1
|
Katsuki S, Ota S, Yoda S, Onimaru H, Dohi K, Izumizaki M. Effects of ANP and BNP on the generation of respiratory rhythms in brainstem-spinal cord preparation isolated from newborn rats. Biomed Res 2022; 43:127-135. [PMID: 35989288 DOI: 10.2220/biomedres.43.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Natriuretic peptides (NPs) are a family of peptide hormones produced in cardiac muscle cells and consist mainly of three types: atrial NP (ANP), B-type (or brain) NP (BNP), and C-type NP. We herein report the effects of ANP and BNP on central respiratory activity in brainstem-spinal cord preparation isolated from newborn rats. Bath application of these peptides (100 nM) induced a weak transient depression of the respiratory rhythm followed by recovery. Respiratory-related neurons in the rostral ventrolateral medulla showed a tendency for transient hyperpolarization followed by recovery during the application of ANP or BNP. The application of a membrane-permeable cGMP, 8-Br-cGMP (10 or 20 μM), did not induce significant effects on respiratory rhythm, suggesting no involvement of guanylyl cyclase in effects of ANP or BNP. We also examined effects of BNP on respiratory depression induced by the sedative dexmedetomidine, which exerts an inhibitory influence on respiratory rhythm. When pretreated with 50 nM BNP, the inhibitory effect of 100 nM dexmedetomidine was significantly reduced. Our findings suggest that ANP and BNP act as mild excitatory agents with sustained effects on respiratory rhythm after an initial transient depression.
Collapse
Affiliation(s)
- Shino Katsuki
- Department of Physiology, Showa University School of Medicine.,Department of Emergency, Disaster and Critical Care Medicine, Showa University
| | - Shinichiro Ota
- Department of Physiology, Showa University School of Medicine
| | - Shunya Yoda
- Department of Physiology, Showa University School of Medicine
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine
| | - Kenji Dohi
- Department of Emergency, Disaster and Critical Care Medicine, Showa University
| | | |
Collapse
|
2
|
Mahinrad S, de Craen AJM, Yasar S, van Heemst D, Sabayan B. Natriuretic peptides in the central nervous system: Novel targets for cognitive impairment. Neurosci Biobehav Rev 2016; 68:148-156. [PMID: 27229760 DOI: 10.1016/j.neubiorev.2016.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/22/2016] [Accepted: 05/22/2016] [Indexed: 02/06/2023]
Abstract
Natriuretic peptides (NPs) are traditionally known as cardiac hormones with diuretic, natriuretic and blood pressure lowering properties. Evidence indicates that NPs and their receptors are abundant in the central nervous system, suggesting their involvement in regulation of various brain functions. It has been shown that NPs are involved in the regulation of neurovascular and blood-brain barrier integrity, neuro-inflammation, neuroprotection, synaptic transmission and brain fluid homeostasis. In addition, NPs might contribute to the brain's inhibitory control over the hypothalamic-pituitary-adrenal axis. Studies have also shown that high systemic levels of NPs are associated with cognitive impairment independent of cardiovascular risk factors. In this review we discuss the potential roles of NPs in regulating structural and functional integrity of the brain. Based on the available neurobiological and clinical evidence, we propose that NPs might represent as potential novel diagnostic and therapeutic targets for cognitive impairment.
Collapse
Affiliation(s)
- Simin Mahinrad
- Department of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands.
| | - Anton J M de Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands.
| | - Sevil Yasar
- Department of Medicine, Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, 5200 Eastern Avenue, MFL Center tower, Baltimore, MD 21224, United States.
| | - Diana van Heemst
- Department of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands.
| | - Behnam Sabayan
- Department of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands; Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands.
| |
Collapse
|
3
|
Abramoff T, Guil MJ, Morales VP, Hope SI, Höcht C, Bianciotti LG, Vatta MS. Involvement of endothelins in deoxycorticosterone acetate-salt hypertension through the modulation of noradrenergic transmission in the rat posterior hypothalamus. Exp Physiol 2015; 100:617-27. [PMID: 25809871 DOI: 10.1113/ep085230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 03/23/2015] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does ex vivo administration of endothelin-1 and endothelin-3 regulate noradrenergic transmission in the posterior hypothalamus of deoxycorticosterone acetate-salt hypertensive rats compared with normotensive rats? What is the main finding and its importance? Endothelin-1 and endothelin-3 enhanced diverse mechanisms leading to increased noradrenergic transmission in the posterior hypothalamus of deoxycorticosterone acetate-salt hypertensive rats. Unveiling the role of brain endothelins in hypertension would probably favour the development of new therapeutic targets for the treatment of essential hypertension, which still represents a challenging disease with high mortality. Brain catecholamines participate in diverse biological functions regulated by the hypothalamus. We have previously reported that endothelin-1 and endothelin-3 (ET-1 and ET-3) modulate catecholaminergic activity in the anterior and posterior hypothalamus of normotensive rats. The aim of the present study was to evaluate the interaction between endothelins and noradrenergic transmission in the posterior hypothalamus of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. We assessed the effects of ET-1 and ET-3 on tyrosine hydroxylase activity and expression, neuronal noradrenaline (NA) release, neuronal NA transporter (NAT) activity and expression, monoamine oxidase activity and NA endogenous content and utilization (as a marker of turnover) in the posterior hypothalamus of DOCA-salt hypertensive rats. In addition, levels of ETA and ETB receptors were assayed in normotensive and hypertensive rats. Results showed that tyrosine hydroxylase activity and total and phosphorylated levels, NAT activity and content, NA release, monoamine oxidase activity and NA utilization were increased in DOCA-salt rats. Both ET-1 and ET-3 further enhanced all noradrenergic parameters except for total tyrosine hydroxylase level and NA endogenous content and utilization. The expression of ETA receptors was increased in the posterior hypothalamus of DOCA-salt rats, but ETB receptors showed no changes. These results show that ET-1 and ET-3 upregulate noradrenergic activity in the posterior hypothalamus of DOCA-salt hypertensive rats. Our findings suggest that the interaction between noradrenergic transmission and the endothelinergic system in the posterior hypothalamus may be involved in the development and/or maintenance of hypertension in this animal model.
