MC3T3-E1 cells.
Collapse
Affiliation(s)
- Azusa Nagata
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba-shi, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ghzili H, Grumolato L, Thouënnon E, Tanguy Y, Turquier V, Vaudry H, Anouar Y. Role of PACAP in the physiology and pathology of the sympathoadrenal system. Front Neuroendocrinol 2008; 29:128-41. [PMID: 18048093 DOI: 10.1016/j.yfrne.2007.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/24/2007] [Accepted: 10/01/2007] [Indexed: 01/09/2023]
Abstract
Sympathetic neurons and chromaffin cells derive from common sympathoadrenal precursors which arise from the neural crest. Cells from this lineage migrate to their final destination and differentiate by acquiring a catecholaminergic phenotype in response to different environmental factors. It has been shown that the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) and its PAC1 receptor are expressed at early stages of sympathetic development, and participate to the control of neuroblast proliferation and differentiation. PACAP also acts as a neurotransmitter to stimulate catecholamine and neuropeptide biosynthesis and release from sympathetic neurons and chromaffin cells, during development and in adulthood. In addition, PACAP and its receptors have been described in neuroblastoma and pheochromocytoma, and the neuropeptide regulates the differentiation and activity of sympathoadrenal-derived tumoral cell lines, suggestive of an important role in the pathophysiology of the sympathoadrenal lineage. Transcriptome studies uncovered genes and pathways of known and unknown roles that underlie the effects of PACAP in the sympathoadrenal system.
Collapse
Affiliation(s)
- Hafida Ghzili
- INSERM, U413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP23), University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Conconi MT, Spinazzi R, Nussdorfer GG. Endogenous Ligands of PACAP/VIP Receptors in the Autocrine–Paracrine Regulation of the Adrenal Gland. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 249:1-51. [PMID: 16697281 DOI: 10.1016/s0074-7696(06)49001-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are the main endogenous ligands of a class of G protein-coupled receptors (Rs). Three subtypes of PACAP/VIP Rs have been identified and named PAC(1)-Rs, VPAC(1)-Rs, and VPAC(2)-Rs. The PAC(1)-R almost exclusively binds PACAP, while the other two subtypes bind with about equal efficiency VIP and PACAP. VIP, PACAP, and their receptors are widely distributed in the body tissues, including the adrenal gland. VIP and PACAP are synthesized in adrenomedullary chromaffin cells, and are released in the adrenal cortex and medulla by VIPergic and PACAPergic nerve fibers. PAC(1)-Rs are almost exclusively present in the adrenal medulla, while VPAC(1)-Rs and VPAC(2)-Rs are expressed in both the adrenal cortex and medulla. Evidence indicates that VIP and PACAP, acting via VPAC(1)-Rs and VPAC(2)-Rs coupled to adenylate cyclase (AC)- and phospholipase C (PLC)-dependent cascades, stimulate aldosterone secretion from zona glomerulosa (ZG) cells. There is also proof that they can also enhance aldosterone secretion indirectly, by eliciting the release from medullary chromaffin cells of catecholamines and adrenocorticotropic hormone (ACTH), which in turn may act on the cortical cells in a paracrine manner. The involvement of VIP and PACAP in the regulation of glucocorticoid secretion from inner adrenocortical cells is doubtful and surely of minor relevance. VIP and PACAP stimulate the synthesis and release of adrenomedullary catecholamines, and all three subtypes of PACAP/VIP Rs mediate this effect, PAC(1)-Rs being coupled to AC, VPAC(1)-Rs to both AC and PLC, and VPAC(2)-Rs only to PLC. A privotal role in the catecholamine secretagogue action of VIP and PACAP is played by Ca(2+). VIP and PACAP may also modulate the growth of the adrenal cortex and medulla. The concentrations attained by VIP and PACAP in the blood rule out the possibility that they act as true circulating hormones. Conversely, their adrenal content is consistent with a local autocrine-paracrine mechanism of action.
Collapse
Affiliation(s)
- Maria Teresa Conconi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Padua, I-35121 Padua, Italy
| | | | | |
Collapse
|
20
|
Abstract
Photoentrainment of the biological clock located in the suprachiasmatic nucleus (SCN) begins shortly after birth. Here we show using c-FOS immunoreactivity as a marker for neuronal activity that the melanopsin/PACAP containing retinal ganglion cells (RGCs) which project to the SCN as the retinohypothalamic tract (RHT) are responsive to light from birth. After postnatal day 12 where the classical photoreceptors become functional other RGCs and cells of the inner nuclear cell layer also respond to light. Light also induces c-FOS immunoreactivity in the retinorecipient SCN from the first postnatal day and accordingly PACAP immunoreactive fibres are visible in the SCN. The results indicate that the retina is light responsive before functional rods and cones and that the RHT is functional from birth supporting that photoentrainment of the biological clock begins shortly after birth.