Collapse
Affiliation(s)
- Tamara Abramoff
- Cátedra de Fisiología, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - María J Guil
- Cátedra de Fisiología, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Vanina P Morales
- Cátedra de Fisiología, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Sandra I Hope
- Cátedra de Fisiología, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Christian Höcht
- Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Liliana G Bianciotti
- Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires e Instituto de Inmunología, Genética y Metabolismo (INIGEM-CONICET), Argentina
| | - Marcelo S Vatta
- Cátedra de Fisiología, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| |
Collapse
|
4
|
Vatta MS, Bianciotti LG, Guil MJ, Hope SI. Regulation of the Norepinephrine Transporter by Endothelins. HORMONES AND TRANSPORT SYSTEMS 2015; 98:371-405. [DOI: 10.1016/bs.vh.2014.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Abramoff T, Guil MJ, Morales VP, Hope SI, Soria C, Bianciotti LG, Vatta MS. Enhanced assymetrical noradrenergic transmission in the olfactory bulb of deoxycorticosterone acetate-salt hypertensive rats. Neurochem Res 2013; 38:2063-71. [PMID: 23888389 DOI: 10.1007/s11064-013-1114-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/10/2013] [Accepted: 07/13/2013] [Indexed: 01/14/2023]
Abstract
The ablation of olfactory bulb induces critical changes in dopamine, and monoamine oxidase activity in the brain stem. Growing evidence supports the participation of this telencephalic region in the regulation blood pressure and cardiovascular activity but little is known about its contribution to hypertension. We have previously reported that in the olfactory bulb of normotensive rats endothelins enhance noradrenergic activity by increasing tyrosine hydroxylase activity and norepinephrine release. In the present study we sought to establish the status of noradrenergic activity in the olfactory bulb of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Different steps in norepinephrine transmission including tyrosine hydroxylase activity, neuronal norepinephrine release and uptake were assessed in the left and right olfactory bulb of DOCA-salt hypertensive rats. Increased tyrosine hydroxylase activity, and decreased neuronal norepinephrine uptake were observed in the olfactory bulb of DOCA-salt hypertensive rats. Furthermore the expression of tyrosine hydroxylase and its phosphorylated forms were also augmented. Intriguingly, asymmetrical responses between the right and left olfactory bulb of normotensive and hypertensive rats were observed. Neuronal norepinephrine release was increased in the right but not in the left olfactory bulb of DOCA-salt hypertensive rats, whereas non asymmetrical differences were observed in normotensive animals. Present findings indicate that the olfactory bulb of hypertensive rats show an asymmetrical increase in norepinephrine activity. The observed changes in noradrenergic transmission may likely contribute to the onset and/or progression of hypertension in this animal model.
Collapse
Affiliation(s)
- Tamara Abramoff
- Cátedra de Fisiología e Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Piso 7, 1113AAD-CABA, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
6
|
Porzionato A, Macchi V, Rucinski M, Malendowicz LK, De Caro R. Natriuretic Peptides in the Regulation of the Hypothalamic–Pituitary–Adrenal Axis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:1-39. [DOI: 10.1016/s1937-6448(10)80001-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Cerebrospinal fluid and serum NT-proBNP concentrations in children with epilepsy. Epilepsy Res 2009; 86:131-7. [DOI: 10.1016/j.eplepsyres.2009.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/26/2009] [Accepted: 05/23/2009] [Indexed: 11/30/2022]
|
8
|
Rodríguez Fermepin M, Trinchero M, Minetto J, Beltrán A, Fernández BE. Brain derived neurotrophic factor and neurotrophin-4 employ different intracellular pathways to modulate norepinephrine uptake and release in rat hypothalamus. Neuropeptides 2009; 43:275-82. [PMID: 19576631 DOI: 10.1016/j.npep.2009.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 06/02/2009] [Accepted: 06/03/2009] [Indexed: 01/19/2023]
Abstract
Classical actions of the neurotrophin family are related to cellular survival and differentiation. Moreover, acute effects of neurotrophins have been reported. Although neurotrophins effects on synaptic transmission at central nervous system level have been largely studied, acute effects of neurotrophins on hypothalamic noradrenergic transmission are still poorly understood. Thus, we have studied the effects of the neurotrophin family members nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4) on norepinephrine (NE) neuronal uptake and its evoked release, as well as the receptor and the intracellular pathways involved in these processes in rat hypothalamus. Present results indicate that BDNF increased NE uptake and decreased its evoked release through a mechanism that involve Trk B receptor and phospholipase C. Moreover, NT-4, also through the Trk B receptor, decreased NE uptake and its evoked release by activating phosphatidylinositol 3-OH-kinase. These effects were observed in whole hypothalamus as well as in the anterior hypothalamic zone. On the other hand, NGF did not modify noradrenergic transmission. In conclusion, we showed for the first time that BDNF and NT-4 activate two different intracellular signalling pathways through a Trk B receptor dependent mechanism. Furthermore, present findings support the hypothesis that BDNF and NT-4 acutely applied, could be considered as modulators of noradrenergic transmission and thus may regulate hypothalamic physiological as well as pathophysiological responses.
Collapse
Affiliation(s)
- M Rodríguez Fermepin
- Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, INFIBIOC, Universidad de Buenos Aires, CONICET, C1113AAD Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
9
|
Natriuretic peptides as regulatory mediators of secretory activity in the digestive system. ACTA ACUST UNITED AC 2009; 154:5-15. [PMID: 19233231 DOI: 10.1016/j.regpep.2009.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 01/28/2009] [Accepted: 02/03/2009] [Indexed: 11/22/2022]
Abstract
Atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) are members of the natriuretic peptide family best known for their role in blood pressure regulation. However, in recent years all the natriuretic peptides and their receptors have been described in the gastrointestinal tract, digestive glands and central nervous system, as well as implicated in the regulation of digestive gland functions. The current review highlights the regulatory role of ANP and CNP in pancreatic and other digestive secretions. ANP and CNP stimulate basal as well as induced pancreatic secretion and modify bicarbonate and chloride secretions. Whereas ANP and CNP exert effects directly on pancreatic cells, CNP also acts through a vago-vagal reflex. At high doses both peptides attenuate pancreatic secretion induced by high doses of secretin through the PLC/PKC pathway. With regards to other digestive secretions, ANP and CNP decrease bile secretion in the rat. ANP does not induce salivation by itself but enhances stimulated salivary secretion and modifies salivary composition in rat parotid as well as submandibular glands. In rat pancreatic, hepatic, parotid and submandibular tissues, the NPR-C receptor mediates mostly peripheral responses whereas NPR-A and NPR-B receptors, which are coupled to guanylate cyclase, likely mediate the central response. In addition, ANP modulates gastric acid secretion via a vagal-dependent mechanism. In the intestine, ANP and CNP decrease water and sodium chloride absorption through an increase in cGMP levels. Overall, these findings indicate that ANP and CNP are members of the large group of regulatory peptides affecting digestive secretions.