Collapse
Affiliation(s)
- Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Bispebjerg Bakke 23, DK-2400 Copenhagen NV, Denmark.
| | | |
Collapse
|
21
|
Abstract
It is now recognized that a neuron can produce, store and release more than one transmitter substance, and a number of examples of co-existing transmitters, particularly a neuropeptide together with a classical transmitter, have been reported. The present paper deals with transmitter substances, peptides or classical transmitters, co-existing with the two structurally related peptides VIP and PACAP and the possible functional implications of this co-existence.
Collapse
Affiliation(s)
- Jan Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, DK-2400 Copenhagen NV, Denmark.
| | | |
Collapse
|
22
|
Sanggaard KM, Hannibal J, Fahrenkrug J. Serotonin inhibits glutamate- but not PACAP-induced per gene expression in the rat suprachiasmatic nucleus at night. Eur J Neurosci 2003; 17:1245-52. [PMID: 12670312 DOI: 10.1046/j.1460-9568.2003.02562.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Circadian rhythms of physiology and behaviour generated by the brain's biological clock located in the suprachiasmatic nucleus are entrained by light via the retinohypothalamic tract. Two neurotransmitters, glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP), found in this monosynaptic pathway mediate the effects of light to the clock. It is well known that not only light entrains the clock. Nonphotic cues mediated by neurotransmitters such as serotonin reaching the suprachiasmatic nucleus from the midbrain raphe nucleus modulate light-induced phase shifts at night. Two clock genes, per1 and per2, have been attributed a role in light-induced phase shift. In the present study, using an in vitro brain slice model and quantitative in situ hybridization for per1 and per2, we have shown that serotonin induces per1 gene expression at late subjective night but not at early night. Furthermore, serotonin application before glutamate or PACAP blocked glutamate-induced per1 expression at early night and per2 gene expression at late night. In contrast, serotonin did not influence PACAP-induced per gene expression at late night. Triple antigen immunohistochemistry and confocal microscopy supported both a pre- and post-synaptic interaction of retinohypothalamic tract (PACAP-immunoreactive) and serotonin projections on vasoactive intestinal peptide- and gastrin-releasing peptide-containing cell bodies in the ventro-lateral suprachiasmatic nucleus. Our findings suggest that the per genes could be the molecular target for the modulatory effects of serotonin on light signalling to the clock.
Collapse
Affiliation(s)
- K M Sanggaard
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, DK-2400 Copenhagen NV, Denmark
| | | | | |
Collapse
|
23
|
Busto R, Prieto JC, Bodega G, Zapatero J, Fogué L, Carrero I. VIP and PACAP receptors coupled to adenylyl cyclase in human lung cancer: a study in biopsy specimens. Peptides 2003; 24:429-36. [PMID: 12732341 DOI: 10.1016/s0196-9781(03)00058-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are important neuropeptides in the control of lung physiology. Both of these commonly bind to specific G protein coupled receptors named VPAC(1)-R and VPAC(2)-R, and PAC(1)-R (with higher affinity for PACAP). VIP and PACAP have been implicated in the control of cell proliferation and tumor growth. This study examined the presence of VIP and PACAP receptors in human lung cancer samples, as well as the functionality of adenylyl cyclase (AC) stimulated by both peptides. Results from RT-PCR and immunoblot experiments showed the expression of VPAC(1)-, VPAC(2)- and PAC(1)-R in lung cancer samples. Immunohistochemical studies showed the expression of VPAC(1) and VPAC(2) receptors. These receptors were positively coupled to AC, but the enzyme activity was impaired as compared to normal lung. There were no changes in Galpha(s) or Galpha(i) levels. Present results contribute to a better knowledge of VIP/PACAP actions in lung cancer and support the interest for the development of VIP/PACAP analogues with therapeutic roles.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Aged
- Biopsy
- Blotting, Western
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Lung Neoplasms/enzymology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Middle Aged
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Pituitary Hormone/genetics
- Receptors, Pituitary Hormone/metabolism
- Receptors, Vasoactive Intestinal Peptide/genetics
- Receptors, Vasoactive Intestinal Peptide/metabolism
Collapse
Affiliation(s)
- Rebeca Busto
- Department of Biochemistry and Molecular Biology, University of Alcalá, E-28871 Alcalá de Henares, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Mazzocchi G, Malendowicz LK, Rebuffat P, Gottardo L, Nussdorfer GG. Expression and function of vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, and their receptors in the human adrenal gland. J Clin Endocrinol Metab 2002; 87:2575-80. [PMID: 12050216 DOI: 10.1210/jcem.87.6.8571] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
VIP and pituitary adenylate cyclase-activating polypeptide (PACAP) are two regulatory peptides that possess remarkable amino acid sequence homology and act through common receptors, named PAC(1), VPAC(1), and VPAC(2). PAC(1) receptor is selective for PACAP, whereas VPAC(1) and VPAC(2) receptors bind both VIP and PACAP. We have investigated the expression and function of VIP, PACAP, and their receptors in the zona glomerulosa (ZG), zonae fasciculata and reticularis, and adrenal medulla (AM) of the human adrenal cortex. RT-PCR and RIA detected VIP and PACAP expression exclusively in AM cells. RT-PCR demonstrated the presence of PAC(1) mRNA only in AM and of VPAC(1) and VPAC(2) mRNAs in both ZG and AM cells. VIP and PACAP concentration-dependently increased aldosterone and catecholamine secretion from cultured ZG and AM cells. The catecholamine response to both peptides was higher than the aldosterone response, and the secretagogue action of PACAP was more intense than that of VIP. The aldosterone response of cultured ZG cells to VIP or PACAP was unaffected by the PAC(1) receptor antagonist PACAP-(6-38) (PAC(1)-A), but was significantly decreased by the VPAC(1) receptor antagonist [Ac-His(1),D-Phe(2),Lys(15),Arg(16)]VIP-(3-7),GH-releasing factor-(8-27)-NH(2) (VPAC(1)-A). The catecholamine response of cultured AM cells to VIP was lowered by VPAC(1)-A and unaffected by PAC(1)-A; conversely, the catecholamine response to PACAP was reduced by both PAC(1)-A and VPAC(1)-A. Simultaneous exposure to both antagonists did not abolish the catecholamine response to PACAP. Collectively, our findings allow us to conclude that in human adrenals 1) VIP and PACAP biosynthesis exclusively occurs in AM cells; 2) ZG cells are provided with functional VPAC(1) and VPAC(2) receptors, whose activation by VIP or PACAP elicits a moderate aldosterone response; 3) AM cells possess PAC(1), VPAC(1), and VPAC(2) receptors, whose activation evokes a marked catecholamine response; and 4) the catecholamine response to PACAP is more intense than that to VIP, because it is mediated by all subtypes of VIP/PACAP receptors.
Collapse
Affiliation(s)
- G Mazzocchi
- Department of Human Anatomy and Physiology, Section of Anatomy, University of Padua, Via Gabelli 65, I-35121 Padua, Italy
| | | | | | | | | |
Collapse
|
25
|
Tornøe K, Hannibal J, Georg B, Schmidt PT, Hilsted L, Fahrenkrug J, Holst JJ. PACAP 1-38 as neurotransmitter in the porcine antrum. REGULATORY PEPTIDES 2001; 101:109-21. [PMID: 11495686 DOI: 10.1016/s0167-0115(01)00276-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
UNLABELLED The concentration of PACAP 1-38 in porcine antrum amounted to 15.4+/-7.9 and 20.3+/-8 pmol/g tissue in the mucosal and muscular layers. PACAP immunoreactive (IR) fibres innervated the muscular (co-localised with VIP) and submucosal/mucosal layers (some co-storing VIP and CGRP) including myenteric and submucosal plexus and blood vessels. Only myenteric nerve cell bodies contained PACAP-IR (co-storing VIP). In isolated perfused antrum, vagus nerve stimulation (8 Hz) and capsaicin (10(-5) M) increased PACAP 1-38 release. PACAP 1-38 (10(-9) M) increased substance P (SP), gastrin releasing peptide (GRP) and VIP release. PACAP 1-38 (10(-8) M) inhibited gastrin secretion and stimulated somatostatin secretion and motility dose-dependently. PACAP-induced motility was strongly inhibited by the antagonist PACAP 6-38 but also by atropine and substance P-antagonists (CP99994/SR48968) but PACAP 6-38 had no effect on vagus-induced secretion or motility. CONCLUSION PACAP 1-38 may be involved in antral motility and secretion by interacting with cholinergic, SP-ergic, GRP-ergic and/or VIP-ergic neurones, and may also be involved in afferent reflex pathways.
Collapse
Affiliation(s)
- K Tornøe
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, Dk-2200, N, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
26
|
Tornøe K, Hannibal J, Jensen TB, Georg B, Rickelt LF, Andreasen MB, Fahrenkrug J, Holst JJ. PACAP-(1-38) as neurotransmitter in the porcine adrenal glands. Am J Physiol Endocrinol Metab 2000; 279:E1413-25. [PMID: 11093931 DOI: 10.1152/ajpendo.2000.279.6.e1413] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The concentration of pituitary adenylyl cyclase-activating polypeptide [PACAP-(1-38)] in porcine adrenal glands amounted to 14 +/- 3 pmol/g tissue. PACAP immunoreactive (PACAP-IR) fibers innervated adrenal chromaffin cells (often co-localized with choline acetyltransferase). Subcapsular fibers traversed the cortex-innervating endocrine cells and blood vessels [some co-storing mainly calcitonin gene-related peptide but also vasoactive intestinal polypeptide (VIP)]. PACAP-IR fibers were demonstrated in the splanchnic nerves, whereas IR adrenal nerve cell bodies were absent. In isolated, vascularly perfused adrenal gland, splanchnic nerve stimulation (16 Hz) and capsaicin (10(-5) M) increased PACAP-(1-38) release (1.6-fold and 6-fold respectively, P = 0.02). PACAP-(1-38) dose-dependently stimulated cortisol (2 x 10(-10) M; 24-fold increase, P = 0.02) and chromogranin A fragment (2 x 10(-9) M; 15-fold increase, P = 0.05) secretion. Both were strongly inhibited by the PAC(1)/VPAC(2) receptor antagonist PACAP-(6-38) (10(-7) M). PACAP-(6-38) also inhibited splanchnic nerve (10 Hz)-induced cortisol secretion but lacked any effect on splanchnic nerve-induced pancreastatin secretion. PACAP-(1-38) (2 x 10(-10) M) decreased vascular resistance from 5.5 +/- 0.6 to 4.6 +/- 0.4 mmHg. min. ml(-1). PACAP-(6-38) had no effect on this response. We conclude that PACAP-(1-38) may play a role in splanchnic nerve-induced adrenal secretion and in afferent reflex pathways.