Collapse
|
10
|
Short-term Effects of Endothelins on Tyrosine Hydroxylase Activity and Expression in the Olfactory Bulb of Normotensive Rats. Neurochem Res 2008; 34:953-63. [DOI: 10.1007/s11064-008-9859-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 09/17/2008] [Indexed: 11/25/2022]
|
11
|
Hope SI, Schmipp J, Rossi AH, Bianciotti LG, Vatta MS. Regulation of the neuronal norepinephrine transporter by endothelin-1 and -3 in the rat anterior and posterior hypothalamus. Neurochem Int 2008; 53:207-13. [PMID: 18682267 DOI: 10.1016/j.neuint.2008.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 05/27/2008] [Accepted: 07/10/2008] [Indexed: 11/18/2022]
Abstract
We previously reported that endothelin-1 and endothelin-3 modulate norepinephrine neuronal release and tyrosine hydroxylase activity and expression in the hypothalamus. In the present study we sought to establish the role of endothelin-1 and -3 in the regulation of norepinephrine uptake in the anterior and posterior hypothalamus. Results showed that in the anterior hypothalamus endothelin-3 increased neuronal norepinephrine uptake whereas endothelin-1 decreased it. Conversely, in the posterior hypothalamic region both endothelins diminished the neuronal uptake of the amine. Endothelins response was concentration dependent and maintained at all studied times. Endothelins also modified the kinetic and internalization of the NE neuronal transporter. In the anterior hypothalamic region endothelin-3 increased the V(max) and the B(max) whereas endothelin-1 decreased them. However, in the posterior hypothalamic region both endothelins diminished the V(max) as well as B(max). Neither endothelin-1 nor endothelin-3 modified neuronal norepinephrine transporter K(d) in the studied hypothalamic regions. These findings support that in the posterior hypothalamic region both endothelins diminished neuronal norepinephrine transporter activity by reducing the amine transporter expression on the plasmatic membrane. Conversely, in the anterior hypothalamic region endothelin-3 enhanced neuronal norepinephrine transporter activity by increasing the expression of the transporter on the presynaptic membrane, whereas endothelin-1 induced the opposite effect. Present results permit us to conclude that both endothelins play an important role in the regulation of norepinephrine neurotransmission at the presynaptic nerve endings in the hypothalamus.
Collapse
Affiliation(s)
- Sandra I Hope
- Cátedra de Fisiología e Instituto de Química y Metabolismo del Fármaco, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
12
|
Cao LH, Yang XL. Natriuretic peptides and their receptors in the central nervous system. Prog Neurobiol 2007; 84:234-48. [PMID: 18215455 DOI: 10.1016/j.pneurobio.2007.12.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 11/05/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
Abstract
Natriuretic peptides (NPs), including atrial, brain and C-type NPs, are a family of structurally related but genetically distinct peptides. These peptides, along with their receptors (NPRs), are long known to be involved in the regulation of various physiological functions, such as diuresis, natriuresis, and blood flow. Recently, abundant evidence shows that NPs and NPRs are widely distributed in the central nervous system (CNS), suggesting possible roles of NPs in modulating physiological functions of the CNS. This review starts with a brief summary of relevant background information, such as molecular structures of NPs and NPRs and general intracellular mechanisms after activation of NPRs. We then provide a detailed description of the expression profiles of NPs and NPRs in the CNS and an in-depth discussion of how NPs are involved in neural development, neurotransmitter release, synaptic transmission and neuroprotection through activation of NPRs.
Collapse
Affiliation(s)
- Li-Hui Cao
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | |
Collapse
|
13
|
Sabbatini ME, Rodríguez M, di Carlo MB, Davio CA, Vatta MS, Bianciotti LG. C-type natriuretic peptide enhances amylase release through NPR-C receptors in the exocrine pancreas. Am J Physiol Gastrointest Liver Physiol 2007; 293:G987-94. [PMID: 17702953 DOI: 10.1152/ajpgi.00268.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Several studies show that C-type natriuretic peptide (CNP) has a modulatory role in the digestive system. CNP administration reduces both jejunal fluid and bile secretion in the rat. In the present study we evaluated the effect of CNP on amylase release in isolated pancreatic acini as well as the receptors and intracellular pathways involved. Results showed that all natriuretic peptide receptors were expressed not only in the whole pancreas but also in isolated pancreatic acini. CNP stimulated amylase secretion with a concentration-dependent biphasic response; maximum release was observed at 1 pM CNP, whereas higher concentrations gradually attenuated it. The response was mimicked by a selective natriuretic peptide receptor (NPR-C) agonist and inhibited by pertussis toxin, strongly supporting NPR-C receptor activation. CNP-evoked amylase release was abolished by U-73122 (PLC inhibitor) and 2-aminoethoxydiphenyl borate (2-APB) [an inositol 1,4,5-triphosphate (IP(3)) receptor antagonist], partially inhibited by GF-109203X (PKC inhibitor), and unaltered by ryanodine or protein kinase A (PKA) and protein kinase G (PKG) inhibitors. Phosphoinositide hydrolysis was enhanced by CNP at all concentrations and abolished by U-73122. At 1 and 10 pM, CNP did not affect cAMP or guanosine 3',5'-cyclic monophosphate (cGMP) levels, but at higher concentrations it increased cGMP and diminished cAMP content. Present findings show that CNP stimulated amylase release through the activation of NPR-C receptors coupled to the PLC pathway and downstream effectors involved in exocytosis. The attenuation of amylase release was likely related to cAMP reduction. The augmentation in cGMP supports activation of NPR-A/NPR-B receptors probably involved in calcium influx. Present findings give evidence that CNP is a potential direct regulator of pancreatic function.