Collapse
Affiliation(s)
- K Tornøe
- Department of Medical Physiology, The Panum Institute, University of Copenhagen DK 2200, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Fahrenkrug J, Hannibal J, Tams J, Georg B. Immunohistochemical localization of the VIP1 receptor (VPAC1R) in rat cerebral blood vessels: relation to PACAP and VIP containing nerves. J Cereb Blood Flow Metab 2000; 20:1205-14. [PMID: 10950381 DOI: 10.1097/00004647-200008000-00006] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The two structurally related peptides, vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP), are present in cerebral vascular nerve fibers. Biologic actions of VIP are exerted through two receptors, VPAC1 and VPAC2, having similar binding affinity for both VIP and PACAP. In the current study, the authors have developed a specific antibody against the rVPAC1 receptor to examine the localization of rVPAC1 immunoreactivity in cerebral arteries and arterioles of the rat by immunohistochemistry using fluorescence confocal microscopy. Specificity of the antiserum was ensured by immunoblotting and immunocytochemistry of cells transfected with cDNA encoding the different PACAP-VIP receptor subtypes. The rVPAC1 receptor immunoreactivity was localized to the plasmalemma of circularly orientated smooth muscle cells on superficial cerebral arteries and arterioles taken from the basal surface of the brain. By double immunostaining VIP immunoreactive nerve fibers and, to a lesser extent, those containing PACAP were shown to have intimate contact with the receptor protein. Vasoactive intestinal polypeptide and PACAP containing cerebrovascular nerve fibers were found in separate nerve populations with different distribution pattern and density. In brain sections processes of cortical VIP-, but not PACAP-, containing neurons seemed to innervate the rVPAC1 receptor of pial arterioles on the brain surface. The current findings provide the neuroanatomical substrate for a role of VIP and maybe PACAP in the regulation of cerebral blood flow.
Collapse
Affiliation(s)
- J Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
28
|
Läuff JM, Modlin IM, Tang LH. Biological relevance of pituitary adenylate cyclase-activating polypeptide (PACAP) in the gastrointestinal tract. REGULATORY PEPTIDES 1999; 84:1-12. [PMID: 10535402 DOI: 10.1016/s0167-0115(99)00024-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Since its initial discovery in 1989, pituitary adenylate cyclase activating peptide (PACAP) has been noted to distribute widely in the brain, the respiratory and the gastrointestinal system. It occurs in two bioactive molecules, PACAP-27 and the C-terminally extended PACAP-38, which evoke activity by binding to three distinct types of high-affinity, G-protein coupled membrane receptors. It is present throughout the entirety of the gut but is rare in certain areas such as the intestinal mucosa and islets of Langerhans. PACAP-induced biological effects are protean and include alterations of motility in the bowel and the gallbladder, stimulation of gastric acid and intestinal secretion, hormone/enzyme release from the exocrine and endocrine pancreas, and the induction as well as inhibition of proliferation in neuroendocrine cells and tumors. Its hepatic activity has to date not been elucidated in detail. One of the interesting features of PACAP is the species and organ dependent variation of its biological effects. Of particular note is its superior potency when compared with other neuropeptides identified in the gut, and the involvement of a number of different second messenger systems upon PACAP receptor activation.
Collapse
Affiliation(s)
- J M Läuff
- Gastrointestinal Pathobiology Research Group, Yale University School of Medicine, New Haven, CT 06520-8062, USA
| | | | | |
Collapse
|
29
|
Carroll RE, Carroll R, Benya RV. Characterization of gastrin-releasing peptide receptors aberrantly expressed by non-antral gastric adenocarcinomas. Peptides 1999; 20:229-37. [PMID: 10422879 DOI: 10.1016/s0196-9781(98)00164-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epithelial cells lining the GI tract except in the gastric antrum do not normally express gastrin-releasing peptide receptors (GRP-R). Because GRP-R activation causes the proliferation of many GI cancer cell lines, aberrant expression has been presumed to negatively influence patient survival. We therefore determined the incidence and quality of GRP-R aberrantly expressed by non-antral gastric adenocarcinomas, and evaluated the impact of receptor expression on patient survival. We studied RNA isolated from 20 consecutive non-antral gastric adenocarcinomas, and determined that 8 (40%) aberrantly expressed GRP-R. Of these, 6 (75%) were found to be mutated. Pharmacologically, the effect of these mutations ranged from rendering the GRP-R non-functional to constitutively active. Contrary to expectations, however, survival of patients whose tumor expressed functional GRP-R (18.5 +/- 9.8 months) was not statistically different from those that did not (8.3 +/- 1.8 months; p = 0.24). Thus our data indicate that mutated isoforms of GRP-R are commonly expressed by non-antral gastric adenocarcinomas. However, expression of functional GRP-R does not alter patient survival, suggesting that this receptor may not be clinically important to the growth of gastric cancers.
Collapse
Affiliation(s)
- R E Carroll
- Department of Medicine, University of Illinois at Chicago, and Chicago Veterans Administration Medical Center, 60612, USA
| | | | | |
Collapse
|
30
|
Fahrenkrug J, Hannibal J. Pituitary adenylate cyclase activating polypeptide immunoreactivity in capsaicin-sensitive nerve fibres supplying the rat urinary tract. Neuroscience 1998; 83:1261-72. [PMID: 9502264 DOI: 10.1016/s0306-4522(97)00474-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pituitary adenylate cyclase activating peptide is a new member of the vasoactive intestinal polypeptide family of peptides which is present in the brain as well as neuronal elements of a number of peripheral organs. Pituitary adenylate cyclase activating peptide occurs in two forms, pituitary adenylate cyclase activating peptide-38 and the C-terminally truncated 27 amino acid form, pituitary adenylate cyclase activating peptide-27, both derived from the same precursor which in addition gives rise to a structurally-related peptide, pituitary adenylate cyclase activating peptide-related peptide. Using specific radioimmunoassays for pituitary adenylate cyclase activating peptide-38, pituitary adenylate cyclase activating peptide-27 and pituitary adenylate cyclase activating peptide-related peptide we found that all three pituitary adenylate cyclase activating peptide-precursor-derived peptides were present in tissue extracts from the ureter, the urinary bladder and the urethra. Pituitary adenylate cyclase activating peptide-38 was the dominating peptide with the highest concentration in the ureter. When extracts from the urinary bladder were fractionated by reverse phase high pressure liquid chromatography immunoreactive components corresponding to synthetic pituitary adenylate cyclase activating peptide-38, pituitary adenylate cyclase activating peptide-27 and pituitary adenylate cyclase activating peptide-related peptide were identified with the respective antisera. By immunohistochemistry, using a specific monoclonal mouse anti-pituitary adenylate cyclase activating peptide antibody, pituitary adenylate cyclase activating peptide-immunoreactivity was shown to have a widespread distribution in the rat urinary tract, localized exclusively to nerve fibres. No immunoreactive neuronal cell bodies were observed in any of the tissues. Pituitary adenylate cyclase activating peptide was shown to be located in varicose nerve fibres associated with blood vessels and smooth muscle. The majority of pituitary adenylate cyclase activating peptide-positive nerve fibres and bundles were, however, present in subepithelial plexuses from which delicate varicose nerve fibres entered the urothelium. Double immunostaining for pituitary adenylate cyclase activating peptide and a marker for sensory neurons, calcitonin-gene related peptide, disclosed that the two peptides were almost completely co-localized while the co-existence between pituitary adenylate cyclase activating peptide and the structurally related peptide vasoactive intestinal polypeptide, was scarce. Neonatal capsaicin-treatment caused a marked reduction in the concentration of immunoreactive pituitary adenylate cyclase activating peptide in all regions of the rat urinary tract, being most prominent in the ureter. By immunohistochemistry it was shown that the sensory neurotoxin caused a reduction in the number and intensity of pituitary adenylate cyclase activating peptide-immunoreactive nerve fibres in all organs of the urinary tract which was most prominent in the epithelial and subepithelial layers. Identical changes were observed for the calcitonin-gene related peptide-containing nerve fibres, while vasoactive intestinal polypeptide-positive nerve fibres were unaffected by capsaicin-treatment. In conclusion pituitary adenylate cyclase activating peptide is present in the rat urinary tract mainly in the form of pituitary adenylate cyclase activating peptide-38. Immunoreactive nerve fibres were associated with the epithelium, blood vessels and smooth musculature. Pituitary adenylate cyclase activating peptide was almost completely co-localized with calcitonin-gene related peptide and by neonatal capsaicin treatment the two peptides were identically affected. The findings suggest that pituitary adenylate cyclase activating peptide is a sensory neurotransmitter in the rat urinary tract.