Collapse
Affiliation(s)
- María E Sabbatini
- Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
14
|
Correa AH, Choi MR, Gironacci M, Aprile F, Fernández BE. Atrial natriuretic factor decreases renal dopamine turnover and catabolism without modifying its release. ACTA ACUST UNITED AC 2007; 146:238-42. [PMID: 17963868 DOI: 10.1016/j.regpep.2007.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 08/29/2007] [Accepted: 09/20/2007] [Indexed: 01/11/2023]
Abstract
Atrial natriuretic factor (ANF) and dopamine (DA) are both important regulators of sodium and water transport across renal proximal tubules. Many evidences suggest that some of ANF inhibitory effects on sodium and water reabsorption are mediated by dopaminergic mechanisms. We have previously reported that ANF stimulates extraneuronal DA uptake in external renal cortex by activation of NPR-A receptors coupled to cGMP signal and PKG. Moreover, ANF enhanced DA-induced inhibition of Na(+)-K(+) ATPase activity. The aim of the present study was to evaluate if ANF could alter also renal DA release, catabolism and turn over. The results indicate that ANF did not affect basal secretion of the amine in external renal cortex or its KCl-induced release, but diminished DA turn over. Moreover, ANF diminished COMT and did not alter MAO activity. In conclusion, present results as well as previous findings show that ANF modifies DA metabolism in rat external renal cortex by enhancing DA uptake and decreasing COMT activity. All those effects, taken together, may favor DA accumulation into renal cells and increase its endogenous content and availability. This would permit D1 receptor recruitment and stimulation and in turn, Na(+), K(+)-ATPase activity over inhibition that results in decreased sodium reabsorption. Therefore, ANF and DA could act via a common pathway to enhance natriuresis and diuresis.
Collapse
Affiliation(s)
- Alicia H Correa
- Cátedra de Fisiopatología-INFIBIOC, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIFIB CONICET, Junín 956 piso 5, 1113 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
15
|
Sabbatini ME, Rodríguez MR, Dabas P, Vatta MS, Bianciotti LG. C-type natriuretic peptide stimulates pancreatic exocrine secretion in the rat: role of vagal afferent and efferent pathways. Eur J Pharmacol 2007; 577:192-202. [PMID: 17900562 DOI: 10.1016/j.ejphar.2007.08.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/28/2007] [Accepted: 08/29/2007] [Indexed: 11/28/2022]
Abstract
We previously reported that C-type natriuretic peptide (CNP) increases amylase release in isolated pancreatic acini through natriuretic peptide receptor C activation and enhances pancreatic exocrine secretion via vagal pathways when applied to the brain. In the present study we sought to establish whether CNP was involved in the peripheral regulation of pancreatic secretion. Anesthetized rats were prepared with pancreatic duct cannulation, pyloric ligation and bile diversion into the duodenum. CNP dose-dependently enhanced pancreatic flow, chloride and protein excretion but did not modify bicarbonate output. A selective natriuretic peptide receptor C agonist enhanced pancreatic flow and mimicked CNP-evoked protein output but failed to modify chloride secretion. Truncal vagotomy, perivagal application of capsaicin and hexamethonium reduced CNP-evoked pancreatic flow and abolished chloride excretion but did not affect protein output. Furthermore, pre-treatment with atropine reduced both CNP-stimulated pancreatic flow and chloride excretion but failed to modify protein excretion. Partial muscarinic blockade of CNP-evoked chloride output suggested that mediators other than acetylcholine were involved. However, CNP response was unaltered by cholecystokinin and vasoactive intestinal peptide receptor blockade or by nitric oxide synthase inhibition. In conclusion, CNP-stimulated pancreatic flow through the activation of the natriuretic peptide receptor C and the vago-vagal reflex but it increased protein output only by natriuretic peptide receptor C activation and chloride excretion by vago-vagal reflexes. Present results suggest that CNP may play a role as a local regulator of the exocrine pancreas.
Collapse
Affiliation(s)
- María E Sabbatini
- Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
16
|
Abstract
The norepinephrine transporter (NET) terminates noradrenergic signalling by rapid re-uptake of neuronally released norepinephrine (NE) into presynaptic terminals. NET exerts a fine regulated control over NE-mediated behavioural and physiological effects including mood, depression, feeding behaviour, cognition, regulation of blood pressure and heart rate. NET is a target of several drugs which are therapeutically used in the treatment or diagnosis of disorders among which depression, attention-deficit hyperactivity disorder and feeding disturbances are the most common. Individual genetic variations in the gene encoding the human NET (hNET), located at chromosome 16q12.2, may contribute to the pathogenesis of those diseases. An increasing number of studies concerning the identification of single nucleotide polymorphisms in the hNET gene and their potential association with disease as well as the functional investigation of naturally occurring or induced amino acid variations in hNET have contributed to a better understanding of NET function, regulation and genetic contribution to disorders. This review will reflect the current knowledge in the field of NET from its initial discovery until now.
Collapse
Affiliation(s)
- H Bönisch
- Department of Pharmacology and Toxicology, University of Bonn, Reuterstr. 2b, 53115 Bonn, Germany.
| | | |
Collapse
|
17
|
Abstract
For many years, the norepinephrine transporter (NET) was considered a 'static' protein that contributed to the termination of the action of norepinephrine in the synapse of noradrenergic neurons. The concept that the NET is dynamically regulated, adjusting noradrenergic transmission by changing its function and/or expression, was considered initially in the mid 1980s. Since that time, a plethora of studies demonstrate that the NET is regulated by several intracellular and extracellular signaling molecules, and that phosphorylation of the NET is a major pathway regulating its cell surface expression and thereby its function. The NET is a target of action of a number of drugs that are used long-term therapeutically or abused chronically. This has driven numerous investigations of how the NET and its function are regulated by long-term exposure to drugs. While repeated exposure to many drugs has been shown to affect NET function and expression, the intracellular mechanisms for these effects remains elusive.
Collapse
Affiliation(s)
- Prashant Mandela
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, USA
| | | |
Collapse
|
18
|
Clerico A, Recchia FA, Passino C, Emdin M. Cardiac endocrine function is an essential component of the homeostatic regulation network: physiological and clinical implications. Am J Physiol Heart Circ Physiol 2006; 290:H17-29. [PMID: 16373590 DOI: 10.1152/ajpheart.00684.2005] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The discovery of cardiac natriuretic hormones required a profound revision of the concept of heart function. The heart should no longer be considered only as a pump but rather as a multifunctional and interactive organ that is part of a complex network and active component of the integrated systems of the body. In this review, we first consider the cross-talk between endocrine and contractile function of the heart. Then, based on the existing literature, we propose the hypothesis that cardiac endocrine function is an essential component of the integrated systems of the body and thus plays a pivotal role in fluid, electrolyte, and hemodynamic homeostasis. We highlight those studies indicating how alterations in cardiac endocrine function can better explain the pathophysiology of cardiovascular diseases and, in particular of heart failure, in which several target organs develop a resistance to the biological action of cardiac natriuretic peptides. Finally, we emphasize the concept that a complete knowledge of the cardiac endocrine function and of its relation with other neurohormonal regulatory systems of the body is crucial to correctly interpret changes in circulating natriuretic hormones, especially the brain natriuretic peptide.