Collapse
Affiliation(s)
- J Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Denmark
| | | |
Collapse
|
31
|
Odum L, Fahrenkrug J. Pituitary adenylate cyclase activating polypeptide (PACAP) in human ovarian cancers. Cancer Lett 1998; 125:185-9. [PMID: 9566714 DOI: 10.1016/s0304-3835(97)00510-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synthesis of regulatory peptides has been described in a number of ovarian tumours. The recently isolated neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) is expressed transiently in steroidogenic cells of normal rat ovary. In order to evaluate if ovarian tumours also synthesize PACAP, we investigated the expression and processing of pro-PACAP in 11 serous cystadenocarcinomas, one non-differentiated carcinoma, one borderline malignant and four adenomas. Using sequence specific radioimmunoassays and gel chromatography, we found that all tumours expressed PACAP-38 immunoreactivity. Ovarian cancers contained higher (P < 0.03) concentrations (median 0.9 pmol/g, range 0.5-1.6 pmol/g, n = 13) than benign tumours (median 0.5 pmol/g, range 0.4-0.6 pmol/g, n = 4). Chromatography showed that the tumours contained PACAP-38 and PACAP-31-38 suggesting a rather complete processing. By immunohistochemistry, few scattered PACAP positive cells in small clusters or as single cells were identified in the tumours.
Collapse
Affiliation(s)
- L Odum
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Denmark
| | | |
Collapse
|
32
|
Nussdorfer GG, Malendowicz LK. Role of VIP, PACAP, and related peptides in the regulation of the hypothalamo-pituitary-adrenal axis. Peptides 1998; 19:1443-67. [PMID: 9809661 DOI: 10.1016/s0196-9781(98)00102-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are members of a family of regulatory peptides that are widely distributed in the body and share numerous biologic actions. The two peptides display a remarkable amino acid-sequence homology, and bind to a class of G protein-coupled receptors, named PACAP/VIP receptors (PVRs), whose signaling mechanism mainly involves the activation of adenylate-cyclase and phospholipase-C cascades. A large body of evidence suggests that VIP and PACAP play a role in the control of the hypothalamo--pituitary-adrenal (HPA) axis, almost exclusively acting in a paracrine manner, since their blood concentration is very low. VIP and PACAP are contained in both nerve fibers and neurons of the hypothalamus, and VIP, but not PACAP, is also synthesized in the pituitary gland. Both peptides are expressed in the adrenal gland, and especially in medullary chromaffin cells. All the components of the HPA axis are provided with PVRs. VIP and PACAP enhance pituitary ACTH secretion, VIP by eliciting the hypothalamic release of CRH and potentiating its secretagogue action, and PACAP by directly stimulating pituitary corticotropes. Through this central mechanism, VIP and PACAP may increase mineralo- and glucocorticoid secretion of the adrenal cortex. VIP but not PACAP also exerts a weak direct secretagogue action on adrenocortical cells by activating both PVRs and probably a subtype of ACTH receptors. VIP and PACAP raise aldosterone production via a paracrine indirect mechanism involving the stimulation of medullary chromaffin cells to release catecholamines, which in turn enhance the secretion of zona glomerulosa cells via a beta-adrenoceptor-mediated mechanism. PACAP appears to be able to evoke a glucocorticoid response through the activation, at least in the rat, of the intramedullary CRH/ACTH system. The relevance of these effects of VIP and PACAP under basal conditions is questionable, although there are indications that endogenous VIP is involved in the maintenance of the normal growth and steroidogenic capacity of rat adrenal cortex. However, indirect evidence suggests that these peptides might play a relevant role under paraphysiological conditions (e.g., in the mediation of HPA axis responses to cold and inflammatory stresses) or may be somehow involved in the pathogenesis of Cushing disease or some case of hyperaldosteronism associated with secreting pheochromocytomas.
Collapse
|
33
|
Larsen JO, Hannibal J, Knudsen SM, Fahrenkrug J. Expression of pituitary adenylate cyclase-activating polypeptide (PACAP) in the mesencephalic trigeminal nucleus of the rat after transsection of the masseteric nerve. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 46:109-17. [PMID: 9191084 DOI: 10.1016/s0169-328x(96)00279-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP), a member of the VIP (vasoactive intestinal polypeptide) family of peptides, has been demonstrated in neurons of the sensory system. PACAP expression of these neurons is sensitive to nerve damages such as nerve crush or axotomy. In the present study, PACAP expression in the mesencephalic trigeminal nucleus of the rat was examined after transsection of the main trunk of the masseteric nerve. The primary sensory neurons of the nucleus are considered to have purely proprioceptive functions. By quantitative in situ hybridization using a PACAP [35S]cRNA probe, an increase in PACAP mRNA was observed on the side ipsilateral to transsection already after 3 h and the expression reached a peak 24 h after surgery after which the levels gradually decreased during the next 14 days. A low and constant expression of PACAP mRNA could be seen on the side contralateral to transsection. PACAP immunoreactivity was demonstrated on the ipsilateral side after 18 h, using a specific monoclonal PACAP antibody. Co-existence of PACAP with NPY and galanin was demonstrated 7 days after transsection. Analysis of the masseteric nerve by radioimmunoassay on transsected and normal nerve stumps revealed an increase of PACAP-38 immunoreactivity in the nerve proximal to the transsection compared to the normal side (15.3 vs. 6.1 pmol/g wt). The results suggest that PACAP has a role in the early phase of adaptation to nerve injury in the proprioceptive neurons.
Collapse
Affiliation(s)
- J O Larsen
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
34
|
Strange-Vognsen HH, Arnbjerg J, Hannibal J. Immunocytochemical demonstration of pituitary adenylate cyclase activating polypeptide (PACAP) in the porcine epiphyseal cartilage canals. Neuropeptides 1997; 31:137-41. [PMID: 9179866 DOI: 10.1016/s0143-4179(97)90082-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP), a member of the vasoactive intestinal polypeptide (VIP)/secretin/glucagon family, is known to be a powerful stimulator of adenylate cyclase. Recently, PACAP has been shown to stimulate cAMP in osteoblast-like cells and mouse calvarian bones. In the present study, PACAP immunoreactivity (IR) was demonstrated in cartilage canals from newborn and 3-4-week-old pigs. In tissues from the femoral head and the patella with and without ossification centres, PACAP-IR nerve fibres were found in the cartilage canals innervating blood vessels. The pattern of distribution was not dependent on age or the occurrence of an ossification centre. Co-localization studies showed a high degree of co-localization with calcitonin gene-related peptide (CGRP) and substance P (SP) but little co-localization with VIP. Our findings support earlier findings of CGRP, SP and VIP in bone tissue and add PACAP to the group of neuropeptides with a sensory and/or modulatory function in bone tissue.
Collapse
|
35
|
Fahrenkrug J, Steenstrup BR, Hannibal J, Alm P, Ottesen B. Role of PACAP in the female reproductive organs. Ann N Y Acad Sci 1996; 805:394-407; discussion 407-9. [PMID: 8993420 DOI: 10.1111/j.1749-6632.1996.tb17500.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Chromatography, High Pressure Liquid
- Female
- Genitalia, Female/chemistry
- Genitalia, Female/drug effects
- Genitalia, Female/physiology
- Humans
- Immunohistochemistry
- Middle Aged
- Muscle Contraction/drug effects
- Muscle, Smooth/chemistry
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiology
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/physiology
- Neuropeptides/analysis
- Neuropeptides/pharmacology
- Neurotransmitter Agents/analysis
- Neurotransmitter Agents/pharmacology
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Radioimmunoassay
- Uterine Contraction/drug effects
- Vasoactive Intestinal Peptide/analysis
- Vasoactive Intestinal Peptide/pharmacology
Collapse
Affiliation(s)
- J Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
36
|
Tornøe K, Hannibal J, Giezemann M, Schmidt P, Holst JJ. PACAP 1-27 and 1-38 in the porcine pancreas: occurrence, localization, and effects. Ann N Y Acad Sci 1996; 805:521-35. [PMID: 8993434 DOI: 10.1111/j.1749-6632.1996.tb17514.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- K Tornøe
- Department of Medical Physiology, Panum Institute, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
37
|
Park SK, O'Dorisio MS, O'Dorisio TM. Vasoactive intestinal polypeptide-secreting tumours: biology and therapy. BAILLIERE'S CLINICAL GASTROENTEROLOGY 1996; 10:673-96. [PMID: 9113317 DOI: 10.1016/s0950-3528(96)90018-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
VIP-secreting tumours are rare, but they produce a dramatic clinical picture, the most prominent feature being profuse, watery diarrhoea and hypokalaemia. VIPomas are malignant and require sophisticated diagnostic and localization techniques in order to identify their presence. Delays in diagnosis are the rule rather than the exception. Improvements in the diagnosis of VIPomas appear to result in an increase in resectability rates. A definitive diagnosis is aided by the determination of plasma VIP concentrations through the use of sensitive radioimmunoassays. With heightened awareness of this syndrome, increasing numbers of patients can be identified and more effective treatments developed for the refractory and recurrent tumours.