Collapse
Affiliation(s)
- Aldo Clerico
- Laboratory of Cardiovascular Endocrinology and Cell Biology, CNR Institute of Clinical Physiology, Via Trieste 41, 56126 Pisa, Italy.
| | | | | | | |
Collapse
|
19
|
Sabbatini ME, Rodríguez MR, Corbo NS, Vatta MS, Bianciotti LG. C-type natriuretic peptide applied to the brain enhances exocrine pancreatic secretion through a vagal pathway. Eur J Pharmacol 2005; 524:67-74. [PMID: 16263110 DOI: 10.1016/j.ejphar.2005.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 09/06/2005] [Accepted: 09/08/2005] [Indexed: 11/16/2022]
Abstract
C-type natriuretic peptide (CNP) is the major natriuretic peptide in the brain and its mRNA has been reported in the central nervous system, which supports local synthesis and its role as a neuromodulator. The aim of the present work was to study the effect of centrally applied CNP on pancreatic secretion. Rats were fitted with a lateral cerebroventricular cannula one-week before secretion studies. The central administration of CNP dose-dependently enhanced pancreatic fluid and protein output. CNP response was diminished by atropine and hexamethonium, but it was abolished by vagotomy. Neither adrenergic antagonists nor the administration of (D-p-Cl-Phe(6),Leu(17))-vasoactive intestinal peptide (VIP antagonist) or N(omega) Nitro-L arginine methyl ester (L-NAME) (nitric oxide synthase inhibitor) affected CNP response. The effect induced by CNP was mimicked by 8-Br-cGMP but not by c-ANP-(4-23) amide (selective agonist of the natriuretic peptide receptor C). Furthermore, CNP interacted with cholecystokinin (CCK) and secretin in the brain to modify pancreatic secretion. Present findings show that centrally applied CNP enhanced pancreatic secretion through a vagal pathway and suggest that CNP response is mediated by the activation of natriuretic peptide guanylyl cyclase coupled receptors in the brain.
Collapse
Affiliation(s)
- María E Sabbatini
- Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
20
|
Fernández BE, Correa AH, Choi MR. Atrial natriuretic factor stimulates renal dopamine uptake mediated by natriuretic peptide-type A receptor. ACTA ACUST UNITED AC 2005; 124:137-44. [PMID: 15544851 DOI: 10.1016/j.regpep.2004.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 07/02/2004] [Indexed: 11/17/2022]
Abstract
To determine the effects of atrial natriuretic factor (ANF) on renal dopamine (DA) metabolism, 3H-DA and 3H-L-DOPA uptake by renal tubular cells was measured in experiments carried out in vitro in Sprague-Dawley rats. The receptor type involved was also analyzed. The results indicate that ANF increased at 30 min, DA uptake in a concentration-response fashion having 10 pM ANF as the threshold concentration. Conversely, the uptake of the precursor L-DOPA was not modified by the peptide. ANF effects were observed in tissues from external and juxtamedullar cortex and inner medulla. On this basis, 100 nM ANF was used to continue the studies in external cortex tissues. DA uptake was characterized as extraneuronal uptake, since 100 microM hydrocortisone blocked ANF-induced increase of DA uptake. Renal DA uptake was decreased at 0 degrees C and in sodium-free medium. The effects of ANF in these conditions were not present, confirming that renal DA uptake is mediated by temperature- and sodium-dependent transporters and that the peptide requires the presence of the ion to exhibit its actions on DA uptake. The biological natriuretic peptide type A receptor (NPR-A) mediates ANF effects, since 100 nM anantin, a specific blocker, reversed ANF-dependent increase of DA uptake. The natriuretic peptide type C receptor (NPR-C) is not involved, since the specific analogous 100 nM 4-23 ANF amide has no effect on renal DA uptake and does not alter the effects of 100 nM ANF. In conclusion, ANF stimulates DA uptake by kidney tubular cells. ANF effects are mediated by NPR-A receptors coupled to guanylate cyclase and cGMP as second messenger. The process involved was characterized as a typical extraneuronal uptake, and characterized as temperature- and sodium-dependent. This mechanism could be related to DA effects on sodium reabsorption and linked to ANF enhanced natriuresis in the kidney. The increment of endogenous DA into tubular cells, as a consequence of increased DA uptake, would permit D1 receptor recruitment and Na+,K+-ATPase activity inhibition, which results in decreased sodium reabsorption and increased natriuresis.
Collapse
Affiliation(s)
- Belisario E Fernández
- Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956 piso 5, 1113 Buenos Aires, Argentina.
| | | | | |
Collapse
|
21
|
Campese VM, Nadim MK. Natriuretic Peptides. Hypertension 2005. [DOI: 10.1016/b978-0-7216-0258-5.50108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Vatta M, Peña C, Fernández BE, Rodríguez de Lores Arnaiz G. Endobain E, a brain Na+, K+-ATPase inhibitor, decreases norepinephrine uptake in rat hypothalamus. Life Sci 2004; 76:359-65. [PMID: 15530498 DOI: 10.1016/j.lfs.2004.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 05/19/2004] [Indexed: 11/17/2022]
Abstract
The ability of an endogenous brain Na+, K+ -ATPase inhibitor, termed endobain E, to increase [3H]norepinephrine release in rat hypothalamus was previously reported. Endobain E effect on neurotransmitter uptake was studied by assaying [3H]norepinephrine uptake in rat hypothalamus preparations, to observe uptake inhibition, which reached 60% with endobain E equivalent to 100 mg fresh cerebral cortex, an effect achieved with 40 or 400 microM ouabain. Results support the proposal that endobain E behaves as an ouabain-like substance. Taken jointly results obtained on neurotransmitter release and uptake, the suggestion that endobain E may enhance norepinephrine availability in the synaptic gap and thus lead to an increase in noradrenergic activity is advanced.
Collapse
Affiliation(s)
- Marcelo Vatta
- Cátedra de Fisiología-IQUIMEFA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113-Buenos Aires, Argentina
| | | | | | | |
Collapse
|
23
|
Di Nunzio AS, Legaz G, Rodano V, Bianciotti LG, Vatta MS. Modulatory effect of endothelin-1 and -3 on neuronal norepinephrine release in the rat posterior hypothalamus. ACTA ACUST UNITED AC 2004; 118:51-9. [PMID: 14759557 DOI: 10.1016/j.regpep.2003.10.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2003] [Revised: 10/10/2003] [Accepted: 10/14/2003] [Indexed: 11/19/2022]
Abstract
Based upon the existence of high density of ET-receptors on catecholaminergic neurons of the hypothalamus, we studied the effects of endothelin-1 (ET-1) and endothelin-3 (ET-3) on neuronal norepinephrine (NE) release in the rat posterior hypothalamus. The intracellular pathways and receptors involved were also investigated. Neuronal NE release was enhanced by ET-1 and ET-3 (10 etaM). The selective antagonists of subtype A and B ET receptors (ETA, ETB) (100 etaM BQ-610 and 100 etaM BQ-788, respectively) abolished the increase induced by ET-1 but not by ET-3. The PLC inhibitor, U73122 (10 microM), abolished ET-1 and ET-3 response. GF-109203X (100 etaM) (PKC inhibitor) blocked the increase in NE release produced by ET-3 and partially blocked ET-1 response. The inositol 1,4,5-trisphosphate-induced calcium release inhibitor, 42 microM 2-APB, inhibited the stimulatory effect induced by ET-3 but not by ET-1. The PKA inhibitor, 500 etaM H-89, blocked the increase in neuronal NE release evoked by ET-1 but not by ET-3. Our results showed that ET-1 as well as ET-3 displayed an excitatory neuromodulatory effect on neuronal NE release in the rat posterior hypothalamus. ET-1 through an atypical ETA or ETB receptor activated the PLC/PKC signalling pathway as well as the cAMP pathway, whereas ET-3 through a non-ETA/non-ETB receptor activated the phosphoinositide pathway. Both ETs would enhance the sympathoexcitatory response elicited by the posterior hypothalamus and thus participate in cardiovascular regulation.
Collapse
Affiliation(s)
- Andrea S Di Nunzio
- Cátedra de Fisiología-Instituto de Química y Metabolismo del Fármaco-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956-Piso 7, 1113, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
24
|
Sabbatini ME, Vatta MS, Vescina C, Gonzales S, Fernandez B, Bianciotti LG. NPR-C receptors are involved in C-type natriuretic peptide response on bile secretion. ACTA ACUST UNITED AC 2003; 116:13-20. [PMID: 14599710 DOI: 10.1016/s0167-0115(03)00168-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
C-type natriuretic peptide (CNP) is a member of the natriuretic peptide family. Previous studies reported the presence of natriuretic peptide receptors and mRNA CNP in the liver. In the present work, we sought to establish the role of CNP in the regulation of bile secretion in the rat and the possible pathways involved.CNP diminished basal as well as bile salt-evoked bile flow and bile acid output in a dose-dependent manner. It also reduced the excretion of sodium, chloride, and potassium but did not modify bile pH or the excretion of phospholipids, total proteins, and glutathione. Neither parasympathetic nor sympathetic blockade abolished CNP inhibitory response on bile secretion. The selective NPR-C agonist, C-ANP-(4-23) amide, diminished bile flow and the co-administration of both peptides did not further decrease it. CNP did not alter mean arterial pressure or portal venous pressure at any given doses.CNP decreased bile acid-dependent flow without affecting bile acid-independent flow. The inhibitory effect of CNP did not involve the participation of the autonomic nervous system or hemodynamic changes. The participation of NPR-C receptors in CNP response is strongly supported by present findings. The present study shows that CNP modulates bile secretion in the rat, suggesting that CNP may be part of the large family of peptides involved in the regulation of gastrointestinal physiology.
Collapse
Affiliation(s)
- Maria E Sabbatini
- Cátedra de Fisiopatologi;a, Facultad de Farmacia y Bioqui;mica, Universidad de Buenos Aires, Juni;n 956, 5 piso (1113), Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
25
|
Simonneaux V, Ribelayga C. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 2003; 55:325-95. [PMID: 12773631 DOI: 10.1124/pr.55.2.2] [Citation(s) in RCA: 449] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melatonin, the major hormone produced by the pineal gland, displays characteristic daily and seasonal patterns of secretion. These robust and predictable rhythms in circulating melatonin are strong synchronizers for the expression of numerous physiological processes in photoperiodic species. In mammals, the nighttime production of melatonin is mainly driven by the circadian clock, situated in the suprachiasmatic nucleus of the hypothalamus, which controls the release of norepinephrine from the dense pineal sympathetic afferents. The pivotal role of norepinephrine in the nocturnal stimulation of melatonin synthesis has been extensively dissected at the cellular and molecular levels. Besides the noradrenergic input, the presence of numerous other transmitters originating from various sources has been reported in the pineal gland. Many of these are neuropeptides and appear to contribute to the regulation of melatonin synthesis by modulating the effects of norepinephrine on pineal biochemistry. The aim of this review is firstly to update our knowledge of the cellular and molecular events underlying the noradrenergic control of melatonin synthesis; and secondly to gather together early and recent data on the effects of the nonadrenergic transmitters on modulation of melatonin synthesis. This information reveals the variety of inputs that can be integrated by the pineal gland; what elements are crucial to deliver the very precise timing information to the organism. This also clarifies the role of these various inputs in the seasonal variation of melatonin synthesis and their subsequent physiological function.
Collapse
Affiliation(s)
- Valerie Simonneaux
- Laboratoire de Neurobiologie Rythmes, UMR 7518 CNRS/ULP, 12, rue de l'Université, 67000 Strasbourg, France.
| | | |
Collapse
|
26
|
Rodríguez Fermepín M, Alvarez Maubecín V, Zarrabeitía V, Bianciotti LG, Vatta MS, Fernández BE. Atrial natriuretic factor (ANF) effects on L-, N-, and P/Q-type voltage-operated calcium channels. Cell Mol Neurobiol 2002; 22:771-81. [PMID: 12585694 DOI: 10.1023/a:1021865209793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. We have previously reported that atrial natriuretic factor (ANF) decreases neuronal norepinephrine (NE) release. The mechanism that mediates NE release from presynaptic membrane to synaptic cleft is a strongly calcium-dependent process. The modulator effect of ANF may be related to modifications in calcium influx at the presynaptic nerve ending by interaction with voltage-operated calcium channels (VOCCs). 2. On this basis we investigated the effects of ANF on K+-induced 45Ca2+ uptake and evoked neuronal NE release in the presence of specific L-, N-, and P/Q-type calcium channel blockers in the rat hypothalamus. 3. Results showed that ANF inhibited K+-induced 45Ca2+ uptake in a concentration-dependent fashion. Concentration-response curves to VOCC blockers nifedipine (NFD, L-type channel blocker), omega-conotoxin GVIA (CTX, N-type channel blocker), and omega-agatoxin IVA (AGA, P/Q-type channel blocker) showed that all the blockers decreased NE release. Incubation of ANF plus NFD showed an additive effect as compared to NFD or ANF alone. However, when the hypothalamic tissue was incubated in the presence of ANF plus CTX or AGA there were no differences in neuronal NE release as compared to calcium channel blockers or ANF alone. 4. These results suggest that ANF decreases NE release by an L-type calcium channel independent mechanism by inhibiting N- and/or P/Q-type calcium channels at the neuronal presynaptic level. Thus, ANF modulates neuronal NE release through different mechanisms involving presynaptic calcium channel inhibition.