Collapse
Affiliation(s)
- S K Park
- Department of Pediatrics, Ohio State University College of Medicine, Columbus 43210, USA
| | | | | |
Collapse
|
38
|
Ny L, Waldeck K, Carlemalm E, Andersson KE. Alpha-latrotoxin-induced transmitter release in feline oesophageal smooth muscle: focus on nitric oxide and vasoactive intestinal peptide. Br J Pharmacol 1996; 120:31-8. [PMID: 9117095 PMCID: PMC1564354 DOI: 10.1038/sj.bjp.0700882] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. The effects of alpha-latrotoxin (alpha LTX) on muscle tone, resting membrane potential, cyclic nucleotide content, and ultrastructure were examined in feline oesophageal smooth muscle, including the lower oesophageal sphincter (LOS). 2. In circular smooth muscle strips from LOS developing active tone alpha LTX (1 nM) induced a 94 +/- 3% (n = 16) relaxation. Intermittent treatment with alpha LTX for 4 h abolished the response. Pretreatment with NG-nitro-L-arginine (L-NOARG; 0.1 mM) attenuated the relaxation. 3. In carbachol-contracted circular smooth muscle strips from the LOS and oesophageal body (OB), alpha LTX induced a 95 +/- 5% (n = 6) and 73 +/- 9% (n = 8) relaxation, respectively. The relaxations were attenuated by L-NOARG, and in LOS strips, the relaxation was abolished by the combination of L-NOARG and vasoactive intestinal peptide (VIP)-antiserum (1:25). At resting tension in circular smooth muscle strips from the OB, alpha LTX induced a scopolamine sensitive contraction in the presence of L-NOARG. 4. In circular LOS and OB preparations, alpha LTX changed the resting membrane potential from -49 +/- 2mV to -59 +/- 3 mV (n = 4), and -62 +/- 2 mV to -71 +/- 3 mV (n = 4), respectively. 5. The alpha LTX-induced relaxation of LOS and OB muscle was associated with a 138% and 72% increase in cyclic GMP levels, respectively. No changes in cyclic AMP levels were observed. 6. Ultrastructural analysis of LOS and OB revealed a rich supply of nerve profiles containing small synaptic and large dense core vesicles. alpha LTX treatment resulted in a loss of both types of vesicle. 7. These results suggest that alpha LTX induces relaxation of oesophageal circular smooth muscle associated with NO-generation and transmitter release from synaptic vesicles. Beside NO, VIP seems to be involved in the relaxant effects of alpha LTX on the LOS. In addition, alpha LTX may have contractile effects by release of acetylcholine.
Collapse
Affiliation(s)
- L Ny
- Department of Clinical Pharmacology, Lund University Hospital, Sweden
| | | | | | | |
Collapse
|
39
|
Fahrenkrug J, Hannibal J. Pituitary adenylate cyclase activating polypeptide innervation of the rat female reproductive tract and the associated paracervical ganglia: effect of capsaicin. Neuroscience 1996; 73:1049-60. [PMID: 8809823 DOI: 10.1016/0306-4522(96)00082-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pituitary adenylate cyclase activating peptide (PACAP) is a novel vasoactive intestinal polypeptide-like peptide which is present in neuronal elements of a number of peripheral organs. PACAP occurs in two forms, PACAP-27 and the C-terminally extended PACAP-38, both derived from the same precursor which in addition gives rise to a structurally-related peptide, PACAP-related peptide. Using specific radioimmunoassays for PACAP-38, PACAP-27 and PACAP-related peptide we found that the three PACAP-precursor-derived peptides were present in tissue extracts from all regions of the rat female genital tract. PACAP-38 was the dominating peptide with the highest concentrations in the Fallopian tube and the ovary. Upon reverse phase high pressure liquid chromatography the immunoreactive material was found to co-elute with synthetic PACAP-38, PACAP-27 and PACAP-related peptide, respectively. By immunohistochemistry, PACAP was shown to be located in varicose nerve fibres associated with blood vessels, smooth muscle and epithelial cells. Within the local paracervical ganglion PACAP-immunoreactive fibres ramified often forming varicose, pericellular plexuses around non-PACAP-positive cell bodies. Also bundles of PACAP-immunoreactive fibres were transversing the ganglion. In the paracervical ganglion of normal rat only a few neuronal cell bodies showed immunostaining for PACAP, but after local colchichine-treatment a moderate number of positive perikarya appeared. The synthesis of PACAP in neurons of the paracervical ganglia was confirmed by in situ hybridization histochemistry with a digoxigenin-labelled cRNA probe. Double immunostaining for PACAP and vasoactive intestinal polypeptide disclosed a partial co-existence of the two peptides in nerve fibres of all tubular organs in the rat female genital tract and in cell bodies and nerve fibres in the paracervical ganglion. After neonatal capsaicin treatment the concentration of immunoreactive PACAP-38 as well as the number and intensity of PACAP-positive nerve fibres were reduced while vasoactive intestinal polypeptide immunoreactivity was unaffected. In conclusion, PACAP-immunoreactive nerve fibres have been demonstrated in all regions of the rat female genital tract associated with blood vessels, smooth musculature and epithelium. In some fibres, which seem to originate in the local paracervical ganglia, PACAP was co-localized with vasoactive intestinal polypeptide. PACAP released from these fibres could alone or in concert with vasoactive intestinal polypeptide play a role in neuroregulation of female reproductive organs acting directly on the musculature and vasculature. Other PACAP-containing fibres are sensory in nature, and some of these might influence ganglionic neurotransmission in the local paracervical ganglia.
Collapse
Affiliation(s)
- J Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Denmark
| | | |
Collapse
|