Collapse
Affiliation(s)
- Martín Rodríguez Fermepín
- Cátedras de Fisiopatología and Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
27
|
Pemberton CJ, Yandle TG, Espiner EA. Immunoreactive forms of natriuretic peptides in ovine brain: response to heart failure. Peptides 2002; 23:2235-44. [PMID: 12535704 DOI: 10.1016/s0196-9781(02)00263-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to elucidate how brain natriuretic peptides (NPs) are affected by experimentally induced heart failure, we have measured the immunoreactive (IR) levels of the NP in extracts from 10 regions of ovine brain, including pituitary, and clarified their molecular forms using high performance liquid chromatography (HPLC). Using species-specific radioimmunoassay (RIA), atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) were all detected in extracts taken from control animals and sheep that had undergone rapid ventricular pacing for 7 days to induce heart failure. CNP was the most abundant NP as assessed by specific RIA, and the pituitary contained the highest IR levels for all three NP. Compared with control animals, the pituitary content of BNP in animals with heart failure was reduced by 40% (control, 0.26+/-0.02 pmol/g wet weight versus heart failure 0.16+/-0.01; P<0.01, n=7). No other significant changes were observed. The molecular forms of ANP and CNP in whole brain extracts as assessed by HPLC were proANP and CNP22, CNP53 and proCNP, respectively. BNP in pituitary extracts was assessed to be primarily proBNP with a minor component of mature BNP26.
Collapse
Affiliation(s)
- Chris J Pemberton
- Christchurch Cardioendocrine Research Group, Christchurch School of Medicine, University of Otago, Christchurch 8001, New Zealand.
| | | | | |
Collapse
|
28
|
Sabbatini ME, Vatta MS, Vescina C, Castro JL, Fernández BE, Bianciotti LG. Bile secretion is centrally regulated by C-type natriuretic peptide. Cell Mol Neurobiol 2002; 22:755-70. [PMID: 12585693 DOI: 10.1023/a:1021813225723] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Current evidence supports that C-type natriuretic peptide (CNP) is the brain natriuretic peptide. Natriuretic peptide receptors and mRNA CNP have been reported in the liver and in discrete areas and nucleus of the central nervous system involved in the regulation of gastrointestinal physiology. In the present work, we sought to establish the role of CNP in the central regulation of bile secretion in the rat and to delineate the possible pathways and mechanisms involved. 2. To examine the role of CNP on bile secretion, the peptide was applied in the brain lateral ventricle (1, 10, and 100 ng/microL) and bile samples were collected every 15 min for 60 min. The role of the autonomic nervous system in CNP response was assessed by atropine or combined phentolamine and propranolol administration. 3. Centrally applied CNP diminished basal as well as bile salt-evoked bile flow in a dose-dependent manner. CNP reduced bile acid output as well as sodium and potassium excretion, supporting CNP effect on bile acid-dependent flow. CNP also decreased chloride excretion and increased bile pH. The excretion of total glutathione was not affected by centrally applied CNP suggesting that this peptide does not alter bile acid-independent flow. Neither parasympathetic nor sympathetic blockade abolished CNP inhibitory response on bile secretion. Mean arterial pressure and portal venous pressure were not modified by CNP. 4. Present findings show that centrally applied CNP modulates bile secretion in a dose-dependent fashion. CNP alkalinized bile and reduced bile acid-dependent flow without affecting bile acid-independent flow. The inhibitory response of CNP on bile secretion was not mediated by the autonomic nervous system. Present findings give further support to the role of CNP as the brain natriuretic peptide.
Collapse
Affiliation(s)
- Maria E Sabbatini
- Cátedras de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
29
|
Di Nunzio AS, Jaureguiberry MS, Rodano V, Bianciotti LG, Vatta MS. Endothelin-1 and -3 diminish neuronal NE release through an NO mechanism in rat anterior hypothalamus. Am J Physiol Regul Integr Comp Physiol 2002; 283:R615-22. [PMID: 12184995 DOI: 10.1152/ajpregu.00026.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The existence of endothelin binding sites on the catecholaminergic neurons of the hypothalamus suggests that endothelins (ETs) participate in the regulation of noradrenergic transmission modulating various hypothalamic-controlled processes such as blood pressure, cardiovascular activity, etc. The effects of ET-1 and ET-3 on the neuronal release of norepinephrine (NE) as well as the receptors and intracellular pathway involved were studied in the rat anterior hypothalamus. ET-1 (10 nM) and ET-3 (10 nM) diminished neuronal NE release and the effect blocked by the selective ET type B receptor antagonist BQ-788 (100 nM). N(omega)-nitro-L-arginine methyl ester (10 microM), methylene blue (10 microM), and KT5823 (2 microM), inhibitors of nitric oxide synthase activity, guanylate cyclase, and protein kinase G, respectively, prevented the inhibitory effects of both ETs on neuronal NE release. In addition, both ETs increased nitric oxide synthase activity. Furthermore, 100 microM picrotoxin, a GABA(A)-receptor antagonist, inhibited ET-1 and ET-3 response. Our results show that ET-1 as well as ET-3 has an inhibitory neuromodulatory effect on NE release in the anterior hypothalamus mediated by the ET type B receptor and the involvement of a nitric oxide-dependent pathway and GABA(A) receptors. ET-1 and ET-3 may thus diminish available NE in the synaptic gap leading to decreased noradrenergic activity.
Collapse
Affiliation(s)
- Andrea S Di Nunzio
- Cátedras de Fisiología y Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1113 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
30
|
Vatta MS, Hope SI, Prendes GM, Bianciotti LG, Elverdin JC, Fernandez BE. Salivary glands and noradrenergic transmission in diabetic rats. AUTONOMIC & AUTACOID PHARMACOLOGY 2002; 22:65-71. [PMID: 12568123 DOI: 10.1046/j.1474-8673.2002.00243.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1 Type 2 diabetes is associated with diverse oral pathologies in which salivary flow reduction is one of the causes of these oral abnormalities. Scarce literature exists regarding noradrenergic transmission and adrenergic-induced salivary flow in submaxillary and parotid glands of type 2 diabetic rats. 2 We studied noradrenergic transmission as well as the secretory response to alpha1- and beta-adrenoceptor stimulation in the parotid and submaxillary glands of type 2 diabetic rats. 3 Diabetic rats exhibited diminished neuronal uptake, release and endogenous content of noradrenaline (NE) in both salivary glands. Further, NE synthesis was also diminished accompanied by decreased tyrosine hydroxylase activity. Salivary flow responses to alpha1-(methoxamine) and beta-(isoprenaline) adrenoceptor stimulation were reduced in the submaxillary as well as the parotid glands of diabetic rats. 4 Our results suggest that the reduction of noradrenergic transmission in the salivary glands of type 2 diabetic rats is in part responsible for the diminished salivary flow evoked by alpha1- and beta-adrenergic stimulation. Reduced noradrenergic activity may contribute to the pathophysiology of oral abnormalities in diabetic patients.
Collapse
Affiliation(s)
- M S Vatta
- Catedra de Fisiologia, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Junin 956-7mo piso, 1113 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
31
|
Fermepín MR, Vatta MS, Bianciotti LG, Wolovich TJ, Fernández BE. B-Type and C-type natriuretic peptides modify norepinephrine uptake in discrete encephalic nuclei of the rat. Cell Mol Neurobiol 2000; 20:763-71. [PMID: 11100982 DOI: 10.1023/a:1007011127409] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. We previously demonstrated that atrial natriuretic factor and B- and C-type natriuretic peptides (ANF, BNP, and CNP, respectively) modified catecholamine metabolism by increasing the neuronal uptake and decreasing the neuronal release of norepinephrine in the rat hypothalamus. The aim of the present work was to study the effects of natriuretic peptides BNP and CNP on norepinephrine uptake as an index of the amine metabolism in discrete areas and nuclei of the central nervous system (CNS) of the rat. 2. Experiments were carried out in vitro using the punchout technique in diverse areas and nuclei of rat CNS. Results showed that 100 nM BNP and 1 nM CNP increased norepinephrine (NE) uptake in all brain areas and nuclei studied. 3. Present results permit us to conclude that BNP and CNP regulate NE metabolism independently of the encephalic area or nucleus involved. In fact, NE uptake increased in nuclei related to the regulation of cardiovascular activity as well as nuclei associated with endocrine metabolism and hydrosaline homeostasis. These observations suggest that BNP and CNP may be involved in the regulation of these physiological processes in an indirect manner through modifications of noradrenergic neurotransmission. Present findings provide further support to the hypothesis that CNP would be the main natriuretic peptide in brain. Furthermore, previous as well as present results support the role of the natriureic peptides as neuromodulators of noradrenergic transmission at the presynaptic level.
Collapse
Affiliation(s)
- M R Fermepín
- Cátedras de Fisiopatología y Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
32
|
Puyó AM, Vatta MS, Donoso AS, Bianciotti LG, Fernández BE. Central natriuretic peptides regulation of peripheral atrial natriuretic factor release. REGULATORY PEPTIDES 2000; 90:93-9. [PMID: 10828498 DOI: 10.1016/s0167-0115(00)00115-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Atrial natriuretic factor (ANF) and C-type natriuretic peptide (CNP) receptors have been described in encephalic areas and nuclei related to the regulation of cardiovascular as well as sodium and water homeostasis. Stimulation of the anterior ventral third ventricular region of the brain modifies plasma ANF concentration, suggesting the participation of the central nervous system in the regulation of circulating ANF. The aim of this work was to study the effect of centrally applied ANF or CNP on plasma ANF. Normal and blood volume expanded rats (0.8 ml isotonic saline/100 g body weight) were intra cerebralventricularly injected with 1, 10 or 100 ng/microl/min ANF. Blood volume expanded animals were also centrally injected with the same doses of CNP. Blood samples were collected at 5 and 15 min. after intracerebralventricular administration of either ANF or CNP. Centrally applied ANF did not affect circulating ANF in normal blood volume rats. In blood volume expanded animals both ANF (1, 10 or 100 ng/microl/min) and CNP (1 ng/microl/min) decreased plasma ANF concentration after 15 min. Moreover, CNP (10 and 100 ng/microl/min) lowered circulating ANF levels not only at 15 min but also at 5 min. Neither ANF nor CNP elicited any change in mean arterial pressure and heart rate in normal and blood volume expanded rats. These results suggest the existence of a central regulation exerted by natriuretic peptides on circulating ANF levels. Furthermore, this is the first study reporting an effect on plasma ANF induced by centrally applied CNP.
Collapse
Affiliation(s)
- A M Puyó
- Cátedra de Biología Celular e Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-Consejo de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Capital Federal, 5 degrees piso, (1113), Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
33
|
Vatta MS, Presas MF, Bianciotti LG, Rodriguez-Fermepin M, Ambros R, Fernandez BE. B and C types natriuretic peptides modify norepinephrine uptake and release in the rat adrenal medulla. Peptides 1997; 18:1483-9. [PMID: 9437706 DOI: 10.1016/s0196-9781(97)00244-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously reported that atrial natriuretic factor (ANF) modulates adrenomedullar norepinephrine (NE) metabolism. On this basis, the aim of the present work was to study the effects of B and C types natriuretic peptides (BNP and CNP) on the uptake, intracellular distribution and release of 3H-NE. Experiments were carried out in rat adrenal medulla slices incubated "in vitro." Results showed that 100 nM of both, CNP and BNP, enhanced total and neuronal NE uptake. Both peptides (100 nM) caused a rapid increase in NE uptake during the first minute, which was sustained for 60 min. NE intracellular distribution was only modified by CNP (100 nM), which increased the granular fraction and decreased the cytosolic pool. On the other hand, spontaneous as well as evoked (KCl) NE release, was decreased by BNP and CNP (50 and 100 nM for spontaneous release and 1, 10, 50 and 100 nM for evoked output). The present results suggest that BNP and CNP may regulate catecholamine secretion and modulate adrenomedullary biological actions mediated by catecholamines, such as blood arterial pressure, smooth muscle tone, and metabolic activities.
Collapse
Affiliation(s)
- M S Vatta
- Cátedras de Fisiología y Fisiopatología (PROSIVAD-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|